2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第4节第1课时柱坐标系-含答案

合集下载

2018_2019学年高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理课件新人教A版选修4_1

2018_2019学年高中数学第一讲相似三角形的判定及有关性质四直角三角形的射影定理课件新人教A版选修4_1

答案 C
2.如图所示,在 Rt△ABC 中,CD 是斜边 AB 上的 高,在图中的六条线段中,你认为只要知道几条 线段的长,就可以求出其他线段的长( A.1 C.3 B.2 D.4 )
解析 图中所有三角形都是直角三角形,由勾股定理,射
影定理,可知只需知道两条线段的长,就可以求出其他线 段的长. 答案 B
1.(1)点在直线上的射影就是由点向直线引垂线,垂足
即为射影;
(2)线段在直线上的射影就是由线段的两端点向直线 引垂线,两垂足间的线段就是所求射影. 2.应用射影定理有两个条件:一是直角三角形;二是 斜边上的高.应用射影定理可求直角三角形的边长、
面积等有关量,还可研究相似问题、比例式等问题.
3.直角三角形射影定理的逆定理 如果一个三角形一边上的高是另两边在这条边
ห้องสมุดไป่ตู้
[预习导引]
1.射影 垂线的垂足 ,叫作这个点在 从一点向一直线所引___________ 这条直线上的正射影.一条线段的两个端点在一条 正射影之间的线段,叫作这条线段在这 直线上的____________ 条直线上的正射影.点和线段的正射影简称为射影.
2.射影定理 文字 语言 高 是两直角边在斜边上的射影的比 直角三角形斜边上的___
3.如图所示,在矩形 ABCD 中,DE⊥AC 于 E, 1 ∠ADE=3∠CDE,则∠EDB=________. 解析 由已知△ADE∽△DBA,
∴∠ADE=∠ABD=∠BDC, 1 且∠ADE= ∠CDE, 3 1 ∴∠EDB= ∠ADC=45°. 2 答案 45°
4.已知线段a,b(a<b),求作:线段a,b的比例中项c.
规律方法 (1)射影实质上就是平行投影. (2)当线段AB所在直线与直线l平行时,设其在l上的射影为 A1B1,则有AB=A1B1,如图(1)所示 ;当线段AB所在直线与 直线l不平行且不垂直时,设其在l上的射影为A1B1,则有

2019版高中数学第一讲不等式和绝对值不等式一第1课时不等式的基本性质学案新人教A版选修4_5

2019版高中数学第一讲不等式和绝对值不等式一第1课时不等式的基本性质学案新人教A版选修4_5

第1课时不等式的基本性质学习目标 1.理解不等式的性质,会用不等式的性质比较大小.2.能运用不等式的性质证明简单的不等式、解决不等式的简单问题.知识点不等式的基本性质思考你认为可以用什么方法比较两个实数的大小?答案作差,与0比较.类比等式的基本性质,联想并写出不等式的基本性质.梳理(1)两个实数a,b的大小关系(2)不等式的基本性质①对称性:a>b?b<a.②传递性:a>b,b>c?a>c.③可加性:a>b?a+c>b+c.④可乘性:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.⑤乘方:如果a>b>0,那么a n>b n(n∈N,n≥2).⑥开方:如果a>b>0,那么na>nb(n∈N,n≥2).类型一作差比较大小例1 (1)已知a>b>0,比较ab与a+1b+1的大小;(2)已知x>1,比较x3-1与2x2-2x的大小.解(1)ab-a+1b+1=a b+1-b a+1b b+1=a-bb b+1.因为a>b>0,所以a-b>0,b(b+1)>0,所以a-bb b+1>0,所以ab>a+1b+1.(2)x3-1-(2x2-2x)=x3-2x2+2x-1=(x3-x2)-(x2-2x+1)=x2(x-1)-(x-1)2=(x-1)(x2-x+1)=(x-1)x-122+34,因为x>1,所以x-1>0.又因为x-122+34>0,所以(x-1)x-122+34>0,所以x3-1>2x2-2x.反思与感悟比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—得出结论,其中“变形”是关键,常用的方法是分解因式、配方等.跟踪训练 1 已知x,y均为正数,设m=1x+1y,n=4x+y,试比较m和n的大小.解m-n=1x+1y-4x+y=x+yxy-4x+y=x+y2-4xyxy x+y=x-y2xy x+y,∵x,y均为正数,∴x>0,y>0,xy>0,x+y>0,(x-y)2≥0.∴m-n≥0,即m≥n.(当且仅当x=y时,等号成立) 类型二不等式基本性质的应用命题角度1 判断不等式是否成立例2 判断下列命题是否正确,并说明理由.(1)若a>b>0,则1a<1b;(2)若c>a>b>0,则ac-a>bc-b;(3)若ac>bd,则ad>bc;。

