八年级数学上册2_1三角形第1课时三角形的有关概念及三边关系习题课件新版湘教版
新湘教版八年级上册初中数学 课时2 真命题与假命题、基本事实与定理 教学课件

第五页,共二十一页。
新课讲解
要判断一个命题是真命题,常常要从命题的条件出发, 通过讲道理(推理),得出其结论成立,从而判断这 个命题为真命题,这个过程叫证明.
那么怎样判断一个命 题是假命题呢?
第六页,共二十一页。
新课讲解
知识点2 反例
片段1:县官一时拿不定主意,就问旁边的县丞道:“师爷,你怎么 看?”县丞说“这事要证明是张三干的,还得弄清那袋子里装的是不是刚捌的
a∥b.
真命题
第十九页,共二十一页。
当堂小练
2. 举反例说明下列命题是假命题:
(1)两个锐角的和是钝角; 直角三角形的两个锐角和不是钝角;
(2)如果数a,b的积ab>0,那么a,b都是正数; -1和-3的积是-1×(-3)>0,-1和-3不是正数;
(3)两条直线被第三条直线所截同位角相等. 两条相交的直线a、b被第三条直线l所截(如
第三页,共二十一页。
新课讲解
知识点1 真命题与假命题
做一做:下列命题中,哪些正确,哪些错误?
(1)每一个月都有31天; 错误 (2)如果a是有理数,那么a是整数; (3)同位角相等; 错误
(4)同角的补角相等. 正确
错误
你能说说你是怎 么判断的吗?
我们把正确的命题称为真命题,把错误的命 题称为假命题.
(1)若两个角不是对顶角,则这两个角不相等; (2)若ab=0,则a+b=0. 解:(1)如:两条直线平行时的内错角,这两个角不是对 顶角,但它们相等;
(2)如:当a=5,b=0时,ab=0,但a+b≠0.
第九页,共二十一页。
新课讲解
知识点3 基本事实与定理 古希腊数学家欧几里得对数学知识作了系统的总结,把人们公认 的真命题作为证明的原始依据,称这些真命题为公理. 我们把少数真命题作为基本事实. 例如,两点确定一条直线;
人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b
三
按角分 角)三角
角
分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A
角
边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4
2019秋数学湘教版八年级上册习题课件:第2章 2.1 第2课时

16. 如图所示,宿迁有三个车站 A、B、C 成三角形,一辆公共汽车从 B 站前 往到 C 站. (1)当汽车运动到点 D 时,刚好 BD=CD,连接线段 AD, AD 这条线段是什么线段?这样的线段在△ABC 中有几 条呢?此时有面积相等的三角形吗? (2)汽车继续向前运动,当运动到点 E 时,发现∠BAE =∠CAE,那么 AE 这条线段是什么线段呢?在△ABC 中,这样的线段又有 几条呢? (3)汽车继续向前运动,当运动到点 F 时,发现∠AFB=∠AFC=90°,则 AF 是什么线段?这样的线段△ABC 中有几条?
解:(1)AD 是△ABC 中 BC 边上的中线,三角形中有三条中线.此时△ABD 与△ADC 的面积相等;(2)AE 是△ABC 中∠BAC 的角平分线,三角形的角平 分线有三条;(3)AF 是△ABC 中 BC 边上的高,三角形中有三条高.
【例 2】如图所示,以 AE 为高的三角形有( D )
A.1 个
B.2 个
C.3 个
D.6 个
【思路分析】此题易错认为以 AE 为高的三角形有△ABC、△ACD、△ABD,
容易忽略△ABE 和△AED 和△AEC.
1.如图所示,在△ABC 中,∠ACB=90°,CD⊥AB,则 AB 边上的高为 CD , BC 边上的高为 AC ,CA 边上的高为 BC . 2.如图,在△ABC 中,BD 是∠ABC 的角平分线,已知∠ABC=80°,则∠ DBC= 40° . 3.如图所示,图中共有 6 个三角形,若 BC=CD=DE,则 AC 是△ABD的 中线,AD 是 △ACE 的中线.
