数字图像处理复习提纲

合集下载

数字图像处理-知识点总结

数字图像处理-知识点总结

图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。

模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。

上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。

2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。

图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。

2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。

3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。

4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。

5.图像信息的输出和显示:用可视的方法进行输出和显示。

数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。

1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。

数字图像处理复习题总结

数字图像处理复习题总结

1 一幅256*256的图像,若灰度级为16,则存储它所需的比特数是(262144bit )x x㏒=32kb2 当改变图像的空间分辨率时,受影响最大的是图像中的:AA纹理区域(有许多重复单元的区域)B 灰度平滑区域C 目标边界区域D 灰度渐变区域提示:空间分辨率的减少将会使原来空间位置相邻的像素合并起来3 当改变图像的幅度分辨率时,受影响最大的是图像中的:BDA纹理区域B 灰度平滑区域C 目标边界区域D 灰度渐变区域4 如果将图像中对应直方图中偶数项灰度均用相应的对应直方图中奇数项的像素灰度代替,所得到的图像将BCA亮度减小 B 亮度增加 C 对比度减小D对比度增加5 利用平滑滤波器可对图像进行低通滤波,消除噪声,但同时模糊了细节。

以下哪项措施不能减小图像的模糊程度CA增加对平滑滤波器输出的阈值处理(仅保留大于阈值的输出)B 采用中值滤波的方法C 采用邻域平均处理D 适当减小平滑滤波器的邻域操作模板提示:平滑滤波器分为线性滤波器与非线性滤波器,处理效果与模板大小以及用模板对像素的处理方式有关。

6 中值滤波器可以ACA消除孤立噪声 B 检测出边缘 C 平滑孤立噪声D 模糊图像细节7 运用下列哪个滤波器的效果与图像进行直方图均衡化的效果类似BDA线性平滑滤波器 B 线性锐化滤波器 C 非线性平滑滤波器D 非线性锐化滤波器8 要对受孤立噪声点影响的图像进行平滑滤波,不能达到效果的滤波器是CDA中值滤波器 B 邻域平均滤波器 C 高频增强滤波器D 线性锐化滤波器9 设f(x,y)为一幅灰度图像,给定以下4种变换A g(x,y)=|f(x,y)-f(x+1,y)|+|f(x+1,y+1)-f(x,y+1)|B g(x,y)=|f(x,y)-f(x+1,y+1)|+|f(x+1,y)-f(x,y+1)|C g(x,y)=|f∂x+∂∂∂|f|/|y/D g(x,y)=|}f∂∂∂x∂||,//max{|yf上述变换中属于锐化滤波的有:ABCD10 图像退化的原因可以是:ABDA透镜色差 B 噪声叠加 C 光照变化D 场景中目标的快速运动11 噪声:CA只含有高频分量 B 气频率总覆盖整个频谱 C 等宽的频率间隔内有相同的能量D 总有一定的随机性12 设有一幅二值图像,其中黑色的背景上有一条宽为5个像素的白线。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

