电磁场与电磁波(第三版)课后答案第1章
电磁场与电磁波 答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。
解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。
同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。
所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。
3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。
证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。
那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。
物理光学1章 光的电磁理论及课后习题答案

时间无限延续,空间无限延伸的波动
平面电磁波的时间周期性和空间周期性 v T
参量 周期 频率 角频率
时间 T
1
T
2
空间
1
k 2
平面波传播速度随介质而异;时间频率与介质无关; 而空间频率波长随介质而异
平面简谐波 = 单色波
最显著的特点是:时间周期性和空间周期性: 1、单色光波是一种时间无限延续、空间无限延伸 的波动。 2、从光与物质的作用来看,磁场远比电场为弱。 所以通常把电矢量E称为光矢量,把E的振动称为 光振动。
x0 x y0 y z0 z
散度:矢量函数
F
(M)在坐标轴上的投影为P、Q、R,它的
散度是一个标量函数,定义为微分算符与矢量F的数量
积, 记作:
F (x0 x y0 y z0 z ) (Px0 Qy0 Rz0 )
(P Q R ) x y z
E~2*
Aeik r
波函数互为共轭复数
六、平面电磁波的性质
❖ 1、电磁波是横波
k • E 0 k •B 0
❖ 2、E、H 相互垂直
B k0 E
❖ 3、E、B 同相
E
1
v
B
1.3 球面波和柱面波
一、球面波 1、波函数:
1 2E 1 2E 0
r r 2 2 t 2
点光源,发出以0点为中心的球面,即波阵面是球面,这种
五、平面简谐波的复振幅
E Aexp(ik r ) exp(it)
~
波函数 =
空间位相
时间位相
复振幅:E Aexp(ik r ) 场振动的振幅和位相随空
间的变化。
时间位相:场振幅随时间变化。由于在空间各处随时
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx

电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
电磁场与电磁波(版)课后答案谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波课后答案谢处方

电磁场与电磁波课后答案谢处⽅第⼆章习题解答2.1 ⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? 2.2 ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 ⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
《电磁场》第三版思考题目答案
一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义?矢量场F穿出闭合曲面S的通量为:当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S 内必有发出矢量线的源,称为正通量源。
当小于0时,小于有汇集矢量线的源,称为负通量源。
当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。
1.8什么是散度定理?它的意义是什么?矢量分析中的一个重要定理:称为散度定理。
意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。
1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义?矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。
大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。
等于0,表示场中没有产生该矢量场的源。