人教课标版高中数学选修4-4《平面直角坐标系》教案-新版

人教课标版高中数学选修4-4《平面直角坐标系》教案-新版

1.1平面直角坐标系一、教学目标 (一)核心素养通过这节课学习,能根据问题的几何特征选择建立适当的平面直角坐标系,在数学建模过程中体会坐标法的思想. (二)学习目标1.根据问题的几何特征建立适当的平面直角坐标系. 2.通过实例概括坐标伸缩变换公式.3.了解利用坐标伸缩变换公式研究平面图形伸缩变化情况,体会坐标法思想. (三)学习重点1.根据几何特征选择坐标系. 2.坐标法思想.3.平面直角坐标系中的伸缩变换. (四)学习难点1.适当直角坐标系的选择.2.对伸缩变换中点的对应关系的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第2页至第7页,填空:设点),(y x P 是平面直角坐标系中的任意一点,在变换φ:的作用下,点),(y x P 对应到点),(y x P ''',称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.预习自测(1)如何由正弦曲线y =sin x 经伸缩变换得到y =12sin 12x 的图象() A .将横坐标压缩为原来的12,纵坐标也压缩为原来的12 B .将横坐标压缩为原来的12,纵坐标伸长为原来的2倍 C .将横坐标伸长为原来的2倍,纵坐标也伸长为原来的2倍 D .将横坐标伸长为原来的2倍,纵坐标压缩为原来的12【知识点】伸缩变换【解题过程】将正弦曲线y =sin x 的横坐标伸长为原来的2倍得到x y 21sin =,再由x y 21sin =的图像的横坐标不变,纵坐标压缩为原来的21即可得y =12sin 12x 的图像. 【思路点拨】可根据三角函数的知识求解 【答案】D(2)在平面直角坐标系中,B A ,两点分别在x 轴、y 轴上滑动,且|AB|=4,则AB 中点P 的轨迹方程为________. 【知识点】点轨迹方程【数学思想】函数与方程的思想【解题过程】422=+y .端点的坐标关系,最后代入整理即可. 【答案】422=+y x .(3)在平面直角坐标系中,方程142=+y x 对应的图形经过伸缩变换⎩⎨⎧='='y y xx 42后得到的图形对应的方程是()A .0142=-'+'y xB .01=-'+'y xC .014=-'+'y xD .0116=-'+'y x 【知识点】伸缩变换【解题过程】将⎩⎨⎧='='y y x x 42经过变形得⎪⎩⎪⎨⎧'='=y y x x 4121代入到方程142=+y x ,整理得01=-'+'y x【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程. 【答案】B(4)将圆122=+y x 上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C 对应的方程为________. 【知识点】伸缩变换 【数学思想】【解题思路】设),(11y x 为圆上任意一点,在已知变换下变为曲线C 上对应的点为),(y x ,依题意,得⎩⎨⎧==112y y x x ,而12121=+y x ,得1)2(22=+y x ,所以曲线C 的方程为1422=+y x .【思路点拨】将问题转化为伸缩变换问题,再由伸缩变换公式求解【答案】1422=+y x(二)课堂设计 1.知识回顾(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究他的性质与其他几何图形的关系. 2.问题探究探究一结合实例,感受坐标法思想★例1某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s ,各观测点均在同一平面上.) ●活动①实际问题抽象转化为数学问题我们将正东、正西、正北的三个观测点分别记为C B A ,,,爆炸点记为P .由于C B ,同时听到由点P 发出的响声,因此PC PB =,所以点P 在线段BC 的垂直平分线l 上,由于点A 听到的响声比C B ,晚s 4,所以AB PB PA <=⨯=-13603404,说明点P 在以点B A ,为焦点的双曲线Γ上,所以点P 在直线l 与双曲线Γ的交点.【知识点】平面直角坐标系,双曲线定义 【数学思想】数形结合,转化与化归 【解题过程】解:以信息中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系. 设C B A ,,分别是东、西、北观测点,则)1020,0(),0,1020(),0,1020(C B A - 于是直线l 的方程为x y -=设双曲线Γ的方程是)0,0(12222>>=-b a by a x由已知得222234056801020,1020,680⨯=-===b c a ,于是双曲线Γ的方程是134056802222=⨯-y x将x y -=代入上述方程,解得5680,5680 =±=y x ,由已知,响声在双曲线Γ的左半支上,所以)5680,5680(-P ,10680=OP所以巨响发生在接报中心的西偏北 45距中心m 10680处. 【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】巨响发生在接报中心的西偏北 45距中心m 10680处.同类训练 由甲导弹驱逐舰、乙导弹驱逐舰、丙综合补给舰组成的护航编队奔赴某海域执行护航任务,对商船进行护航.某日,甲舰在乙舰正东6 km 处,丙舰在乙舰北偏西30°,相距4 km.某时刻甲舰发现商船的某种求救信号.由于乙、丙两舰比甲舰距商船远,因此4 s 后乙、丙两舰才同时发现这一信号,此信号的传播速度为1 km/s.若甲舰赶赴救援,行进的方位角应是多少? 【知识点】平面直角坐标系的应用 【数学思想】坐标法思想【解题过程】设A ,B ,C ,P 分别表示甲舰、乙舰、丙舰和商船.如图所示,以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立直角坐标系,则A (3,0),B (-3,0),C (-5,23).∵|PB |=|PC |,∴点P 在线段BC 的垂直平分线上. k BC =-3,线段BC 的中点D (-4,3), ∴直线PD 的方程为y -3=13(x +4).① 又|PB |-|P A |=4,∴点P 在以A ,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y 25=1(x ≥2). ②联立①②,解得P 点坐标为(8,53), ∴k P A =538-3= 3.因此甲舰行进的方位角为北偏东30°.【思路点拨】本题的关键在于确定商船相对于甲舰的相对位置,因此不妨用点A 、B 、C 表示甲舰、乙舰、丙舰,建立适当坐标系,求出商船与甲舰的坐标,问题可解. 【答案】甲舰行进的方位角为北偏东30°.【设计意图】从生活实例到数学问题,体会坐标法的提炼、抽象过程. ●活动②归纳梳理、理解提升通过实例,合理建立坐标系是解决此类问题的关键,如果坐标系建立得合理,可以简化我们的计算,并且使问题的结论清晰明了、具体形象,那么利用坐标法解决问题的基本步骤是什么呢?坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.●活动③学以致用,理论实践例2 已知△ABC 的三边c b a ,,满足2225a c b =+ , BE,CF 分别为边AC,AB 上的中线, 建立适当的平面直角坐标系探究BE 与CF 的位置关系.A BCO y xF E【知识点】平面直角坐标系,轨迹方程 【数学思想】数形结合 【解题过程】解: 如图, 以△ABC 的顶点A 为原点O, 边AB 所在的直线为x 轴, 建立直角坐标系. 由已知, 点A,B,F 的坐标分别为)0,2()0,(),0,0(c F c B A ,设点C 的坐标为),(y x ,点E 的坐标为)2,2(yx .由2225a c b =+可得2225BC AB AC =+即[]22222)(5y c x c y x +-=++,整理得05222222=-++cx c y x因为),2(),2,2(y x cCF y c x BE --=-=所以0)5222(41222=-++-=•cx c y x CF BE由此,BE 与CF 相互垂直.【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】BE 与CF 相互垂直.同类训练 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.【知识点】平面直角坐标系 【数学思想】数形结合思想【解题过程】 如右图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系,则A (0,23 a ),B (-2a ,0),C (2a ,0).设P (x ,y ),则|P A |2+|PB |2+|PC |2 =x 2+(y -23 a )2+(x +2a )2+y 2+(x -2a)2+y 2 =3x 2+3y 2-3ay +452a =3x 2+3(y -63a )2+a 2≥a 2,当且仅当x =0,y =63a 时,等号成立,∴所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心. 【思路点拨】建立适当的平面直角坐标系,把几何问题转化为代数问题,从而简化问题 【答案】所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心 【设计意图】通过把平面几何的问题转化为代数问题,认识坐标法思想的优势. 探究二探究平面直角坐标系中的伸缩变换 ●活动①温故知新、提炼概念在三角函数图像的学习中,我们研究过下面一些问题:你还能分析出由正弦曲线x y sin =怎样得到曲线x y 2sin =吗?在由正弦曲线x y sin =上任取一点),(y x P ,保持纵坐标y 不变,将横坐标x 缩为原来的21,就的到曲线x y 2sin =.从坐标系中的点的对应关系出发,你认为“保持纵坐标y 不变,将横坐标x 缩为原来的21”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持纵坐标y 不变,将横坐标x 缩为原来的21,得到点),(y x P ''',则⎪⎩⎪⎨⎧='='yy xx 21①我们把①式叫做平面直角坐标系中的一个坐标压缩变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动②温故知新、提炼概念那么如何由正弦曲线x y sin =怎样得到曲线x y sin 3=呢?在由正弦曲线x y sin =上任取一点),(y x P ,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就的到曲线x y sin 3=.从坐标系中的点的对应关系出发,你认为“保持横坐标x 不变,将纵坐标y 伸长为原来的3倍”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,得到点),(y x P ''',则⎩⎨⎧='='y y x x 3②我们把②式叫做平面直角坐标系中的一个坐标伸长变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动③巩固理解、提炼概念同理,由正弦曲线x y sin =怎样得到曲线x y 2sin 3=呢?这个可以认为是是上述两个的“合成”,即先保持纵坐标y 不变,将横坐标x 缩为原来的21,再保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就可得曲线x y 2sin 3=.类比上述情况,即:设平面直角坐标系中任意一点),(y x P 经过上述变换后为点),(y x P ''',那么⎪⎩⎪⎨⎧='='yy x x 321③ 我们把③式叫做平面直角坐标系中的坐标伸缩变换. 一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.【设计意图】通过对前面的总结,发现一般情况,从而得出伸缩变换的概念. 活动④巩固基础,检查反馈例3 在同一平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy xx 2131后的图形.⑴14922=+y x ;⑵1121822=-y x ⑶x y 22= 【知识点】伸缩变换.【数学思想】转化与化归的思想【解题过程】.