数字图像处理课件(冈萨雷斯第三版)复习材料

数字图像处理课件(冈萨雷斯第三版)复习材料

(1) 名词解释RGB Red Green Blue,红绿蓝三原色CMYK Cyan Magenta yellow blacK , 用于印刷的四分色HIS Horizontal Situation Indicator 水平位置指示器FFT Fast Fourier Transform Algorithm (method) 快速傅氏变换算法CWT continuous wavelet transform 连续小波变换DCT Discrete Cosine Transform 离散余弦变换DWT DiscreteWaveletTransform 离散小波变换CCD Charge Coupled Device 电荷耦合装置Pixel: a digital image is composed of a finite number of elements,each of which has a particular lication and value,these elements are called pixel 像素DC component in frequency domain 频域直流分量GLH Gray Level Histogram 灰度直方图Mather(basic)wavelet:a function (wave) used to generate a set of wavelets, 母小波,用于产生小波变换所需的一序列子小波Basis functions basis image 基函数基图像Multi-scale analysis 多尺度分析Gaussian function 高斯函数sharpening filter 锐化滤波器Smoothing filter/convolution 平滑滤波器/卷积Image enhancement /image restoration 图像增强和图像恢复(2)问答题1. Cite one example of digital image processingAnswer: In the domain of medical image processing we may need to inspect a certain class of images generated by an electron microscope to eliminate bright, isolated dots that are no interest.2.Cite one example of frequency domain operation from the following processing result, make a general comment about ideal highpass filter (figure B) and Gaussian highpass filter(figure D)A. Original imageB. ideal highpass filterIn contrast to the ideal low pass filter, it is to let all the signals above the cutoff frequency fc without loss, and to make all the signals below the cutoff frequency of FC without loss of.C. the result of ideal highpass filterD. Gaussian highpass filterHigh pass filter, also known as "low resistance filter", it is an inhibitory spectrum of the low frequency signal and retain high frequency signal model (or device). High pass filter can make the high frequency components, while the high-frequency part of the frequency in the image of the sharp change in the gray area, which is often the edge of the object. So high pass filter can make the image get sharpening processingE. The result of Gaussian filter3.The original image, the ideal lowpass filter and Gaussian lowpass filter are shown below B nd C .D and E are the result of the eitherfilter B or CA. Draw lines to connect the filter with their resultB. Explain the difference of the two filtersDue to excessive characteristics of the ideal low-pass filter too fast Jun, it will produce a ringing phenomenon.Over characteristics of Gauss filter is very flat, so it is not ringing4.What is the result when applying an averaging mask with the size 1X1?5.State the concept of the Nyquist sampling theorem from the figure belovyThe law of sampling process should be followed, also called the sampling theorem and the sampling theorem. The sampling theorem showsthe relationship between the sampling frequency and the signal spectrum, and it is the basic basis of the continuous signal discretization. In analog / digital signal conversion process, when the sampling frequency fs.max greater than 2 times the highest frequency present in the signal Fmax fs.max>2fmax, sampling digital signal completely retained the information in the original signal, the general practical application assurance sampling frequency is 5 ~ 10 times higher than that of the signal of the high frequency; sampling theorem, also known as the Nyquist theorem6.A mean filter is a linear filter but a median filter is not, why?Mean filter is a typical linear filtering algorithm, it is to point to in the target pixels in the image to a template, this template including its surrounding adjacent pixels and the pixels in itself.To use in the template to replace all the pixels of average pixelvalues.Linear filter, median filter, also known as the main method used in the bounded domain average method.Median filter is a kind of commonly used nonlinear smoothing filter and its basic principle is to put the little value in a digital image or sequence to use value at various points in the field of a point at which the value to replace, its main function is to let the surrounding pixel gray value differences between larger pixel change with the surrounding pixels value close to the values, which can eliminate the noise of the isolated points, so median filter to filter out the salt and pepper noise image is very effective.(3)算法题1.The following matrix A is a 3*3 image and B is 3*3 Laplacian mask, what will be the resulting image? (Note that the elements beyond the border remain unchanged)2.Develop an algorithm to obtain the processing result B from original image A3.Develop an algorithm which computes the pseudocolor image processing by means of fourier tramsformAnswer:The steps of the process are as follow:(1) Multiply the input image f(x,y) by (-1)x+y tocenter the transform;(2) Compute the DFT of the image from (1) to get power spectrumF(u,v) of Fourier transform.(3) Multiply by a filter function h(u,v) .(4) Compute the inverse DFT of the result in (3).(5) Obtain the real part of the result in (4).(6) Multiply the result in (5) by(-1)x+y4.Develop an algorithm to generate approximation image series shown in the following figure b** means of down sampling.(4)编程题There are two satellite photos of night as blew.Write a programwith MATLAB to tell which is brighterAn 8*8 image f(i,i) has gray levels given by the following equation:f(i,i)=|i-j|, i,j=0,1 (7)Write a program to find the output image obtained by applying a 3*3 median filter on the image f(i,j) ;note that the border pixels remain unchanged.Answer:1.Design an adaptive local noise reduction filter and apply it to an image with Gaussian noise. Compare the performance of the adaptive local noise reduction filter with arithmetic mean and geometric mean filter.Answer:clearclose all;rt=imread('E:\数字图像处理\yy.bmp');gray=rgb2gray(rt);subplot(2,3,1);imshow(rt);title('原图像') ;subplot(2,3,2);imshow(gray);title('原灰度图像') ;rtg=im2double(gray);rtg=imnoise(rtg,'gaussian',0,0.005)%加入均值为0,方差为0.005的高斯噪声subplot(2,3,3);imshow(rtg);title('高噪点处理后的图像');[a,b]=size(rtg);n=3;smax=7;nrt=zeros(a+(smax-1),b+(smax-1));for i=((smax-1)/2+1):(a+(smax-1)/2)for j=((smax-1)/2+1):(b+(smax-1)/2)nrt(i,j)=rtg(i-(smax-1)/2,j-(smax-1)/2);endendfigure;imshow(nrt);title('扩充后的图像');nrt2=zeros(a,b);for i=n+1:a+nfor j=n+1:b+nfor m1=3:2m2=(m1-1)/2;c=nrt2(i-m2:i+m2,j-m2:j+m2);%使用7*7的滤波器Zmed=median(median(c));Zmin=min(min(c));Zmax=max(max(c));A1=Zmed-Zmin;A2=Zmed-Zmax;if(A1>0&&A2<0)B1=nrt2(i,j)-Zmin;B2=nrt2(i,j)-Zmax;if(B1>0&&B2<0)nrt2(i,j)= nrt2(i,j);elsenrt2(i,j)=Zmed;endcontinue;endendendendnrt3=im2uint8(nrt2);figure;imshow(nrt3);title('自适应中值滤波图');2. Implement Wiener filter with “wiener2” function of MatLab to an image with Gaussian noise and compare the performance with adaptive local noise reduction filter.代码如下:>> I=imread('E:\数字图像处理\yy.bmp');>>J=rgb2gray(I);>>K = imnoise(J,'gaussian',0,0.005);>>L=wiener2(K,[5 5]);>>subplot(1,2,1);imshow(K);title('高噪点处理后的图像');>>subplot(1,2,2);imshow(L);title('维纳滤波器处理后的图像');3. Image smoothing with arithmetic averaging filter (spatial convolution).图像平滑与算术平均滤波(空间卷积)。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。