1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗?在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。
能用于闭合曲面.1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性? =0,即F为无散场。
1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性? =0即为无旋场1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?不对。
电力线可弯,但无旋。
1.14 无旋场与无散场的区别是什么?无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。
二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
电磁场与电磁波理论思考题
《电磁场与电磁波理论》思考题第1章思考题1.1什么是标量?什么是矢量?什么是矢量的分量?1.2什么是单位矢量?什么是矢量的单位矢量?1.3什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的?1.4什么是右手法则或右手螺旋法则?1.5若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何?1.6若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何?1.7若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行?1.8若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行?1.9直角坐标系中矢量的标量积和矢量积如何计算?1.10什么是场?什么是标量场?什么是矢量场?1.11什么是静态场或恒定场?什么是时变场?1.12什么是等值面?它的特点有那些?1.13什么是矢量线?它的特点有那些?1.14哈密顿算子为什么称为矢量微分算子?1.15标量函数的梯度的定义是什么?物理意义是什么?1.16什么是通量?什么是环量?1.17矢量函数的散度的定义是什么?物理意义是什么?1.18矢量函数的旋度的定义是什么?物理意义是什么?1.19什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的?1.20直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?1.21三个重要的矢量恒等式是怎样的?1.22什么是无源场?什么是无旋场?1.23为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?1.24为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?1.25高斯散度定理和斯托克斯定理的表示式和意义是什么?1.26什么是矢量的唯一性定理?1.27在无限大空间中是否存在既无源又无旋的场?为什么?1.28直角坐标系中的长度元、面积元和体积元是如何表示的?1.29圆柱坐标系中的长度元、面积元和体积元是如何表示的?1.30球面坐标系中的长度元、面积元和体积元是如何表示的?2.1什么是体电荷、面电荷、线电荷和点电荷?他们分别是如何定义的?2.2什么是试验电荷?什么是电场强度?2.3什么是电介质、磁介质和导体或导电媒质?2.4什么是电偶极子?电偶极矩矢量是如何定义的?2.5什么是电极化强度?电介质的极化现象是怎样的?2.6什么是电位移或电通量密度?2.7什么是相对介电常数和(绝对)介电常数?什么是自由空间?2.8什么是线性各向同性的电介质?2.9什么是恒定电流?什么是时变电流?什么是传导电流?什么是运流电流?2.10什么是体电流、面电流和线电流?他们分别是如何定义的?2.11什么是微分形式欧姆定律?2.12什么是洛伦兹力?什么是磁感应强度?2.13什么是磁偶极子?磁偶极矩矢量是如何定义的?2.14什么是磁化强度? 磁介质的磁化现象是怎样的?2.15什么是顺磁质?什么是抗磁质?什么是铁磁性物质?2.16什么是相对磁导率和(绝对)磁导率?2.17什么是磁场强度?2.18什么是线性各向同性的磁介质?2.19电磁学的三大基本实验定律是哪三个?2.20什么是库仑定律?什么是静电场的环量定律?什么是高斯定律?2.21由静电场的环量定律可以什么结论?2.22穿过任一高斯面的电场强度通量与该闭合曲面所包围的哪些电荷有关?2.23穿过任一高斯面的电位移通量与该闭合曲面所包围的哪些电荷有关?2.24高斯面上的场矢量与高斯面外的电荷是否有关?