NMR常见溶剂峰和水峰

合集下载

核磁氢谱常见溶剂峰

核磁氢谱常见溶剂峰

在核磁共振(NMR)氢谱中,溶剂通常会产生一些特征性的峰。

这些峰是由于溶剂分子中氢原子的存在,它们在谱图中产生信号。

以下是一些常见的核磁氢谱中的一些常见溶剂峰:
1. **氘气体(D2):**
-信号通常在0 ppm左右。

2. **氘氧(D2O):**
-信号通常在3.3 ppm左右。

3. **二氯甲烷(CD2Cl2):**
-信号通常在5.3 ppm左右。

4. **氯仿(CDCl3):**
-信号通常在7.26 ppm左右。

5. **乙腈(CD3CN):**
-信号通常在1.94 ppm左右。

6. **二甲基硫醚((CD3)2SO):**
-信号通常在2.50 ppm左右。

这些峰的位置可以作为内部标准,用于校正样品中氢谱峰的位置。

注意,这些值可能会有一些变化,具体取决于实验条件和仪器参数。

在解释核磁氢谱时,了解溶剂峰的位置是很有用的,因为它可以帮助识别样品中的峰。

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)之欧阳育创编

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)之欧阳育创编

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。

为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。

常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80水峰—1.562.843.33 0.40 2.134.87 —乙酸—2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮—2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈—2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.36 7.36 7.37 7.15 7.37 7.33 —叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1. 24OH —— 4.19 1.55 2.18 ——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21OCH3 3.22 3.13 3.08 3.04 3.13 3.2 0 3.22氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷—1.43 1.43 1.40 1.40 1.44 1.45 —1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —二氯甲烷—5.30 5.63 5.76 4.27 5.44 5.49 —乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17CH2(q) 3.48 3.41 3.38 3.26 3.42 3.4 9 3.56二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.0186 2.85二甲基亚砜—2.62 2.52 2.54 1.68 2.50 2.65 2.71二氧杂环—3.71 3.59 3.57 3.35 3.60 3.66 3.75乙醇 CH3(t) 1.25 1.12 1.06 0.96 1.12 1.19 1.17CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH(s) 1.32 3.39 3.63 —2.47 ——乙酸乙酯CH3CO2.05 1.97 1.99 1.65 1.97 2.01 2.07OCH2(q) 4.12 4.05 4.03 3.89 4.06 4 .09 4.14CH3(t) 1.26 1.20 1.17 0.92 1.20 1.24 1.24甲乙酮CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.1950 3.18CH3(t) 1.06 0.96 0.91 0.85 0.96 1.01 1.26乙二醇—3.76 3.28 3.34 3.41 3.51 3.59 3.6 5润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 —1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2(m) 1.26 1.28 1.25 1.24 1.28 1.29 —甲醇 CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1 .29 —异丙醇CH3(d) 1.22 1.10 1.04 0.95 1.09 1.50 1.17CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02硅脂— 0.07 0.13 —0.29 0.08 0.10 —四氢呋喃 CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88CH2O 3.76 3.63 3.60 3.57 3.64 3.7 1 3.74甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.3 2 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —三乙基胺 CH3 1.03 0.96 0.93 0.96 0.96 1.05 0.99CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57石油醚— 0.5-1.5 0.6-1.9 —————。