2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解.5.图像处理五个模块:采集、显示、存储、通信、处理和分析.第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)〈∞ ,反射分量0 <r(x,y)<1。

7.图像数字化:将一幅画面转化成计算机能处理的形式-—数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样.采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠.9.将像素灰度转换成离散的整数值的过程叫量化.10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像.12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度.例如对细节比较丰富的图像数字化。

14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理复习(参考版)

题型:选择10道20分,填空10-15道10-15分,名词解析3-4道15-20分,简答题2道20分,程序题1道10分,计算2道20分一、1、数字图像的特点:图像数据量庞大;精度高;再现性好2、数字图像的应用领域:医学:x-ray,超声波成像,CT遥感:农作物估产,地质勘探,天气预报工业:无损探伤,外观自动检查。

军事公安:巡航导弹地形识别,指纹识别,手迹鉴定考题:如医学上数字图像的应用表现在:x-ray,超声波成像,CT3、DIP的应用:电磁波,声波,超声波,电子,合成;电磁波:Gamma 射线(PET),X射线(CT),紫外线,可见光,红外(多光谱遥感),微波(雷达),无线电波(MRI)二、1、人眼的构造:锥状细胞:分辨力强,色彩;白昼视觉;杆状细胞:对低照度敏感;夜视觉(填空或选择题)2、不同照明下,人眼辨别光强度变化的能力不同。