⑴由伸缩变换⎪⎩⎪⎨⎧='='y y x x 2131得⎩⎨⎧'='=y y x x 23代入14922=+y x ,得到经过伸缩变换后的图形方程为122='+'y x同理可得⑵式经过伸缩变换后的图形方程为13222='-'y x⑶式经过伸缩变换后的图形方程为x y '='232 【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程.同类训练在平面直角坐标系中, 求方程032=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='y y xx 32后的图形对应的方程为.【知识点】坐标的伸缩变换. 【数学思想】转化与化归思想【解题过程】由伸缩变换⎩⎨⎧='='y y x x 32得⎪⎩⎪⎨⎧'='=y y x x 321代入032=+y x ,得到经过伸缩变换后的图形方程为0='+'y x【思路点拨】伸缩变换公式的应用. 【答案】0='+'y x●活动⑤强化提升、灵活应用例4在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy x x 3后,曲线C 变为曲线9922='-'y x ,求曲线C 的方程.【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎩⎨⎧='='y y x x 3代入曲线9922='-'y x 得到曲线C 对应的方程为122=-y x 【思路点拨】伸缩变换公式的应用. 【答案】122=-y x .同类训练在同一平面直角坐标系中,经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 312后,曲线C 变为曲线1922='+'y x ,求曲线C 的方程. 【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎪⎩⎪⎨⎧='='y y x x 312代入曲线1922='+'y x 得到曲线C 对应的方程为1422=+y x 【思路点拨】伸缩变换公式的应用. 【答案】1422=+y x . 3.课堂总结 知识梳理(1)坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.(2)建系时,根据几何特点选择适当的直角坐标系:第一:如果图形有对称中心,可以选对称中心为坐标原点;第二:如果图形有对称轴,可以选择对称轴为坐标轴;第三:使图形上的特殊点尽可能多的在坐标轴上.(3)一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 重难点归纳(1)坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.它是解析几何中最基本的研究方法.(2)在坐标伸缩变换的作用下,可以实现平面图形的伸缩.因此,平面图形的伸缩变换可以用坐标伸缩变换来表示. (三)课后作业 基础型自主突破1.已知f 1(x )=cos x ,f 2(x )=cos ωx (ω>0),f 2(x )的图象可以看作是把f 1(x )的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( )A.21B.2C.3D.31 【知识点】三角函数图像,伸缩变换公式.【解题过程】:∵1,3,x x y y ⎧'=⎪⎨⎪'=⎩∴3,.x x y y '=⎧⎨'=⎩将其代入y =cos x ,得到y '=cos3x ',即f 2(x )=cos3x . 【思路点拨】函数y =cos ωx ,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.应用时谨防出错. 【答案】C2.曲线122=+y x 经过φ: ⎩⎨⎧='='yy xx 43变换后得到的新曲线的方程是().A .14322='+'y xB .191622='+'y xC .116922='+'y x D .116922='+'y x【知识点】伸缩变换公式与应用.【解题过程】曲线122=+y x 经过φ: ⎩⎨⎧='='y y x x 43变换后,即⎪⎩⎪⎨⎧'='=y y x x 4131代入到圆的方程,可得116922='+'y x 即所求新曲线的方程为116922='+'y x . 【思路点拨】将y x ,表示出来,代入到原方程即可得到新曲线的方程. 【答案】D .3.将一个圆作伸缩变换后所得到的图形不可能是() A.椭圆 B.比原来大的圆 C.比原来小的圆 D.双曲线【知识点】伸缩变换的应用.【解题过程】由伸缩变换的公式可知不可能得到的图形是双曲线,只能是圆或者椭圆. 【思路点拨】将伸缩变换的公式进行变形可得. 【答案】D4. 将点(2,3)变成点(3,2)的伸缩变换是()A .2332x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩B .3223x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩C .x'y y'x =⎧⎨=⎩D .11x'x y'y =+⎧⎨=-⎩【知识点】伸缩变换公式与应用.【解题过程】设此变换为,,x'x y'y λμ=⎧⎨=⎩则3,22,3x'x y'y λμ⎧==⎪⎪⎨⎪==⎪⎩所以所求变换为3,22,3x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩【思路点拨】将伸缩变换公式进行变形得到. 【答案】B .5.已知函数=)(x f 22(1)1(1)1,x x -++++则)(x f 的最小值为__________. 【知识点】平面直角坐标系的应用. 【数学思想】数形结合的思想【解题过程】f (x )可看作是平面直角坐标系下x 轴上一点(x,0)到两定点(-1,1)和(1,1)的距离之和,结合图形可得,f (x )的最小值为2.【思路点拨】利用代数式的几何意义来处理. 【答案】22.6.在同一平面直角坐标系中,经过伸缩变换5,3x x y y '=⎧⎨'=⎩后,曲线C 变为曲线322='+'y x ,则曲线C 的方程为________. 【知识点】伸缩变换公式应用.【解题过程】将伸缩变换5,3x x y y '=⎧⎨'=⎩代入322='+'y x ,得392522=+y x .【思路点拨】灵活应用伸缩变换公式. 【答案】392522=+y x . 能力型师生共研7.设曲线C 对应的方程为)0,0(12222>>=-b a b y a x ,曲线C 经过伸缩变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 后得到曲线C ',则曲线C '为() A .双曲线B .椭圆C .抛物线D .随μλ,的系数不同曲线也不同【知识点】双曲线,伸缩变换.【解题过程】将变换,,x'x y'y λμ=⎧⎨=⎩转化为⎪⎪⎩⎪⎪⎨⎧'='=y y x x μλ11代入双曲线方程得)0,0(1222222>>='-'b a b y a x μλ,所以曲线C '为双曲线.【思路点拨】伸缩变换公式的应用以与双曲线定义. 【答案】A .8.在同一平面直角坐标系中,将曲线01283622=+--x y x 变成曲线03422=+'-'-'x y x ,求满足条件的伸缩变换.【知识点】伸缩变换公式应用.【解题过程】解:x 2-36y 2-8x +12=0可化为24()2x --9y 2=1.① x ′2-y ′2-4x ′+3=0可化为(x ′-2)2-y ′2=1.②比较①②,可得42,23,x x y y -⎧'-=⎪⎨⎪'=⎩即,23.xx y y ⎧'=⎪⎨⎪'=⎩ 所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象. 【思路点拨】灵活应用伸缩变换公式.【答案】,23.xx y y ⎧'=⎪⎨⎪'=⎩.探究型多维突破9.△ABC 的顶点A 固定,点A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条直线移动,求△ABC 外心的轨迹方程. 【知识点】平面直角坐标系的应用,轨迹方程. 【数学思想】数形结合【解题过程】解:以边BC 所在的定直线为x 轴,过A 作x 轴的垂线为y 轴,建立直角坐标系,则点A 的坐标为(0,b ). 设△ABC 的外心为M (x ,y ).取BC 的中点N ,则MN ⊥BC ,即MN 是BC 的垂直平分线. ∵|BC |=2a ,∴|BN |=a ,|MN |=|y |. 又M 是△ABC 的外心,∴|MA |=|MB |. 又|MA |=x 2+y -b2,|MB |=|MN |2+|BN |2=y 2+a 2,∴x 2+y -b2=y 2+a 2,化简,得所求的轨迹方程为x 2-2by +b 2-a 2=0.【思路点拨】选择恰当的坐标系,坐标系如果选择得恰当,可使解题过程简化,减少计算量. 【答案】02222=-+-a b by x .自助餐1.将正弦曲线y =sin x 作如下变换:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,得到的曲线方程为( ).A .y ′=3sin 12x ′B .y ′=13sin 2x ′ C .y ′=12sin 2x ′ D .y ′=3sin 2x ′ 【知识点】三角函数图形、伸缩变换. 【解题过程】将⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,转化为⎪⎩⎪⎨⎧'='=y y x x 312代入y =sin x 可得【思路点拨】将伸缩变换公式进行变形后再应用. 【答案】D2.将曲线F (x ,y )=0上的点的横坐标伸长到原来的2倍,纵坐标缩短到原来的13,得到的曲线方程为( )A .F ⎝ ⎛⎭⎪⎫x 2,3y =0B .F ⎝ ⎛⎭⎪⎫2x ,y 3=0 C .F ⎝ ⎛⎭⎪⎫3x ,y 2=0 D .F ⎝ ⎛⎭⎪⎫x 3,2y =0【知识点】伸缩变换.【解题过程】设(x ,y )经过伸缩变换变为(x ′,y ′), ∴⎩⎪⎨⎪⎧x ′=2x ,y ′=13y ,则⎩⎪⎨⎪⎧x =12x ′,y =3y ′,代入F (x ,y )=0得F ⎝ ⎛⎭⎪⎫12x ′,3y ′=0..【思路点拨】正确使用伸缩变换公式. 【答案】A3.双曲线C:16422=-y x 经过⎩⎨⎧='='yy x x 23:ϕ变换后所得曲线C '的焦点坐标为________.【知识点】双曲线的性质、伸缩变换.【解题过程】 将变换⎩⎨⎧='='y y x x 23ϕ变形为⎪⎩⎪⎨⎧'='=y y x x 231代入曲线C 中得:116922=-y x ,所有焦点坐标为)0,5(或)0,5(-.【思路点拨】先将曲线C '的方程求解,在根据双曲线的性质求焦点坐标. 【答案】)0,5(或)0,5(-.4.在同一平面直角坐标系中,曲线369422=+y x 经过伸缩变换ϕ后变成曲线1222='+'y x ,则伸缩变换ϕ为________. 【知识点】伸缩变换公式.【解题过程】将369422=+y x 变形为14922=+y x 与1222='+'y x 比较可得⎪⎪⎩⎪⎪⎨⎧='='yy x x 2231. 【思路点拨】对伸缩变换公式进行适当的变形.【答案】⎪⎪⎩⎪⎪⎨⎧='='y y x x 2231. 5.如图所示,A ,B ,C 是三个观察站,A 在B 的正东,两地相距6 km ,C 在B 的北偏西30°,两地相距4 km ,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为1 km/s,4 s 后B ,C 两个观察站同时发现这种信号,在以过A ,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.【知识点】双曲线的定义、直角坐标系. 【数学思想】坐标法思想.【解题过程】解:设点P 的坐标为(x ,y ),则A (3,0),B (-3,0),C (-5,23). 因为|PB |=|PC |,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D (-4,3),所以直线PD的方程为y-3=13(x+4).①又因为|PB|-|P A|=4,所以点P必在以A,B为焦点的双曲线的右支上,双曲线方程为x24-y25=1(x≥2).②联立①②,解得x=8或x=-3211(舍去),所以y=5 3.所以点P的坐标为(8,53).【思路点拨】根据实际问题建立合适的直角坐标系,转为数学问题.【答案】(8,53).。