氘代甲醇的溶剂峰和水峰

氘代甲醇的溶剂峰和水峰

氘代甲醇的溶剂峰和水峰在化学研究中,溶剂峰和水峰是常见的概念。

溶剂峰是指在核磁共振谱(NMR)中,溶剂本身的峰。

而水峰是指在NMR中,水分子的峰。

这两个峰的存在,对于分析化合物的结构和纯度具有重要意义。

本文将以氘代甲醇为例,介绍溶剂峰和水峰的相关知识。

氘代甲醇是一种化学物质,分子式为CD3OD。

它是甲醇分子中的一个氢原子被氘代替而成的。

与普通甲醇相比,氘代甲醇的特点是不易挥发和易于溶于氘代溶剂中。

因此,它常用作氘代溶剂的代表物质。

在氘代甲醇的NMR谱图中,我们可以看到三个峰。

其中,最强的峰是溶剂峰,它位于4.8-5.0 ppm的区域内。

这个峰是由于氘代甲醇分子中的OD基团产生的。

由于OD基团的质量比H基团大得多,因此溶剂峰出现在比H基团的峰高位置。

除了溶剂峰外,氘代甲醇的NMR谱图中还有一个峰位于1.0-1.5 ppm的区域内,这就是水峰。

水峰是由于氘代甲醇中残留的水分子产生的。

由于氘代甲醇易于溶于水,因此在制备氘代甲醇时,难免会有一些水分子残留。

这些水分子会产生一个独特的峰,称为水峰。

在氘代甲醇的NMR谱图中,溶剂峰和水峰的存在,对于分析化合物的结构和纯度具有重要意义。

首先,溶剂峰的强度可以用来估算化合物的浓度。

其次,水峰的存在可以提示我们样品中可能存在的杂质。

如果水峰的强度较高,就说明样品中可能存在着大量的水分子,这会影响化合物的分析结果。

因此,在进行NMR分析时,我们需要尽可能地减少样品中水分子的存在,以保证分析结果的准确性。

除了氘代甲醇外,其他的氘代溶剂中也有溶剂峰和水峰的存在。

例如,氘代二氯甲烷的溶剂峰位于5.3 ppm左右,而水峰通常位于1.5-2.5 ppm的区域内。

因此,在进行化合物的NMR分析时,我们需要根据实际情况选择合适的氘代溶剂,并对溶剂峰和水峰进行正确的处理,以获得准确的分析结果。

总之,溶剂峰和水峰是NMR分析中常见的概念。

在氘代甲醇的NMR谱图中,溶剂峰和水峰的存在对分析化合物的结构和纯度具有重要意义。

dmso氢谱水峰

dmso氢谱水峰

dmso氢谱水峰
DMSO(二甲基亚砜)是一种常用的溶剂,在核磁共振氢谱(NMR)中,DMSO溶剂中的氢原子会产生一个水峰。

水峰的位置一般为1.56ppm的尖峰。

当物质与水有相互作用时,水峰会发生偏移。

此外,如果样品中存在氘代DMSO,含水量多的氘代DMSO会产生两个水峰,常见的HDO(氘代水)化学位移在3。

而普通水的化学位移一般在3.33。

需要注意的是,不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的。

确定质子类型对于阐明分子结构具有重要意义。

在实际应用中,通过观察和分析氢谱水峰的位置和形状,可以帮助研究人员了解样品中水分子的分布和相互作用情况。

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

之阳早格格创做尝试核磁的样品普遍央供比较杂,而且不妨溶解正在氘代试剂中,那样才搞测得下辨别率的图谱.为没有搞扰谱图,所用溶剂分子中的氢皆应被氘与代,但是易免有氢的残存(1%安排),那样便会爆收溶剂峰;除了残存的量子峰中,溶剂中偶尔会有微量的H2O而爆收火峰,而且那个H2O峰的位子也会果溶剂的分歧而分歧;其余,正在样品(或者造备历程)中,也易免会残留一些杂量,正在图谱上便会有杂量峰,应注意辨别.时常使用氘代溶剂战杂量峰正在1H谱中的化教位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2 O火峰—1.562.843.33 0.40 2.134.87 —苯—7.36 7.36 7.37 7.15 7.37 7.33 —OH —— 4.19 1.55 2.18 ——叔丁基甲醚氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷—1.43 1.43 1.40 1.40 1.44 1.45 —1,2-两氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —两氯甲烷—5.30 5.63 5.76 4.27 5.44 5.49 —两甲基甲酰胺OH(s) 1.32 3.39 3.63 —2.47 ——润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 —1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2(m) 1.26 1.28 1.25 1.24 1.28 1.29 —OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29 —硅脂— 0.07 0.13 —0.29 0.08 0.10 —甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.3 2 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —石油醚— 0.5-1.5 0.6-1.9 —————。