(低照明时,亮度辨别较差(韦伯比大)高照明时,亮度辨别力好(韦伯比小)(填空题)3、马赫带效应:当亮度发生跃变时,视觉上会感到边缘的亮侧更亮些,暗侧更暗些。

在图像轮廓部分发生的主观亮度对比度加强的现象,又称为边缘对比效应。

(名词解析题)4、同时对比效应:眼睛对物体的主观亮度强烈的依赖于物体自身的背景。

当灰色物体周围是黑色背景时,主观亮度增强;当周围背景变明亮时,主观亮度会减弱。

(名词解析题)5、1)图像获取的步骤答:采样Sampling:图像空间坐标的数字化。

将空间上连续的图像变换成离散点的操作。

量化Quantization:图像函数值(灰度值)的数字化。

将像素灰度转换成离散的整数值的过程。

2)影响采样和量化的因素答:空间分辨率:图像中可辨别的最小细节。

采样。

采样间隔越小,像素数越多,空间分辨率高,图像质量好,但数据量大。

采样间隔越大,像素数越少,空间分辨率低,图像质量差,严重时出现像素呈块状的国际棋盘效应;灰度级分辨率:灰度级别中可分辨的最小变化。

量化量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。

遥感数字图像处理重点整理

遥感数字图像处理第一章《概论》1、图像定义:IMAGE,指通过镜头等设备得到的视觉形象(或以某一技术手段再现于二维画面上的视觉信息),是二维数据阵列的光学模拟。

分类:按人眼的视觉可视性:可见图像(照片、素描、油画……)不可见图像(不可见光成像如紫外线、红外线、不可见测量值如温度、人口密度等的分布图)图像的敏感程度和空间坐标的连续性:数字图像(指用计算机存储和处理的图像,是一种空间坐标和灰度不连续、以离散数字原理表达的图像,不见图像)模拟图像(又称光学图像,指空间坐标的明暗程度连续变化的、计算机无法直接处理的图像,可见图像)模拟图像——>数字图像:模/数转换(A/D转换)数字图像——>模拟图像:数/模转换(D/A转换)2、像素定义:是A/D转换的取样点,是计算机图像处理的最小单元,每个像素具有特定的空间位置和属性特征。

3、遥感数字图像定义:数字形式的遥感图像,不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。

像素值:称为亮度值(或灰度值、DN值),量化的(整数)灰度就是数字量值。

亮度值的高低由遥感传感器所探测到的地物电磁波的辐射强度决定。

具有相对应的意义,仅在图像内才能进行相互比较。

遥感数字图像与照片的差异照片遥感数字图像来自于模拟方式来自于数字方式通过摄影系统产生通过扫面和数码照相机产生没有像素基本构成单位是像素没有行列结构具有行和列没有扫描行可能会观察到扫描行0表示没有数据0是数值,不表示没有数据任何点都没有编号每个点都有确定的数字编号摄影受电磁光谱的成像范围限制可以是电磁光谱的任意范围一旦获取了照片,颜色就是确定的颜色没有特定的规则,在处理过程中可以根据需要通过合成产生具有红、绿、蓝3个通道多个波段(3-8000)4、遥感数字图像处理定义:是利用计算机图像处理系统对遥感图像中的像素进行系统操作的过程。

传统的模拟图像受媒介大小的限制无法完全表述这些信息,也很难进行信息的进一步处理,只有经数字化后才能有效地进行信息分析和处理,数字图像处理极大地提高了图像处理的精度和信息提取的效率。

《数字图像处理》期末考试重点总结

《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

数字图像处理知识点汇总

数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。

2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。

i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。

也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。

ii. 对样点灰度值的离散化过程称为量化。

也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。

量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。

4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。

5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。

内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。

(2)电器的机械运动产⽣噪声。

(3)元器件材料本⾝引起的噪声。

(4)系统内部电路噪声。

从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。

饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理复习提纲:
(1)数字图像的基本概念?在计算机内的表达形式?(二维矩阵)像素的含义?
(2)图像的几个主要基本格式,比如BMP,JPEG等,每种格式的基本原理(比
如,是否经过压缩过?)
(3)数字形态学的基本操作有哪几种? 需了解。
(4)DFT变换的基本原理。
(5)图像压缩方法的分类,并理解。
(6)链码描述方法,需要理解,特别是差分链码。
(7)伪彩色处理的基本含义。
(8)边缘检测算子的种类,理解每个边缘检测方法的优缺点,和使用方法。特
别是robert边缘检测的方法的应用。
(9)空间域高通滤波和低通滤波的含义,比如几个典型的高通滤波模板和低通
滤波模板?
(10)图像平滑和图像锐化的原理以及相应的方法,需要理解并掌握。
(11)数字图像采样、量化以及灰度级的概念。
(12)预测编码的基本原理和DPCM系统的基本原理。
(13)直方图均衡化的原理与计算。
(14)直方图规则化的原理与计算。
(15)图像压缩方法中统计编码的应用与计算。
(16)区域生长法的基本原理与应用。
(17)灰度共生矩阵的原理与计算。
(18)图像灰度变换的计算与应用。

相关文档
最新文档