为什么?2.25什么是安培定律?什么是比奥—萨伐尔定律?2.26什么是磁通连续性定律?什么是安培环路定律?2.27磁场强度沿任一闭合回路的环量与哪些电流有关?2.28磁感应强度沿任一闭合回路的环量与哪些电流有关?2.29闭合回路上的磁场强度与闭合回路以外的电流是否有关?为什么?2.30什么是感应电流?什么是感应电场?什么是感应电动势?2.31什么是法拉第电磁感应定律?2.32什么是电荷守恒定律?电荷守恒定律的数学表达式是怎样的?2.33麦克斯韦的漩涡电场假设的基本思想是什么?2.34什么是位移电流?什么是位移电流密度?2.35什么是全电流?什么是全电流密度?什么是全电流连续性定律?2.36为什么说五个基本方程不是独立的?2.37什么是电磁场的边界条件?他们是如何得到的?2.38为什么边界条件的讨论分解成法向分量和切向分量来进行?2.39在不同媒质分界面上,永远是连续的是电磁场的哪些分量?2.40电磁场的哪些分量当不存在传导面电流和自由面电荷时是连续的?2.41什么是理想介质?什么是理想导体?2.42边界条件有哪三种常用形式?他们有什么特点?2.43在理想导体表面上不存在电磁场的什么分量?2.44垂直于理想导体表面的是电力线还是磁力线?平行于理想导体表面的是电力线还是磁3.1什么是静电场?如何由是麦克斯韦方程组得到静电场的基本方程?3.2静电场是无源场还是无旋场?3.3静电场边界条件有哪两种常用形式?他们有什么特点?3.4在静电场中的不同电介质分界面上,电场强度和电位移的什么分量总是连续的?3.5什么是静电场折射定律?3.6静电场的什么分量在导体表面总是为零?导体表面面电荷密度等于电场的什么分量?3.7在静电场中,电场强度沿一个开放路径的线积分与积分路径是否有关?为什么?3.8静电场中任一点的电位是如何定义的?什么是零电位参考点?3.9静电场中任一点的电位是否是唯一的?电场强度是否是唯一的?3.10什么是等位面?电场强度矢量与等位面有什么关系?为什么?3.11什么是电位的泊松方程和拉普拉斯方程?什么是电场强度的泊松方程和拉普拉斯方程?3.12电位的边界条件是如何得到的?为什么电位在界面上总是连续?3.13为什么说导体必为等位体,导体与电介质的交界面必为等位面?3.14静电场的能量和能量密度是如何计算的?3.15导体的电容与哪些因素有关?与导体的电位和所带的电量是否有关?3.16什么是电容器?电容器的电容是如何定义的?3.17电容器的电容与其电场储能有什么关系?3.18什么是静电场分布型问题?什么是静电场的边值型问题?3.19静电场的边值问题可以分为哪三类?3.20什么是静电场唯一性定理?它是如何证明的?3.21静电场边值问题主要解法有哪些?3.22什么是直接积分法?什么情况下可以采用直接积分法?直接积分法的基本步骤是什么?3.23直角坐标系中一维电位分布的拉普拉斯方程的通解是怎样的?电荷均匀分布和线性分布区域电位的通解各是怎样的?3.24圆柱坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.25球面坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.26什么是分离变量法?什么是分离常数?什么是分离方程?3.27直角坐标系中的分离常数有哪几个?直角坐标系中的分离方程是怎样的?3.28直角坐标系中的分离方程的通解与分离常数有什么关系?3.29直角坐标系中分离变量法的的两种常见的二维问题是指什么情况?3.30什么是直角坐标系中分离变量法的基本问题?3.31如何根据基本问题的边界条件选取通解的具体形式?3.32如何利用三角函数的正交性或者傅立叶级数的公式来确定基本问题的最终解?3.33什么是镜像法?什么是镜像电荷?如何确定镜像电荷?3.34点电荷关于无限大导体平面的镜像电荷是如何确定的?此时导体表面的感应电荷有什么特点?3.35无限大导体平面上方与其平行的无限长直的均匀线电荷的镜像是怎样的?(画图)3.36两个无限大相交理想导体平面之间的夹角满足什么条件才能采用镜像法?镜像电荷的数目与夹角有什么关系?(画图)3.37两个平行的无限大导体平面之间的点电荷的镜像电荷有多少?(画图)(画图)3.40如果导体球或球壳没有接地,如何借助于镜像法来求各处的场分布?3.41什么是静电场的数值解法?什么是“场域型”数值方法?什么是“边界型”数值方法?3.42什么是有限差分法?有限差分法的基本步骤是什么?3.43二维泊松方程对应的差分方程是怎样的?3.44二维静电场边值问题的有限差分法的基本步骤是怎样的?3.45什么是差分方程的超松弛迭代法求解?它的基本步骤是怎样的?3.46什么是矩量法?矩量法的三个基本步骤是什么?3.47静电场边值问题的矩量法的基本步骤是怎样的?第4章思考题4.1什么是恒定电流或直流?什么是时变电流或交流?4.2什么是恒定电场?