高中新课程数学(新课标人教A版)选修4-4《1.3简单曲线的极坐标方程》教案

高中新课程数学(新课标人教A版)选修4-4《1.3简单曲线的极坐标方程》教案

(2)直角坐标方程2x-y+1 0的极坐标方程为_______
(3)直角坐标方程x2 y2 9的极坐标方程为_____
(4)直角坐标方程x 3的极坐标方程为_______
四、课堂小结: 1.曲线的极坐标方程的概念. 2.求曲线的极坐标方程的一般步骤.
五、课外作业:教材 P28 1,2
1.在极坐标系中,已知圆 C 的圆心 C(3, ) ,半径 r 3 , 6

4
A ( R) B 5 ( 0) C 5 ( R) D ( 0)
4
4
4
4
3、在极坐标系中,过点 A(2, ) 且与极轴平行的直线 l 的极坐标方程是 2
4、在极坐标系中,过圆 4cos 的圆心,且垂直于极轴的直线方程是
5、在极坐标系中,过点 A(2, 3 ) 且垂直于极轴的直线 l 的极坐标方程是 4
4 l
4
x O
思考:用极坐标表示直线时方程是否唯一?
探究 2、如何表示过点 A(a, 0)(a 0) ,且垂直于极轴的直线 l 的极坐标方程,化为
直角坐标方程是什么?过点 A(a, 0)(a 0二、知识应用: 例 1、已知点 P 的极坐标为 (2, ) ,直线 l 过点 P 且与极轴所成的角为 ,求直线
1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程
极坐标系的建立是否可以求曲线方程?
学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式:
二、讲解新课: 1、引例.如图,在极坐标系下半径为 a 的圆的圆心坐标为
(a,0)(a>0),你能用一个等式表示圆上任意一点, 的极坐标(,)满足的条件? 解:设 M (,)是圆上 O、A 以外的任意一点,连接 AM,