解:∵△ABD 的周长为 30 cm,∴AB+BD+AD=30 cm,∴AC+CD+AD =30 cm,∴AB+BC+AC+2AD=60 cm,∵AB+AC+BC=34 cm,∴AD =13 cm
人教版八年级上册数学第11章《三角形》(全)共9课时

C
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
△ABC 记法:三角形ABC用符号表示________.
பைடு நூலகம்
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
c, a , b 示为________.
3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
3.如图,在△ACE中,∠CEA的对边是 AC A
.
B
C
D
E
F
19cm 4.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的周长为 __________.
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm;
(3)能,因为5cm+6cm>10cm.
归纳
判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第
三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4的木棒能和它们拼成三角形吗? 长度为11的木棒呢?若不能拼成,则第三条边应在什么范围呢?
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD. (2)以AB为边的三角形有哪些? △ABC、△ABE.
XJ湘教版 初二八年级数学 上册第一学期秋季(导学案)第二章 三角形(全章 分课时)

第二章 三角形 2.1 三角形 第1课时 三角形的有关概念及三边关系学习目标1.认识三角形,能用符号语言表示三角形,并按边把三角形进行分类. 2.知道三角形的三边关系.3.懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题 重点难点三角形三边关系的探究和应用 一、合作探究知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由 的三条线段 相接所组成的图形叫作三角形。
如图,线段______、______、______是三角形的边; 点A 、B 、C 是三角形的______; _____、 ______、_______ 是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
图中三角形记作__________。
练一练:1、如图.下列图形中是三角形的___________2、图3中有几个三角形?用符号表示这些三角形.ABC(2)如图,等腰三角形ABC 中, AB=AC,腰是_______、_______,底边是_________,顶角指_______,底角指_______. 等边三角形DEF 是特殊的_______三角形, DE=____=_____.(3)三角形按边分类可分为 _____________知识点二:三角形三边的关系 并判断三条线段能否构成三角形1、 探究:请同学们画一个△ABC ,分别量出AB ,BC ,AC 的长,并比较下列各式的大小:AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论:三角形的任意两边........之.和. 第三边... 二、基础演练1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,102、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。
3、如果三角形的两边长分别是3和5,那么第三边长可能是( ) A 、1 B 、9 C 、3 D 、104、阅读教科书例题,仿照例题解法完成下面这个问题:5、一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。
2022秋八年级数学上册第2章三角形2.2命题与证明第2课时真假命题与定理课件新版湘教版

1.下列命题是真命题的是( D ) A.同旁内角互补 B.三角形的一个外角大于内角 C.三角形的一个外角等于它的两个内角之和 D.同角的余角相等
谢谢观赏
You made my day!
解:如果两个角是钝角,那么这两个角的和一定大于 180°, 它是真命题.
(2)判断命题“若a12<b12,则1a<1b”是真命题还是假命题,若是假命 题,请举一个反例.
解:该命题是假命题,反例:a=-2,b=-1.(反例不唯一)
13.已知:三条不同的直线 a,b,c 在同一平面内: ①a∥b;②a⊥c;③b⊥c; ④a⊥b. 请你用其中的两个作为条件,其中的一个作为结论.
11.下列命题中,原命题与逆命题都是真命题的是( C ) A.两个锐角的和是钝角 B.如果 a∥b,b∥c,那么 a∥c C.同位角相等,两直线平行 D.若 ac2=bc2,则 a=b
12.按要求完成下列各题. (1)将命题“两个钝角的和一定大于 180°”写成“如果……,那
么……”的形式,并判断该命题是真命题还是假命题;
(1)写出一个真命题,并说明它的正确性; 解:答案不唯一.如果 a⊥c,b⊥c,那么 a∥b. 理由:如图, 因为 a⊥c,b⊥c,所以∠1=90°, ∠2=90°,所以∠1=∠2,所以 a∥b.
13.已知:三条不同的直线 a,b,c 在同一平面内: ①a∥b;②a⊥c;③b⊥c; ④a⊥b. 请你用其中的两个作为条件,其中的一个作为结论.