如何由是麦克斯韦方程组得到恒定电场的基本方程?4.3恒定电场是无源场还是无旋场?4.4在电导率不同的导体的分界面上,电场强度和电流密度的什么分量是连续的?4.5在不同导体的分界面上电场强度和电流密度的什么分量是不连续的?4.6恒定电场中电位与静电场的电位有什么异同点?4.7为什么在线性和各向同性的均匀媒质中恒定电场中电位总是满足的拉普拉斯方程?4.8线性和各向同性的均匀媒质中是否存在体电荷?4.9导电媒质分界面上的面电荷的密度是如何确定的?4.10什么情况下,导电媒质分界面上的不存在面电荷?4.11什么是电流的热效应?恒定电场的功率损耗是如何计算的?4.12什么是焦耳定律的微分形式和积分形式?4.13什么是漏电流?什么是漏电导?4.14什么是静电比拟法?它有什么用处?4.15什么情况下可以将静电场与恒定电场相比拟?4.16电容器的漏电导与电容的对应关系是怎样的?4.17什么是恒定磁场?如何由是麦克斯韦方程组得到恒定磁场的基本方程?4.18恒定磁场是无源场还是无旋场?4.19在磁导率不同的磁介质的分界面上,磁场强度和磁感应强度什么分量是连续的?4.20在不同磁介质的分界面上磁场强度和磁感应强度的什么分量是不连续的?4.21什么是恒定磁场折射定律?4.22什么是恒定磁场镜像法?4.23恒定磁场的矢量磁位是如何定义的?4.24什么是库仑条件或库仑规范?为什么恒定磁场的矢量磁位要满足库仑条件或库仑规范?4.25什么是恒定磁场矢量磁位的泊松方程和拉普拉斯方程?4.26由比奥—萨伐尔定律得到的恒定磁场矢量磁位的积分表示式是否满足恒定磁场的微分方程?4.27恒定磁场的标量磁位是如何定义的?它有什么要求?4.28为什么恒定磁场的标量磁位只是满足拉普拉斯方程?4.29恒定磁场的标量磁位的边界条件是如何得到的?4.30恒定磁场的能量和能量密度是如何计算的?4.31什么是导体载流回路的电感?它与哪些因素有关?5.1什么是时谐电磁场?什么是时谐电磁场的复振幅和复振幅矢量?5.2如何由时变电磁场的基本方程得到时谐电磁场的基本方程(基本方程的复数形式)?5.3如何由时变电磁场的结构方程得到时谐电磁场的结构方程(结构方程的复数形式)?5.4如何由时变电磁场的边界条件得到时谐电磁场的边界条件(边界条件的复数形式)?5.5时谐电磁场边界条件有哪三种常用形式?他们有什么特点?5.6在不同媒质分界面上,永远是连续的是时谐电磁场的哪个分量?5.7在理想导体表面上不存在时谐电磁场的什么分量?5.8垂直于理想导体表面的是时谐电磁场的电力线还是磁力线?平行于理想导体表面的是时谐电磁场的电力线还是磁力线?5.9理想导体表面的面电流密度等于时谐电磁场的什么分量?理想导体表面面电荷密度等于时谐电磁场的什么分量?5.10什么是导电媒质的复介电常数?什么是导电媒质的损耗角正切?5.11时变电磁场的矢量磁位和标量电位是如何定义?5.12什么是洛伦兹条件或洛伦兹规范?洛伦兹条件与电流连续性方程是否是一致的?5.13什么情况下矢量磁位和标量电位满足齐次达兰贝尔方程?5.14什么情况下电场强度和磁场强度满足齐次达兰贝尔方程?5.15什么是滞后位?什么是超前位?为什么在无限大自由空间中只有滞后位?5.16矢量磁位和标量电位的滞后位是怎样的?5.17时谐电磁场的矢量磁位和标量电位是如何定义?5.18如何得到时谐电磁场的矢量磁位和标量电位的洛伦兹条件或洛伦兹规范?5.19如何得到时谐电磁场的矢量磁位和标量电位的亥姆霍兹方程(复波动方程)?5.20如何得到时谐电磁场的矢量磁位和标量电位的滞后位和超前位?5.21瞬时坡印廷矢量是如何定义的?它的物理意义是什么?它有什么特性?5.22什么是瞬时坡印廷定理的微分形式和积分形式?瞬时坡印廷定理的物理意义是什么?5.23什么是平均坡印廷矢量?5.24复坡印廷矢量是如何定义的?它的物理意义是什么?5.25天线的作用是什么?天线有哪些类型?5.26什么是电基本振子?什么是磁基本振子?5.27什么是线天线?什么是对称天线?什么是半波天线?5.28什么是近区场?什么是远区场?5.29电基本振子的近区场有什么特性?5.30电基本振子的远区场有什么特性?5.31磁基本振子的近区场有什么特性?5.32磁基本振子的远区场有什么特性?5.33基本振子和磁基本振子的电场有什么异同点?它们谁的辐射能力大?5.34基本振子和磁基本振子的对偶性是怎样的?5.35什么是水平极化天线?什么是垂直极化天线?5.36天线的方向性因子、方向函数和方向图指的是什么?5.37什么是天线的E面方向图?什么是天线的H面方向图?5.38什么是无方向天线?什么是全向天线?什么是定向天线?5.39基本振子、磁基本振子和半波天线的方向图有什么特点?5.40什么是天线辐射功率?天线的半功率波瓣宽度和零功率波瓣宽度是如何定义的?5.41基本振子和磁基本振子的半功率波瓣宽度和零功率波瓣宽度的大小是怎样的?5.42什么是天线阵?