人教版A版高中数人教版A版高中数学选修4-4全套PPT课件

人教版A版高中数人教版A版高中数学选修4-4全套PPT课件
[思维启迪] 解答本题首先要根据平面直角坐标系中的伸缩变换公式的意
义与作用,明确原来的点与变换后的点的坐标,利用方程的思想求解.
解 (1)设 A′(x′,y′), 由伸缩变换 φ:x2′ y′==y3x得到xy′′==123yx,由于 A13,-2,于是 x′ =3×13=1,y′=12×(-2)=-1, ∴A′(1,-1)为所求. (2)设 B(x,y),由伸缩变换 φ:2xy′′==y3x得到xy==213yx′′,由于
[思维启迪] 求满足图形变换的伸缩变换,实际上是求出
其变换公式,将新旧坐标分清,代入对应的曲线方程,然
后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.
解 设变换为xy′′==μyλ,x,μ>λ0>,0,可将其代入第二个方程, 得 λ2x2+μ2y2=1.与 4x2+9y2=36 比较,
将其变为346x2+396y2=1,即19x2+14y2=1,比较系数得
证明 法一 以A为坐标原点O,AB所在 直线为x轴,建立平面直角坐标系xOy, 则A(0,0),设B(a,0),C(b,c),
则 Da+2 b,2c, 所以|AD|2+|BD|2
=(a+b)2+c2+(a-b)2+c2
4
4
4
4
=12(a2+b2+c2), |AB|2+|AC|2=a2+b2+c2
【思维导图】
题型一 运用坐标法解决解析几何问题
【例1】 如图所示,圆 O1 与圆 O2 的半径都是
1,|O1O2|=4,过动点 P 分别作圆 O1、圆 O2 的切线 PM、PN(M、N 分别为切点),
使得|PM|= 2|PN|,试建立适当的坐标系, 并求动点 P 的轨迹方程.
[思维启迪] 本题是解析几何中求轨迹方程问题,由题意建立