NMR各种溶剂峰

NMR各种溶剂峰

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,andAbraham Nudelman*Department of Chemistry,Bar-Ilan University,Ramat-Gan52900,IsraelReceived June27,1997In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice.We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist.Experimental SectionNMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected.In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine.ResultsProton Spectra(Table1).A sample of0.6mL of the solvent,containing1µL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3µL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once.For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively).Carbon Spectra(Table2).To each tube,50µL of the stock solution and3µL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts(1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217.(2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz.(3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture..Chem.1997,62,7512-7515S0022-3263(97)01176-6CCC:$14.00©1997American Chemical Societyshow their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2µL of a specific substrate were added and the spectra run again.Table1.1H NMR Dataproton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92OH c s 5.01 6.65 4.79 5.20ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.451,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH s c,d 1.32 3.39 4.63 2.47ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88CH2br s 1.26 1.29 1.36 1.27 1.29n-hexane CH3t0.880.880.860.890.890.90CH2m 1.26 1.28 1.25 1.24 1.28 1.29HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90CH2m 1.27 1.27 1.27 1.23 1.29 1.292-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32CH(o/p)m7.177.1-7.27.187.027.1-7.37.16CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at2.81and3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks.Notes .Chem.,Vol.62,No.21,19977513.Chem.,Vol.62,No.21,1997NotesTable2.13C NMR Data aCDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent signals77.16(0.0629.84(0.0139.52(0.06128.06(0.02 1.32(0.0249.00(0.01206.26(0.13118.26(0.02acetic acid CO175.99172.31171.93175.82173.21175.11177.21 CH320.8120.5120.9520.3720.7320.5621.03 acetone CO207.07205.87206.31204.43207.43209.67215.94 CH330.9230.6030.5630.1430.9130.6730.89 acetonitrile CN116.43117.60117.91116.02118.26118.06119.68 CH3 1.89 1.12 1.030.20 1.790.85 1.47 benzene CH128.37129.15128.30128.62129.32129.34tert-butyl alcohol C69.1568.1366.8868.1968.7469.4070.36 CH331.2530.7230.3830.4730.6830.9130.29 tert-butyl methyl ether OCH349.4549.3548.7049.1949.5249.6649.37 C72.8772.8172.0472.4073.1774.3275.62C C H326.9927.2426.7927.0927.2827.2226.60 BHT C(1)151.55152.51151.47152.05152.42152.85C(2)135.87138.19139.12136.08138.13139.09CH(3)125.55129.05127.97128.52129.61129.49C(4)128.27126.03124.85125.83126.38126.11CH3Ar21.2021.3120.9721.4021.2321.38C H3C30.3331.6131.2531.3431.5031.15C34.2535.0034.3334.3535.0535.36chloroform CH77.3679.1979.1677.7979.1779.44cyclohexane CH226.9427.5126.3327.2327.6327.961,2-dichloroethane CH243.5045.2545.0243.5945.5445.11 dichloromethane CH253.5254.9554.8453.4655.3254.78diethyl ether CH315.2015.7815.1215.4615.6315.4614.77 CH265.9166.1262.0565.9466.3266.8866.42 diglyme CH359.0158.7757.9858.6658.9059.0658.67 CH270.5171.0369.5470.8770.9971.3370.05CH271.9072.6371.2572.3572.6372.9271.63 1,2-dimethoxyethane CH359.0858.4558.0158.6858.8959.0658.67 CH271.8472.4717.0772.2172.4772.7271.49 dimethylacetamide CH321.5321.5121.2921.1621.7621.3221.09 