它的作用是什么?决定天线阵的辐射特性的主要参数有哪些?6.1什么是平面波?什么是柱面波?什么是球面波?6.2什么是均匀平面波?什么是非均匀平面波?6.3什么是均匀球面波?什么是非均匀球面波?6.4什么是横电磁波(TEM波)、横电波(TE波)和横磁波(TM波)?6.5均匀平面波的传播特性有哪些?6.6均匀平面波的传播参数有哪些?6.7什么是均匀平面波的极化?均匀平面波的极化有什么特点?6.8什么是线极化?什么是圆极化?什么是椭圆极化?6.9什么是右旋圆极化波?什么是左旋圆极化波?6.10什么情况下均匀平面波是线极化?什么情况下均匀平面波是圆极化波?6.11什么情况下均匀平面波是右旋圆极化波?什么情况下均匀平面波是左旋圆极化波?6.12什么是传播矢量?沿任意方向传播的均匀平面波的电磁场的一般形式是怎样的?6.13什么是传播常数?什么是衰减常数?什么是相位常数?6.14导电媒质中传播的均匀平面波具有什么特点?6.15什么是弱导电媒质(低损耗媒质)?什么是良导体(强损耗媒质)?6.16什么是趋肤效应?什么是趋肤深度(透入深度)?6.17什么是表面阻抗?什么是表面电阻?什么是表面电抗?6.18导体的热损耗是如何计算的?6.19什么是入射波、反射波、透射波和折射波?6.20什么是垂直入射?什么是斜入射?6.21什么是入射面?什么是垂直极化斜入射?什么是平行极化斜入射?(用图表示)6.22什么是反射系数?什么是透射系数(折射系数)?6.23垂直入射的反射系数和透射系数有什么关系?6.24垂直入射到理想导体表面时合成电磁场的振幅分布是怎样的?(用图表示)6.25什么是反射定律?什么是折射定律?6.26垂直极化斜入射的反射系数和透射系数(费涅尔公式)有什么关系?6.27平行极化斜入射的反射系数和透射系数(费涅尔公式)有什么关系?6.28什么是驻波比?什么是波腹?什么是波节?什么是行波?什么是驻波?6.29什么是无反射(全折射)?什么是全反射?全反射时是否存在折射波?6.30什么是布儒斯特角?非铁磁性媒质分界面的无反射条件是什么?6.31什么是临界角?非铁磁性媒质分界面的全反射条件是什么?7.1什么是波导?什么是导波?什么是均匀波导(规则波导)?7.2什么是纵向场法?什么是纵向场导波方程?7.3什么是横向拉普拉斯算子?什么是二维的导波方程?7.4什么是二维的横向哈密顿算子?如何得到用纵向场表示的横向场?7.5什么是模式(波型、波或模)?波导中传播的模式可以分成哪四种?7.6什么是TEM模?TEM模存在的条件是什么?TEM模的场在横截面上的分布规律是什么?7.7什么是TE模?什么是TM模?它们的传播条件是什么?7.8什么是传播模式?什么是截止模式?7.9截止波数、截止波长和截止频率之间的关系是怎样的?7.10金属波导内TE模和TM模和传播特性与均匀平面波的传播特性有什么不同?7.11波导波长、截止波长和工作波长三者之间的关系是怎样的?7.12相速度、群速度与电磁波的传播速度之间的关系是怎样的?7.13TE模和TM模的波阻抗或波型阻抗是如何定义的?它们与均匀平面波的波阻抗有什么不同?7.14什么是色散波?什么是几何色散?什么是媒质色散?7.15矩形波导中的两个纵向场是如何表示的?7.16矩形波导中的截止参数有什么特点?7.17什么是简并模式和模式简并?7.18什么是主模?什么是高次模?什么是最低型高次模?7.19什么是截止区?什么是单模传播?什么是多模传播?7.20矩形波导中的单模传播的条件是什么?7.21什么是场结构(模式图)?电力线和磁力线的分布应遵循的规律有哪些?7.22矩形波导内传播模式的场结构的主要特点是什么?7.23矩形波导中各种模式的场结构的规律是什么?7.24圆形波导中的两个纵向场是如何表示的?7.25圆形波导中的截止参数有什么特点?7.26什么是极化简并?什么是异模简并?7.27圆波导中的单模传播的条件是什么?7.28圆波导中的三种常用模式的特点是什么?7.29什么是击穿场强?什么是功率容量?7.30什么是管壁电流?什么是电流线?金属波导中的电流线有什么特点?7.31什么是强辐射缝?什么是无辐射缝?怎样才能得到“强辐射缝”或“无辐射缝”?7.32什么是导体衰减常数?什么介质衰减常数是如何计算的?7.33同轴线中可以传播哪些模式?为什么?7.34同轴线中的主模是什么模式?横截面的场分布有什么特点?7.35同轴线中最低型高次模是什么模式?它的截止波长近似值是多少?为了抑制同轴线的高次模,使TEM模单模工作的最高频率(最小波长)是多少?8.1均匀传输线中的主模的等效电压和等效电流是如何定义的?8.2均匀传输线中的高次模的等效电压和等效电流是如何定义的?8.3均匀传输线中的传输功率可以直接利用等效电压和等效电流计算吗?为什么?8.4什么是传输线的分布参数效应?