2.要判断一个命题是真命题,常常要从命题的条件出发,通过 讲道理(推理),得出其__结__论____成立,从而判断这个命题为 真命题,这个过程叫证明.
湘教版八年级数学上册第二章《三角形》课堂教学设计
外角.能由∠A,∠B 求出∠ACD 吗?如果能,∠ACD 与∠A,∠B 有
什么关系?
(2)你能进一步说明任意一个三角形的一个外角与它不相邻的两个
内角有什么关系呢?并说明理由? 结论:三.角.形.的.外.角.等.于.和.它.不.相.邻.的.两.个.外.角.的.和.。.
(3)外角与其中一个不相邻的内角之间的关系呢? 结论:三.角.形.的.外.角.大.于.与.它.不.相.邻.的.任.意.一.个.内.角.
二、拓展提升
1.三角形的角平分线是( ).
A.直线
B.射线
C.线段 D.以上都不对
2.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③
三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,
其中说法正确的有( ).
A.1 个
B.2 个 C.3 个
2.下列语句中,不是命题的句子是( ) A.过一点作已知直线的垂线 B.两点确定一条直线 C.钝角大于 D.凡平角都相等
3.写出下列命题的逆命题. 1) 线段垂直平分线上任意一点到这条线段两端点的距离相等。 2) 等腰三角形的两底角相等。 3) 平行四边形的对边相等。
2.2 命题与证明
第 2 课时 真命题、假命题与定理
图中三角形记作__________。
练一练:
1、如图.下列图形中是三角形的___________
2、图 3 中有几个三角形?用符号表示这些三角形.
(2)如图,等腰三角形 ABC 中,
A
D
AB=AC,腰是_______、_______,
底边是_________,顶角指_______,底角指_______.
角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的
第十一章三角形第一课时三角形的边课件八年级数学人教版上册
△DBE、△CBE、
( C ) 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
△ABC、△ABD、△ACE、△ADE 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
△ABC、△ABD、△ACE、△ADE 1 与三角形有关的线段 1 与三角形有关的线段 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
共_4__个等腰三角形为__△__A__B_C__、__△__A__B_D__、__△__A__C_E__、__△__A__D_E__, 有__1__个等边三角形.
三角形的三边关系
【2020·徐州】若一个三角形的两边长分别为 3 cm、6 cm,
则它的第三边的长可能是( C )
A.2 cm
B.3 cm
丈夫志不大,何以佐乾坤。 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
∵a、b、c 是△ABC 的三边长,根据两边之和大于第 儿童有无抱负,这无关紧要,可成年人则不可胸无大志。
鹰爱高飞,鸦栖一枝。 鸟贵有翼,人贵有志。 有志不在年高,无志空活百岁。 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
1△D与BE三、角△形C有BE关、的线段
天△才AB是C由、于△对AB事D业、的△热AC爱E感、而△发AD展E起来的,简直可以说天才。
儿△童DB有E、无△抱C负B,E、这无关紧要,可成年人则不可胸无大志。
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△DBE、△CBE、
C.6 cm
D.9 cm
名师点评:三角形的三边关系是判断线段能否组成三角形的 依据,一般只需判断三角形的最长边是否小于其余两边之和即可, 不必每个都验证.
第十一章 三角形复习整理 (第1课时 知识要点)数学八年级上册同步教学课件(人教版)
解:延长BC交OD于点M,如图所示.
∵多边形的外角和为360°,
∴∠OBC+∠MCD+∠CDM
=360°-225°=135°.
M
∵∠BOD+∠OBC+∠MCD+∠CDM=180°,
∴∠BOD=45°.
针对练习
1.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长
为 (C ) A.16
B.20或16
C.20
D.12
2.若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为 5 .
考点二 三角形中的重要线段 例3. 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中
∠1=∠2=(180°-108°)÷2=36° ∠3=∠4=∠1=∠2=36°, ∴ ∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.