CO171.07170.61169.54169.95171.31173.32174.57NCH335.2834.8937.3834.6735.1735.5035.03NCH338.1337.9234.4237.0338.2638.4338.76 dimethylformamide CH162.62162.79162.29162.13163.31164.73165.53 CH336.5036.1535.7335.2536.5736.8937.54CH331.4531.0330.7330.7231.3231.6132.03 dimethyl sulfoxide CH340.7641.2340.4540.0341.3140.4539.39 dioxane CH267.1467.6066.3667.1667.7268.1167.19 ethanol CH318.4118.8918.5118.7218.8018.4017.47 CH258.2857.7256.0757.8657.9658.2658.05 ethyl acetate C H3CO21.0420.8320.6820.5621.1620.8821.15 CO171.36170.96170.31170.44171.68172.89175.26CH260.4960.5659.7460.2160.9861.5062.32CH314.1914.5014.4014.1914.5414.4913.92 ethyl methyl ketone C H3CO29.4929.3029.2628.5629.6029.3929.49 CO209.56208.30208.72206.55209.88212.16218.43C H2CH336.8936.7535.8336.3637.0937.3437.27CH2C H37.868.037.617.918.148.097.87 ethylene glycol CH263.7964.2662.7664.3464.2264.3063.17“grease”CH229.7630.7329.2030.2130.8631.29n-hexane CH314.1414.3413.8814.3214.4314.45CH2(2)22.7023.2822.0523.0423.4023.68CH2(3)31.6432.3030.9531.9632.3632.73HMPA b CH336.8737.0436.4236.8837.1037.0036.46 methanol CH350.4149.7748.5949.9749.9049.8649.50c nitromethane CH362.5063.2163.2861.1663.6663.0863.22 n-pentane CH314.0814.2913.2814.2514.3714.39CH2(2)22.3822.9821.7022.7223.0823.38CH2(3)34.1634.8333.4834.4534.8935.302-propanol CH325.1425.6725.4325.1825.5525.2724.38 CH64.5063.8564.9264.2364.3064.7164.88 pyridine CH(2)149.90150.67149.58150.27150.76150.07149.18 CH(3)123.75124.57123.84123.58127.76125.53125.12CH(4)135.96136.56136.05135.28136.89138.35138.27 silicone grease CH3 1.04 1.40 1.38 2.10 tetrahydrofuran CH225.6226.1525.1425.7226.2726.4825.67 CH2O67.9768.0767.0367.8068.3368.8368.68 toluene CH321.4621.4620.9921.1021.5021.50C(i)137.89138.48137.35137.91138.90138.85CH(o)129.07129.76128.88129.33129.94129.91CH(m)128.26129.03128.18128.56129.23129.20CH(p)125.33126.12125.29125.68126.28126.29triethylamine CH311.6112.4911.7412.3512.3811.099.07 CH246.2547.0745.7446.7747.1046.9647.19a See footnotes for Table1.b2J PC)3Hz.c Reference material;see text.For D2O solutions there is no accepted reference for carbon chemical shifts.We suggest the addition of a drop of methanol,and the position of its signal to be defined as49.50ppm;on this basis,the entries in Table2were recorded.The chemical shifts thus obtained are,on the whole,very similar to those for the other solvents. Alternatively,we suggest the use of dioxane when the methanol peak is expected to fall in a crowded area of the spectrum.We also report the chemical shifts of sodium formate(171.67ppm),sodium acetate(182.02and 23.97ppm),sodium carbonate(168.88ppm),sodium bicarbonate(161.08ppm),and sodium3-(trimethylsilyl)-propanesulfonate[54.90,19.66,15.56(methylenes1,2, and3,respectively),and-2.04ppm(methyls)],in D2O. Temperature Dependence of HDO Chemical Shifts.We recorded the1H spectrum of a sample of D2O, containing a crystal of sodium3-(trimethylsilyl)propane-sulfonate as reference,as a function of temperature.The data are shown in Figure1.The solid line connecting the experimental points corresponds to the equation which reproduces the measured values to better than1 ppb.For the0-50o C range,the simplergives values correct to10ppb.For both equations,T is the temperature in°C.Acknowledgment.Generous support for this work by the Minerva Foundation and the Otto Mayerhoff Center for the Study of Drug-Receptor Interactions at Bar-Ilan University is gratefully acknowledged.JO971176Vδ)5.060-0.0122T+(2.11×10-5)T2(1)δ)5.051-0.0111T(2)Notes .Chem.,Vol.62,No.21,19977515。