2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4

2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4

第2课时 极坐标和直角坐标的互化学习目标 1.了解极坐标和直角坐标互化的条件.2.掌握极坐标与直角坐标互化的公式,能进行极坐标和直角坐标间的互化.3.掌握极坐标系的简单应用.知识点 极坐标和直角坐标的互化思考1 平面内的一个点M 的坐标既可以用直角坐标表示也可以用极坐标表示,那么这两个坐标之间能否转化? 答案 可以.思考2 要进行极坐标和直角坐标的互化,两个坐标系有什么联系? 答案 ①直角坐标的原点为极点;②x 轴的正半轴为极轴;③单位长度相同. 梳理 互化的条件及互化公式(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式①极坐标化直角坐标:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②直角坐标化极坐标:⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).类型一 点的极坐标化直角坐标 例1 把下列点的极坐标化为直角坐标. (1)A ⎝ ⎛⎭⎪⎫2,7π6;(2)B ⎝ ⎛⎭⎪⎫3,-π4;(3)M ⎝⎛⎭⎪⎫6,5π6.解 由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得(1)x =2cos 7π6=-3,y =2sin 7π6=-1,∴点A 的直角坐标为(-3,-1).(2)x =3cos ⎝ ⎛⎭⎪⎫-π4=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=-322,∴点B 的直角坐标为⎝⎛⎭⎪⎫322,-322.(3)x =6cos 5π6=-33,y =6sin 5π6=3,∴点M 的直角坐标为(-33,3).反思与感悟 由极坐标化直角坐标是惟一的.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ惟一确定.跟踪训练1 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,2π3,B ⎝ ⎛⎭⎪⎫32,π,C ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.解 根据x =ρcos θ,y =ρsin θ, 得A (-1,3),B ⎝ ⎛⎭⎪⎫-32,0,C (0,-4). 类型二 点的直角坐标化极坐标例2 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π). (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π). 由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝⎛⎭⎪⎫4,2π3.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33,θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π). 由于点⎝⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4. ∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.引申探究1.若规定θ∈R ,上述点的极坐标还惟一吗?解 (1)⎝ ⎛⎭⎪⎫4,2π3+2k π(k ∈Z ).(2)⎝ ⎛⎭⎪⎫22,11π6+2k π(k ∈Z ). (3)⎝⎛⎭⎪⎫32π2,π4+2k π(k ∈Z ). 极坐标不惟一.2.若点的直角坐标为(1)(0,23),(2)(0,-2),(3)⎝⎛⎭⎪⎫3π2,0化为极坐标(ρ≥0,0≤θ<2π).解 结合坐标系及直角坐标的特点知, (1)⎝ ⎛⎭⎪⎫23,π2.(2)⎝ ⎛⎭⎪⎫2,3π2.(3)⎝ ⎛⎭⎪⎫3π2,0.反思与感悟 (1)将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.(2)在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪训练2 在直角坐标系中,求与点M ⎝ ⎛⎭⎪⎫52,-532的距离为1且与原点距离最近的点N 的极坐标.解 把点M 的直角坐标⎝ ⎛⎭⎪⎫52,-532化为极坐标,得ρ=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫-5322=5,tan θ=-53252=- 3. 因为点M 在第四象限,所以θ=5π3+2k π,k ∈Z ,则点M 的极坐标为⎝ ⎛⎭⎪⎫5,5π3+2k π,k ∈Z .依题意知,M ,N ,O 三点共线,则点N 的极坐标为⎝ ⎛⎭⎪⎫4,5π3+2k π,k ∈Z .类型三 极坐标与直角坐标互化的应用例3 已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,求线段AB 中点的直角坐标.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33),同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段中点的坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,所以线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.引申探究1.若本例条件不变,求线段AB 中点的极坐标. 解 由例3知,AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32,∴ρ2=x 2+y 2=1,∴ρ=1.又tan θ=y x =3,∴θ=4π3,∴极坐标为⎝⎛⎭⎪⎫1,4π3. 2.若本例条件不变,求AB 的直线方程.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33).又因为直线AB 的倾斜角为π3,故斜率k =3,故直线AB 的方程为y -33=3(x -3),即3x -y =0. 反思与感悟 应用点的极坐标与直角坐标互化的策略在解决极坐标平面内较为复杂的图形问题时,若不方便利用极坐标直接解决,可先将极坐标化为直角坐标,利用直角坐标系中的公式、性质解决,再转化为极坐标系中的问题即可.跟踪训练3 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π). 解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝⎛⎭⎪⎫2,5π4有ρ=2,θ=5π4,∴x =2cos 5π4=-2,y =2sin 5π4=-2.∴B (-2,-2).设点C 的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴点C 的坐标为(6,-6)或(-6,6).∴ρ=6+6=23,tan θ=-66=-1或tan θ=6-6=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)答案 A2.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4答案 B解析 设点P 的极坐标为(ρ,θ), ∵ρ2=x 2+y 2=4,∴ρ=2,又tan θ=y x =-1,且点P 在第二象限,∴θ=3π4.3.若M 点的极坐标为⎝⎛⎭⎪⎫2,5π6,则M 点的直角坐标是( )A .(-3,1)B .(-3,-1)C .(3,-1)D .(3,1) 答案 A解析 由公式可知⎩⎪⎨⎪⎧x =ρcos θ=2cos 5π6=-3,y =ρsin θ=2sin 5π6=1,∴M 点的直角坐标为(-3,1).4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点P 的极坐标可以是( ) A.⎝ ⎛⎭⎪⎫1,-π3B.⎝⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 答案 C解析 以原点为极点,x 轴的正半轴为极轴建立极坐标系,则由极坐标与直角坐标的互化公式,得ρ=x 2+y 2=12+(-3)2=2,tan θ=y x =-31=- 3.∵点P 在第四象限,结合选项知,θ可以是-π3,∴点P 的极坐标可以是⎝⎛⎭⎪⎫2,-π3. 5.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标是________.答案 ⎝⎛⎭⎪⎫6,4π3解析 ρ=(-3)2+(-33)2=6, 由6cos θ=-3,得cos θ=-12,又0≤θ<2π,且M (-3,-33)在第三象限, ∴θ=4π3,故点M 的极坐标为⎝⎛⎭⎪⎫6,4π3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带,事实上,若ρ>0,sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).一、选择题1.已知点M 的极坐标为⎝ ⎛⎭⎪⎫-5,π3,下列所给出的四个坐标中不能表示点M 的坐标的是( ) A.⎝ ⎛⎭⎪⎫5,π3 B.⎝ ⎛⎭⎪⎫5,4π3 C.⎝ ⎛⎭⎪⎫5,-2π3 D.⎝ ⎛⎭⎪⎫-5,-5π3答案 A2.直角坐标为(-2,2)的点M 的极坐标可以为( ) A.⎝⎛⎭⎪⎫22,π4 B.⎝⎛⎭⎪⎫-22,π4C.⎝ ⎛⎭⎪⎫22,3π4D.⎝⎛⎭⎪⎫22,-π4 答案 C解析 易知ρ=(-2)2+22=22,tan θ=2-2=-1,因为点M 在第二象限,所以可取θ=3π4,则点M 的极坐标可以为⎝⎛⎭⎪⎫22,3π4.3.若点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为( )A .(3,4)B .(4,3)C .(-4,3)D .(-3,4) 答案 D4.点M 的直角坐标是(3,3),则点M 的极坐标可能为( ) A.⎝⎛⎭⎪⎫23,5π6 B.⎝⎛⎭⎪⎫23,π6C.⎝ ⎛⎭⎪⎫23,-π6D.⎝⎛⎭⎪⎫23,-5π6 答案 B解析 ρ=x 2+y 2=23,tan θ=yx =33, 又θ的终边过点(3,3),所以θ=π6+2k π,k ∈Z ,所以M 的极坐标可能为⎝⎛⎭⎪⎫23,π6. 5.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D 的极坐标为⎝⎛⎭⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42)答案 C解析 设顶点B 的直角坐标为(x 0,y 0).把A ,D 两点的极坐标化为直角坐标,得A (-2,0),D (-22,-22),则由中点坐标公式得-2+x 02=-22,0+y 02=-22,解得x 0=-32,y 0=-42,故顶点B 的直角坐标为(-32,-42). 二、填空题6.把点M 的极坐标⎝ ⎛⎭⎪⎫-10,π6化为直角坐标为________.答案 (-53,-5)7.已知两点的极坐标A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则直线AB 的倾斜角为________. 答案5π6解析 点A ,B 的直角坐标分别为(0,3),⎝⎛⎭⎪⎫332,32,故k AB =32-3332-0=-33,故直线AB 的倾斜角为5π6.8.将向量OM →=(-1,3)绕原点逆时针旋转120°得到向量的直角坐标为________. 答案 (-1,-3)解析 由于M (-1,3)的极坐标为⎝ ⎛⎭⎪⎫2,2π3,绕极点(即原点)逆时针旋转120°得到的点的极坐标为⎝⎛⎭⎪⎫2,4π3,化为直角坐标为(-1,-3).9.在极坐标系中,O 是极点,点A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫3,2π3,则点O 到AB 所在直线的距离是________.答案125解析 点A ,B 的直角坐标分别为(23,2),⎝ ⎛⎭⎪⎫-32,332,则直线AB 的方程为y -2332-2=x -23-32-23,即(4-33)x -(43+3)y +24=0,则点O 到直线AB 的距离为24(4-33)2+[-(43+3)]2=125.10.在极轴上与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标为________. 答案 (1,0)或(7,0)解析 设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0,解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0). 三、解答题11.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)∵x =ρcos θ=4cos 5π3=2,y =ρsin θ=4sin5π3=-23, ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1,且点B 位于第四象限内,∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0,∴ρ=15,θ=3π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 12.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫43,7π6.(1)求|AB |的值;(2)求△AOB 的面积(O 为极点). 解 如图所示,(1)∠AOB =7π6-π3=5π6,所以|AB |2=32+(43)2-2×3×43cos 5π6=93,所以|AB |=93.(2)S △AOB =12OA ·OB sin∠AOB =12×3×43×12=3 3.13.在极坐标系中,已知三点M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝ ⎛⎭⎪⎫23,π6.判断M ,N ,P 三点是否共线?说明理由.解 将极坐标M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝⎛⎭⎪⎫23,π6分别化为直角坐标,得M (1,-3),N (2,0),P (3,3).方法一 因为k MN =k PN =3,所以M ,N ,P 三点共线. 方法二 因为MN →=NP →=(1,3),所以MN →∥NP →, 所以M ,N ,P 三点共线.四、探究与拓展14.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.答案 ⎝ ⎛⎭⎪⎫22,54π 解析 ∵点P (x ,y )在第三象限的角平分线上,且到横轴的距离为2,∴x =-2,y =-2,∴ρ=x 2+y 2=2 2. 又tan θ=y x =1,且θ∈[0,2π),∴θ=54π. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,54π. 15.已知点M 的极坐标为⎝ ⎛⎭⎪⎫4,π6,极点O ′在直角坐标系xOy 中的直角坐标为(2,3),极轴平行于x 轴,极轴的方向与x 轴的正方向相同,两坐标系的长度单位相同,求点M 的直角坐标.解 如图所示.设M 在直角坐标系x ′O ′y ′中的坐标为(x ′,y ′),则x ′=ρcos θ=4cos π6=23,y ′=ρsin θ=4sin π6=2, 又M 在原坐标系中的坐标为(x ,y ),则x =x ′+2=23+2,y =y ′+3=5,∴点M 的直角坐标是(23+2,5).。

高中数学人教A版选修-创新应用教学案:第一讲 四 直角三角形的射影定理含答案

别为 AD,BC 上的点,且 EF=3,EF∥AB,则梯形 ABFE 与梯形 EFCD 的面积比为________. 解析:由 CD=2,AB=4,EF=3,
7
得 EF=12(CD+AB), ∴EF 是梯形 ABCD 的中位线, 则梯形 ABFE 与梯形 EFCD 有相同的高,设为 h,
于是两梯形的面积比为 12(3+4)h∶12(2+3)h=7∶5. 答案:7∶5 2.如图,圆 O 上一点 C C在E直径 AB 上的射影为 D,点 D 在半径 OC 上的 射影为 E.若 AB=3AD,则 的值为________.