传输线的分布参数有哪些?传输线的分布参数等效电路是如何得到的?8.5什么是均匀传输线?什么是非均匀传输线?8.6什么是无耗传输线?什么是有耗传输线8.7什么是传输线基本方程(传输线方程或电报方程)?它们与麦克斯韦方程有什么关系?8.8什么是传输线上的入射波?什么是传输线上的反射波?它们与均匀传输线上的电压和电流有什么关系?8.9均匀传输线上的电压和电流的一般表示式有什么特点?8.10已知终端电压和电流的均匀传输线上的电压和电流的表示式是怎样的?8.11决定传输线上电压、电流与位置的关系的是负载阻抗还是信号源?8.12影响传输线上电压和电流的大小(绝对值)的是负载阻抗还是信号源?8.13改变传输线上不同位置电压电流相对值的是负载阻抗还是信号源?8.14什么是特性阻抗?什么是特性导纳?传输线的特性阻抗(特性导纳)有什么特点?8.15什么是传输线的传播常数?什么是传输线的衰减常数?什么是传输线的相位常数?8.16均匀传输线中TEM模和非TEM模的平行双线的传播常数有什么异同点?8.17什么是传输线的特征参数?什么是传输线的工作参数?8.18什么是传输线的等效阻抗(输入阻抗、阻抗)?均匀传输线上的阻抗有什么性质?8.19什么是传输线的电压反射系数?什么是传输线的电流反射系数?什么是传输线的反射系数?8.20均匀传输线上的反射系数有什么性质?8.21传输线上相距二分之一波长的两处的等效阻抗和反射系数有什么关系?8.22传输线上相距四分之一波长的两处的等效阻抗和反射系数有什么关系?8.23传输线上为什么会有三种不同的工作状态?行波、驻波和行驻波有什么异同点?8.24什么是传输线的行波系数?什么是传输线的驻波比(电压驻波系数)?它们与反射系数有什么关系?8.25传输线腹节点的阻抗与行波系数和驻波比有什么关系?8.26如何利用腹节点的位置和大小确定其终端所接负载的反射系数?8.27什么是传输线的行波状态(无反射状态、阻抗匹配状态)?什么条件下传输线会工作在行波状态?8.28行波状态时传输线上电压、电流和阻抗的分布是怎样的?(画图)8.29什么是传输线的驻波状态(全反射状态)?什么条件下传输线会工作在驻波状态?8.30驻波状态时传输线上电压、电流和阻抗的分布是怎样的?(画图)8.31驻波的瞬时电压和电流是如何变化的?8.32行驻波状态时传输线上电压、电流和阻抗的分布是怎样的?(画图)。
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场与电磁波习题及答案
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u v g2静电场的基本方程积分形式为:CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题解答 给定三个矢量A、B和C如下: 23xyzAeee 4yzBee 52xzCee 求:(1)Aa;(2)AB;(3)ABg;(4)AB;(5)A在B上的分量;(6)AC; (7)()ABCg和()ABCg;(8)()ABC和()ABC。
解 (1)222
2312314141412(3)xyzAxyzeeeA
aeee
A
(2)AB(23)(4)xyzyzeeeee6453xyzeee
(3)ABg(23)xyzeee(4)yzeeg-11
(4)由 cosAB11111417238ABABg,得
1cosAB
11()135.5238o
(5)A在B上的分量 BAAcosAB
1117ABBg
(6)AC123502xyz
eee41310xyzeee
(7)由于BC041502xyz
eee8520xyzeee
AB123041xyz
eee1014xyzeee
所以 ()ABCg(23)xyzeeeg(8520)42xyzeee ()ABCg(1014)xyzeeeg(52)42xzee
(8)()ABC1014502xyz
eee2405xyzeee
()ABC1238520xyzeee554411xyzeee
三角形的三个顶点为1(0,1,2)P、2(4,1,3)P和3(6,2,5)P。 (1)判断123PPP是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2)P、2(4,1,3)P和3(6,2,5)P的位置矢量分别为 12yzree,243xyzreee,3625xyzreee
则 12214xzRrree, 233228xyzRrreee,
311367xyzRrreee
由此可见 1223(4)(28)0xzxyzRReeeeegg
故123PPP为一直角三角形。 (2)三角形的面积 12231223
111176917.13222SRRRR