课堂练习
1.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木
棒允许连接,但不允许折断),得到的三角形的最长边为( B )
A.4
B.5
知识四 三 角 形 的 高 、 中 线 与 角 平 分 线
2.三角形的中线: ① 两个三角形的面积相等; ② 两个三角形的周长的差等于这两个三角形另两边的差. ③ 三条中线相交于一点(重心)
3.三角形的角平分线 A
B
D
∵ ∠ ABD= ∠ CBD
∴ AD是△ABC的角平分线
B
D
C
A EC
知识五 三 角 形 的 内 角 和 与 外 角 的 性 质
1.三角形的内角和: ① 三角形三个内角的和等于180°. ② 直角三角形的两个锐角互余.
A A
B
C
西峰区一中八年级数学上册第2章三角形2.6用尺规作三角形第1课时已知三边作三角形教案新版湘教版
2.6用尺规作三角形第1课时已知三边作三角形【知识与技能】1.会利用尺规作三角形:已知三边作三角形.2.会写出三角形的已知、求作和作法.3.能对新作三角形给出合理的解释.【过程与方法】在用尺规作三角形与已知三角形的过程中,体会、思考作图的合理性及依据.【情感态度】通过师生共同观察、探索、交流、操作,品尝成功的喜悦,形成良好的思维品质,养成科学严谨的学习态度.【教学重点】作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形.【教学难点】作图语言的准确应用,作图的规范与准确.一、情景导入,初步认知我们已经学会用尺规作一些基本图形,你会作哪些图形呢?动手试一试.【教学说明】作基本图形,为本节课的教学作准备.二、思考探究,获取新知1.如图,已知线段a,b,c.求作△ABC,使得AB=c,AC=b,BC=a.如图:作法:①作线段BC=a;②以点C为圆心,以b为半径画弧,再以点B为圆心,以c为半径画弧,两弧相交于点A;③连接AB和AC,则△ABC为所求作的三角形.2.已知线段a,h.求作△ABC,使AB=AC,且BC=a,高AD=h.如图:作法:①作线段BC=a;②作线段BC的垂直平分线MN交BC于点D;③在射线DM(或DN)上截取线段DA,使DA=h;④连接AB,AC,则△ABC为所求作的等腰三角形.3.如图,已知∠AOB,求作∠AOB的角平分线.如图:作法:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的一半的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC,则射线OC为所求作∠AOB的角平分线.【教学说明】在完成三个作图后,同学们要比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等.在此基础上,利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性.三、运用新知,深化理解1.下列各作图题中,可直接用“边边边”条件作出三角形的是(A)A.已知腰和底边,求作等腰三角形B.已知两条直角边,求作等腰三角形C.已知高,求作等边三角形D.已知腰长,求作等腰直角三角形2.已知三边作三角形,用到的基本尺规作图为(B)A.作一个角等于已知角B.作一条线段等于已知线段C.平分已知角D.作已知直线的垂线3.下列各题中,属于尺规作图的是(A )A.画一个40°的角B.用直尺三角板画平行线C.用直尺的边缘画垂线D.用圆规在已知直线上截取一线段等于已知线段4.已知线段a、b、c,求作△ABC,使BC=a,AC=b,AB=c,下面作法的合理顺序为②①③①分别以B、C为圆心,c、b为半径作弧,两弧交于点A;②作直线BP,在BP上截取BC=a;③连结AB、AC,△ABC为所求作三角形.5.已知直角三角形的一条直角边和斜边,求作此直角三角形.(要求:写出已知,求作,结论,并用直尺和圆规作图,保留作图痕迹,不写作法及证明)解:已知:线段m和n求作:Rt△ABC,使∠ACB=90°,AB=n,AC=m6.已知线段a,b,求作等腰△ABC,使AB=BC=a,AC=b.解:如图:作法:(1)作射线AC,在射线AC上截取AC=b;(2)分别以A、C为圆心,a为半径作弧,两弧交AC上方于点B;(3)连接AB、BC,△ABC即为所求.【教学说明】对本节的知识进行巩固练习,考察学生的应变能力,培养学生的转换思想.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题2.6”中第1 、2 题.本节课我将采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构.另外,在教学过程中,我采用多媒体辅助教学,直观地呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率.