Байду номын сангаас
直角三角形的射影定理
[对应学生用书 P14] 1.射影 (1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上 的正射影. (2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段. (3)射影:点和线段的正射影简称为射影. 2.射影定理 (1)文字语言: 直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜 边上射影与斜边的比例中项. (2)图形语言:如图,在 Rt△ABC 中,CD 为斜边 AB 上的高, 则有 CD2=AD·BD, AC2=AD·AB, BC2=BD·AB.
所以EACE=2×35=65.
相似三角形的判定与性质
相似三角形的判定与性质揭示了形状相同,大小不一定相等的两个三角形之间的边、角
关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、
角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情
的射影分别为
1和 5
4. 5
答案:C

高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4(2021学年)

2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4的全部内容。

四柱坐标系与球坐标系简介错误!1.柱坐标系(1)定义:建立空间直角坐标系Oxyz。

设P是空间任意一点,它在Oxy平面上的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q在平面Oxy上的极坐标,这时点P的位置可用有序数组(ρ,θ,z)(z∈R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,z∈R。

(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为错误!2.球坐标系(1)定义:建立空间直角坐标系Oxyz,设P是空间任意一点,连接OP,记|OP|=r,OP与Oz轴正向所夹的角为φ,设P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ。

这样点P的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数组(r,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ)叫做点P的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为错误!错误!柱坐标与直角坐标的互相转化[例1](1)设点A的直角坐标为(1,错误!,5),求它的柱坐标.(2)已知点P的柱坐标为错误!,求它的直角坐标.[思路点拨]直接利用公式求解.[解](1)由变换公式错误!即ρ2=12+(3)2=4,∴ρ=2.tan θ=错误!=错误!,又x>0,y>0,点A在第一象限.∴θ=错误!,∴点A的柱坐标为错误!。

高中数学 第二章 参数方程 2.3.1 椭圆的参数方程教学设计 新人教A版选修4-4-新人教A版高二

椭圆的参数方程一、知识回顾(4’)以设问的方式进行复习回顾:1、当焦点在x轴上时椭圆的普通方程:2、相关知识点:(1)焦点,顶点(), ();(2)(3);(4);3、辅助角公式:学生跟着老师的思路进行复习回顾,并能较为准确回答出老师所问问题。

为接下来的新知识做铺垫。

明确相关知识便于学生理解下面的新知识,加深了学生对单一函数的认识及应用二、新课引入(3’)对椭圆的普通方程进行换元可得到椭圆的参数方程。

对学生提出思考:上节课圆的参数方程中,参数的几何意义是圆的旋转角,那么椭圆的参数方程中参数的几何意义是什么?学生认真记录笔记,并根据老师所提出的思考题进行思考,并忆起圆的参数方程中参数的几何意义。

利用学生熟悉的三角函数公式进行换元,通过换元法进行引入。

然后对参数进行设问,引导学生合作探究。

三、探究参数(14’)设椭圆上任一动点M 坐标为(),则:探究1:参数是椭圆的旋转角吗?不是,因为x=,不是定值。

探究2:从参数方程出发(即M的坐标点)根据圆的参数方程寻找的意义:建立以a为半径的圆,过M作垂线交圆于A,点A的横坐标与M的横坐标一样为(为∠AOx);再建立以b为半径的圆交线段OA于B,而B点纵坐标为,恰与M的纵坐标一样,即BM∥x轴。

因此,椭圆的参数方程中参数的几何意义并非旋转角,而是椭圆的离心角。

探究3:当椭圆的焦点在y轴上时的参数方程是什么样子的,其参数是否满足探究2中的几何意学生之间先进行探究一的讨论,发现不是椭圆的旋转角,然后再自己原有讨论的基础上跟着老师一起探究参数的几何意义,得出原来参数的几何意义是椭圆的离心角。