氘代甲醇的溶剂峰和水峰

氘代甲醇的溶剂峰和水峰氘代甲醇是一种重要的有机化合物,它具有许多重要的应用,如溶剂、反应中间体、反应物等。

在氘代甲醇的核磁共振谱(NMR)中,溶剂峰和水峰是两个重要的峰,它们可以提供有关溶剂和样品的信息。

本文将介绍氘代甲醇的溶剂峰和水峰的原理、特点和应用。

一、氘代甲醇的溶剂峰氘代甲醇的溶剂峰是由氘代甲醇分子自身产生的NMR信号,它是由于溶剂分子在NMR谱仪中的磁场中产生的共振信号。

在氘代甲醇的溶剂峰中,通常会出现两个峰,分别对应着氘代甲醇分子的两个取向。

在一般情况下,溶剂峰的强度很弱,但是它的位置和形状却非常重要,因为它可以提供关于溶剂的信息。

氘代甲醇的溶剂峰通常出现在5.24-5.32 ppm的区域,它的位置取决于溶剂的种类和浓度。

当溶剂的浓度增加时,溶剂峰的强度也会增加。

此外,当NMR谱仪的磁场强度发生变化时,溶剂峰的位置也会发生变化。

在实际应用中,氘代甲醇的溶剂峰可以用来确定样品中其他NMR 信号的位置和强度。

通过对溶剂峰的位置和强度进行准确的测量,可以确定样品中其他信号的位置和强度,并且可以对样品进行定量分析。

二、氘代甲醇的水峰氘代甲醇的水峰是由于样品中水分子产生的NMR信号,它是另一个非常重要的峰。

在氘代甲醇的水峰中,通常会出现一个峰,其位置和形状也非常重要,因为它可以提供关于样品中水分子的信息。

氘代甲醇的水峰通常出现在4.70-4.80 ppm的区域,它的位置取决于样品中水分子的浓度和pH值。

当水分子的浓度增加时,水峰的强度也会增加。

此外,当样品的pH值发生变化时,水峰的位置也会发生变化。

在实际应用中,氘代甲醇的水峰可以用来确定样品中水分子的浓度和pH值。

通过对水峰的位置和强度进行准确的测量,可以确定样品中水分子的浓度和pH值,并且可以对样品进行定量分析。

三、应用氘代甲醇的溶剂峰和水峰在实际应用中有着广泛的应用。

在化学合成中,它们可以用来确定反应的进程和产物,以及反应物和催化剂的含量。

最新核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)知识讲解

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。

为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1% 左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O 而产生水峰,而且这个H2O 峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。

常用氘代溶剂和杂质峰在1H 谱中的化学位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80水峰—1.562.843.33 0.40 2.134.87—乙酸—2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮—2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈—2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.36 7.36 7.37 7.15 7.37 7.33—叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24OH——4.19 1.55 2.18——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷—1.43 1.43 1.40 1.40 1.44 1.45—1,2- 二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78—二氯甲烷—5.30 5.63 5.76 4.27 5.44 5.49—乙醚CH3(t)1.21 1.11 1.09 1.11 1.12 1.18 1.17CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75乙醇CH3(t) 1.25 1.12 1.06 0.96 1.12 1.19 1.17 CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH(s) 1.32 3.39 3.63—2.47——乙酸乙酯CH3CO 2.05 1.97 1.99 1.65 1.97 2.01 2.07 OCH2(q)4.12 4.05 4.03 3.89 4.06 4.09 4.14CH3(t) 1.26 1.20 1.17 0.92 1.20 1.24 1.24 甲乙酮CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.19 CH2(q) 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH3(t) 1.06 0.96 0.91 0.85 0.96 1.01 1.26 乙二醇—3.76 3.28 3.34 3.41 3.51 3.59 3.65 润滑脂CH3(m) 0.86 0.87—0.92 0.86 0.88—CH2(br) 1.26 1.29—1.36 1.27 1.29—正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90—CH2 (m) 1.26 1.28 1.25 1.24 1.28 1.29—甲醇CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34OH 1.09 3.12 4.01 2.16——正戊烷CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29—异丙醇CH3(d) 1.22 1.10 1.04 0.95 1.09 1.50 1.17 CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02硅脂—0.07 0.13—0.29 0.08 0.10—四氢呋喃CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88CH2O 3.76 3.63 3.60 3.57 3.64 3.71 3.74 甲苯CH3 2.36 2.32 2.30 2.11 2.33 2.32—CH ( o/p)7.17 7.20 7.18 7.02 7.30 7.16—CH(m)7.25 7.20 7.25 7.13 7.30 7.16—三乙基胺CH3 1.03 0.96 0.93 0.96 0.96 1.05 0.99 CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57石油醚—0.5-1.5 0.6-1.9—————。