求(3,1,4)P点到(2,2,3)P点的距离矢量R及R的方向。 解 34Pxyzreee,223Pxyzreee, 则 53PPPPxyzRrreee 且PPR与x、y、z轴的夹角分别为 115cos()cos()32.3135xPPxPP
eRRog
113cos()cos()120.4735yPPyPP
eRRog
111cos()cos()99.7335zPPzPP
eRRog
给定两矢量234xyzAeee和456xyzBeee,求它们之间的夹角和A在B上的分量。 解 A与B之间的夹角为 1131cos()cos()1312977ABABABog
A在B上的分量为 313.53277BABABg
给定两矢量234xyzAeee和64xyzBeee,求AB在xyzCeee上的分量。
解 AB234641xyz
eee132210xyzeee
所以AB在C上的分量为 ()CAB()2514.433ABCCg 证明:如果ABgACg和ABAC,则BC; 解 由ABAC,则有()()AABAAC,即 ()()()()ABAAABACAAACgggg 由于ABgACg,于是得到 ()()AABAACgg
故 BC
如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设A为一已知矢量,pAXg而PAX,p和P已知,试求X。 解 由PAX,有 ()()()()pAPAAXAXAAAXAAAXggg
故得 pAAPXAAg
在圆柱坐标中,一点的位置由2(4,,3)3定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解 (1)在直角坐标系中 4cos(23)2x、4sin(23)23y、3z
故该点的直角坐标为(2,23,3)。 (2)在球坐标系中 22435r、1tan(43)53.1o、23120
o
故该点的球坐标为(5,53.1,120)oo 用球坐标表示的场225rrEe, (1)求在直角坐标中点(3,4,5)处的E和xE; (2)求在直角坐标中点(3,4,5)处E与矢量22xyzBeee构成的夹角。 解 (1)在直角坐标中点(3,4,5)处,2222(3)4(5)50r,故
22512rrEe
1332cos22052xxrxEeEEg
(2)在直角坐标中点(3,4,5)处,345xyzreee,所以
233452525102xyzrreeer
E
故E与B构成的夹角为 1119(102)cos()cos()153.632EBEBEBogg 球坐标中两个点111(,,)r和222(,,)r定出两个位置矢量1R和2R。证明1R和2R
间夹角的余弦为 121212coscoscossinsincos()
解 由 111111111sincossinsincosxyzrrrReee
222222222sincossinsincosxyzrrrReee
得到 1212cos
RRRRg
1122112212sincossincossinsinsinsincoscos 121211212sinsin(coscossinsin)coscos 121212sinsincos()coscos
一球面S的半径为5,球心在原点上,计算: (3sin)drSeSgÑ的值。
解 (3sin)d(3sin)drrrSSSeSeegg蜒22200d3sin5sind75 在由5r、0z和4z围成的圆柱形区域,对矢量22rzrzAee验证散度定理。 解 在圆柱坐标系中 21()(2)32rrzrrrzAg
所以 425000ddd(32)d1200zrrrAg
又 2d(2)(ddd)rzrrzzSSrzSSSASeeeeegg蜒
42522
000055dd24dd1200zrr
故有 d1200AgdSASgÑ 求(1)矢量22222324xyzxxyxyzAeee的散度;(2)求Ag对中心在原点的一个单位立方体的积分;(3)求A对此立方体表面的积分,验证散度定理。 解 (1)2222232222()()(24)2272xxyxyzxxyxyzxyz
Ag
(2)Ag对中心在原点的一个单位立方体的积分为 1212122222
1212121d(2272)ddd24xxyxyzxyzAg
(3)A对此立方体表面的积分 1212121222
1212121211d()dd()dd22SyzyzASg
Ñ
121212122222
12121212112()dd2()dd22xxzxxz
12121212223223
1212121211124()dd24()dd2224xyxyxyxy
故有 1d24AgdSASgÑ 计算矢量r对一个球心在原点、半径为a的球表面的积分,并求rg对球体积的积分。
解 223
00dddsind4rSSSaaarSregg蜒