第3课时三角形的内角和与外角【知识与技能】1.掌握三角形内角和定理.2.掌握三角形的内角与外角的关系.【过程与方法】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力.【情感态度】让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.【教学重点】三角形内角和定理.【教学难点】三角形的一个外角等于与它不相邻的两个内角的和.一、创设情境,导入新课我们都知道一个三角形的三个内角的和为180°,你知道三角形的内角和为什么是180°呢?【教学说明】通过问题,提高学生的学习兴趣.二、合作探究,探索新知1.每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个角的和为180°.为什么是180°?通过小组合作交流,讨论有几种拼合方法?开展小组竞赛(看哪个小组的发现多?说明清楚.),各小组派代表展示拼图,并说出理由.2.你能运用几何证明的方法证明三角形的三个内角的和为180°吗?试一试.【教学说明】学生通过动手拼图,再通过证明,总结出三角形的三个内角和是180°,能够加深理解.3.议一议:一个三角形的三个内角中,最多有几个直角?最多有几个钝角?4.直角三角形可用符号“Rt△”来表示,例如直角三角形ABC可以记作“Rt△ABC”,在直角三角形中,夹直角的两边叫作直角边,直角边的对边叫作斜边.两条直角边相等的直角三角形叫作等腰直角三角形.5.三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠ACD是∠ACB的一个外角,它与内角∠ACB相邻.6.探究:在图中,外角∠ACD和∠A、∠B之间有什么大小关系?【归纳结论】三角形的一个外角等于与它不相邻的两个内角的和.【教学说明】通过证明,加深对定理的理解.三、运用新知,深化理解1.判断:(1)一个三角形的三个内角可以都小于60°.(×)(2)一个三角形最多只能有一个内角是钝角或直角. (√)2.已知AB∥CD,∠A=60°,∠C=25°,则∠E等于(C)A.60°B.25°C.35°D.45°第2题图3.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=(B)A.50°B.40°C.70°D.35°第3题图4.观察三角形,并把它们的标号填入相应的括号内:锐角三角形(3 、5)直角三角形(1、4、6)钝角三角形(2、7)5.在△ABC中:①∠A=35°∠C=90°则∠B=55°②∠A=50°∠B=∠C 则∠B=65 °③∠A∶∠B∶∠C=3∶2∶1则△ABC是直角三角形 .④∠A-∠C =35°,∠B-∠C =10°,则∠B =55° .6.在△ABC中∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.解:△ABC中,设∠A=x,则∠C=∠ABC =2xx+2x+2x=180°(三角形内角和为180°)∴得∠C=2x=72°在△BCD 中,∠BDC=90°则∠DBC =90°-∠C=18°7. 如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2为多少度?解:∵△ABC中,∠A=50°,∴∠AED+∠ADE=130°,∴∠1+∠2=360°-(∠AED+∠ADE)=230°.8.如图,∠A+∠B+∠C+∠D+∠E的度数为多少度?【分析】如图连接CE,根据三角形的一个外角等于和它不相邻的两个内角和∠1=∠A+∠B=∠2+∠3,在△DCE中有∠D+∠2+∠DCB+∠3+∠AED=180°,即可得∠D+∠A+∠DCB+∠B+∠AED=180°.解:如图连接CE,根据三角形的外角性质得∠1=∠A+∠B=∠2+∠3,在△DCE中有,∠D+∠2+∠DCB+∠3+∠AED=180°,∴∠D+∠A+∠DCB+∠B+∠AED=180°.【教学说明】通过练习巩固本节课所学的内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题2.1”中第4、5、7 题.在教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达、探索未知领域、寻找客观真理、成为发现者,学生自始至终地参与这一探索过程,发展了学生的创新精神和实践能力.通过有条理的表达“三角形内角和为180°”的拼图及“三角形的一个外角等于与它不相邻的两个内角的和”的证明过程,为今后的几何证明打下基础.20.2. 1中位数和众数一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。