核磁氢谱水峰

核磁氢谱水峰
核磁氢谱中的水峰是指由于样品中的水分子引起的特定信号峰。

在常规的核磁共振(NMR)谱中,水峰通常出现在较高的化学位移区域,具体位置约在4.5-5.5 ppm之间。

水峰的出现主要是因为样品中的溶剂中含有水分子。

由于水分子在核磁共振实验中较为普遍且具有强烈的信号,它可能干扰或覆盖其他化合物的信号。

因此,在进行核磁谱分析时,水峰通常被视为一个参考点或标定峰,用于确定其他化合物的化学位移。

为了消除水峰的干扰,可以采取一些措施,例如使用无水溶剂、进行样品预处理或选择适当的脉冲序列和参数来抑制水峰的信号。

需要注意的是,在某些特殊情况下,水峰可能会出现在不同的化学位移位置,这取决于溶剂、pH值和温度等实验条件的不同。

因此,在具体的核磁谱分析中,需要根据实验条件和样品情况来准确判断和处理水峰的存在。

1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N M R常见溶剂峰和水峰
溶剂1
H化学位移
δ(精细多
重峰数)
JHD/Hz 13
C化学位移
δ(精细多
重峰数)
JCD/Hz NMR溶剂
中残余
H2O或HOD
的质子化
学移
相对密度
(20℃)
熔点
/℃
沸点
/℃
丙酮—d6 (5) (13)
(7)
-94 57
氯仿-d (1) (3) -64 62 重水(DSS)
(TSP)
N,N-二甲基甲酰胺-d
7(1)
(5)
(5
(3)
(7)
(7
-61 153
二甲基
亚砜-d
6
(5) (7) 18 189
甲醇-d
4
(1)
(5)
(7) -98 65
身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移氯仿:小、中小、中等极性
DMSO:芳香系统(日光下自然显色、紫外荧光)。

对于酚羟基能够出峰。

芳香化合物还是芳香甙,都为首选。

吡啶:极性大的,特别是皂甙
对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试
剂。

极性大的化合物可采用氘代丙酮、重水等。

针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。

丙酮:中等极性
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
甲醇:极性大
氯仿—甲醇:
石:乙5;1小极性
石:丙2:1——1:1中等极性
氯仿:甲醇6:1极性以上含有一个糖
2:1含有两个糖
含有糖的三萜皂甙:一般用吡啶
常见溶剂的化学位移
常见溶剂的1H在不同氘代溶剂中的化学位移值
常见溶剂的化学位移
常见溶剂的13C在不同氘代溶剂中的化学位移值
核磁知识(NMR)
一:样品量的选择
氢谱,氟谱,碳谱至少需要,1H-1HNOESY,1H-13CHMBC,1H-13CHSQC需要10-15mg.碳谱需要30mg.
二:如何选择氘代溶剂
常用氘代溶剂:CDCl3,DMSO,D2O,CD3OD.特殊氘代溶剂:CD3COCD3,C6D6,CD3CN 。

极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。

CDCl3为人民币2-
3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。

Solvent化学位移(ppm)水峰位移(ppm)
CDCl3
DMSO
CD3OD
D2O
CD3COCD3。

相关文档
最新文档