探究3让学生自主探究,发现不论椭圆的焦点在哪,其参数的几何意义仍是椭圆的离心角。

探究1:类比圆的参数方程中参数的几何意义,猜想椭圆参数方程中参数的几何意义,引导发现不相同之处,否定原有猜想。

探究2:从所设M点的坐标出发,通过数形结合思想,引导学生从已知点坐标出发,进行探究,思考椭圆的参数方程中参数的几何意义。

2018_2019版高中数学第一讲不等式和绝对值不等式二第1课时绝对值三角不等式学案新人教A版选修4

第1课时绝对值三角不等式学习目标 1.进一步理解绝对值的意义.2.理解并掌握绝对值三角不等式(定理1)及其几何解释,理解多个实数的绝对值不等式(定理2).3.会用定理1、定理2解决简单的绝对值不等式问题.知识点绝对值三角不等式思考1 实数a的绝对值|a|的几何意义是什么?答案|a|表示数轴上以a为坐标的点A到原点的距离.思考2 代数式|x+2|+|x-3|的几何意义是什么?答案表示数轴上的点x到点-2,3的距离之和.梳理(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.几何解释:用向量a,b分别替换a,b.①当a与b不共线时,有|a+b|<|a|+|b|,其几何意义为两边之和大于第三边;②若a,b共线,当a与b同向时,|a+b|=|a|+|b|,当a与b反向时,|a+b|<|a|+|b|;由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式.③定理1的推广:如果a,b是实数,那么||a|-|b||≤|a±b|≤|a|+|b|.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当(a-b)(b-c)≥0时,等号成立.几何解释:在数轴上,a,b,c所对应的点分别为A,B,C,当点B在点A,C之间时,|a-c|=|a-b|+|b-c|.当点B不在点A,C之间时:①点B在A或C上时,|a-c|=|a-b|+|b-c|;②点B不在A,C上时,|a-c|<|a-b|+|b-c|.应用:利用该定理可以确定绝对值函数的值域和最值.类型一 含绝对值不等式的证明例1 设函数f (x )=x 2-2x ,实数a 满足|x -a |<1.求证:|f (x )-f (a )|<2|a |+3.证明 ∵f (x )=x 2-2x ,且|x -a |<1,∴|f (x )-f (a )|=|x 2-2x -a 2+2a |=|(x +a )(x -a )-2(x -a )|=|(x -a )(x +a -2)|=|x -a |·|x +a -2|<|x +a -2|=|(x -a )+(2a -2)|≤|x -a |+|2a -2|<1+|2a |+|2|=2|a |+3,∴|f (x )-f (a )|<2|a |+3.反思与感悟 两类含绝对值不等式的证明技巧一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明.另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.跟踪训练1 已知|A -a |<s 3,|B -b |<s 3,|C -c |<s 3,求证:|(A +B +C )-(a +b +c )|<s . 证明 ∵|(A +B +C )-(a +b +c )|=|(A -a )+(B -b )+(C -c )|≤|(A -a )+(B -b )|+|C -c |≤|A -a |+|B -b |+|C -c |,又∵|A -a |<s 3,|B -b |<s 3,|C -c |<s 3, ∴|A -a |+|B -b |+|C -c |<s 3+s 3+s 3=s , ∴|(A +B +C )-(a +b +c )|<s .类型二 利用绝对值三角不等式求最值例2 (1)求函数y =|x -3|-|x +1|的最大值和最小值;(2)如果关于x 的不等式|x -3|+|x -4|<a 的解集为空集,求参数a 的取值范围. 解 (1)方法一 ||x -3|-|x +1||≤|(x -3)-(x +1)|=4,∴-4≤|x -3|-|x +1|≤4,∴y max =4,y min =-4.方法二 把函数看作分段函数,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 柱坐标系[核心必知]1.柱坐标系的概念建立空间直角坐标系O -xyz ,设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示,这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.2.直角坐标与柱坐标的转化空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z W.[问题思考]1.柱坐标与平面上的极坐标之间有什么关系?提示:柱坐标就是平面上的极坐标加上与平面垂直的一个直角坐标.2.在极坐标中,方程ρ=ρ0(ρ0为正常数)表示圆心在极点,半径为ρ0的圆,方程θ=θ0(θ0为常数)表示与极轴成θ0角的射线,那么,在柱坐标系中,上述方程又分别表示什么图形?提示:在空间的柱坐标系中,方程ρ=ρ0表示中心轴为z 轴,底半径为ρ0的圆柱面,它是上述圆周沿z 轴方向平行移动而成的.方程θ=θ0表示与zOx 坐标面成θ0角的半平面.已知空间点P 的直角坐标为(43,4,3),求它的柱坐标.[精讲详析] 本题主要考查将直角坐标化为柱坐标的方法,解答此题需要明确各坐标的意义,然后将其代入相应公式即可解决.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得ρ2=x 2+y 2,z =3.∴ρ2=(43)2+(4)2=48+16=64, ∴ρ=8.tan θ=y x =443=33,又x >0,y >0,点在第一象限. ∴θ=π6.∴点P 的柱坐标为(8,π6,3).已知点的直角坐标,确定它的柱坐标的关键是确定ρ和θ,尤其是θ,要注意求出tan θ还要根据点P 所在的象限确定θ的值(θ的范围是[0,2π)).1.已知空间点M 的直角坐标为(-1,-3,3),求它的柱坐标. 解:由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧-1=ρcos θ,-3=ρsin θ,z =3.∴ρ2=(-1)2+(-3)2=4.∴ρ=2.∴cos θ=-12,sin θ=-32.又∵θ∈[0,2π), ∴θ=43π.即M 的柱坐标为(2,43π,3).已知点P 的柱坐标为⎝⎛⎭⎫8,π6,4,求它的直角坐标.[精讲详析] 本题考查柱坐标与直角坐标的转化,解答本题只要将已知点的柱坐标代入相应的公式即可.∵P 点的柱坐标为(8,π6,4),∴ρ=8,θ=π6.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧x =8cos π6,y =8sin π6,z =4,即⎩⎪⎨⎪⎧x =43,y =4,z =4. ∴P 点的直角坐标为(43,4,4).已知柱坐标,求直角坐标直接利用变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z即可.2.已知点M 的柱坐标为⎝⎛⎭⎫2,π4,1,求M 关于原点O 对称的点的柱坐标.解:M (2,π4,1)的直角坐标为⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1,z =1,∴M 关于原点O 的对称点的直角坐标为(-1,-1,-1), ρ2=(-1)2+(-1)2=2, ∴ρ= 2. tan θ=-1-1=1,又x <0,y <0. ∴θ=5π4.∴M 关于原点O 对称点的柱坐标为(2,5π4,-1).给定一个底面半径为2,高为2的圆柱,建立柱坐标系,利用柱坐标系描述圆柱侧面以及底面上点的坐标.[精讲详析]本题考查柱坐标系的建法以及柱坐标的确定方法.解答本题需要建立恰当的柱坐标系,然后根据柱坐标的定义解决相关问题.以圆柱底面圆的圆心为原点,取两条互相垂直的直线为x 轴y 轴,以向上的中轴线为z 轴正方向建立柱坐标系.下底面上的点的柱坐标满足(ρ1,θ1,0),其中0≤ρ1≤2,0≤θ1<2π. 上底面上的点的柱坐标满足(ρ2,θ2,2),其中0≤ρ2≤2,0≤θ2<2π. 侧面上的点的柱坐标满足(2,θ3,z ),其中0≤θ3<2π,0≤z ≤2.(1)柱坐标系是由平面极坐标系及空间直角坐标系中的一部分建立起来的. (2)解决此类问题的关键是找出这些点所具有的共性和变化的特征.3.如图,P 为圆柱的上底面与侧面交线上的一点,且P 点的柱坐标为(6,π4,5),求该圆柱的体积.解:过点P 作PP ′垂直底面,垂足为P ′,∵P (6,π4,5),∴P ′点的坐标为(6,π4,0).∴圆柱底面圆的半径为6,高为5. ∴圆柱的体积为V =π×62×5=180π.本课时考点在近几年的高考中未出现过.本考题以长方体的外接球为载体考查了柱坐标与直角坐标的转化.[考题印证]如图,在柱坐标系中,长方体的两个顶点坐标为A 1(4,0,5),C 1(6,π2,5),则此长方体外接球的体积为________.[命题立意] 本题主要考查柱坐标与直角坐标的转化以及长方体的外接球的体积的求法.[解析] 由长方体的两个顶点坐标为A 1(4,0,5), C 1(6,π2,5),可知:OA =4,OC =6,OO 1=5,则对角线长为42+52+62=77.长方体外接球的半径为772, ∴球的体积为:43·π·(772)3=77776π.答案:77776π一、选择题1.柱坐标P ⎝⎛⎭⎫16,π3,5转换为直角坐标为( )A .(5,8,83)B .(8,83,5)C .(83,8,5)D .(4,83,5)解析:选B由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧x =16cos π3=8,y =16sin π3=83,z =5.即P 点的直角坐标为(8,83,5).2.已知点M 的直角坐标为(3,3,3),则它的柱坐标为( ) A.⎝⎛⎭⎫32,π4,3 B.⎝⎛⎭⎫32,34π,1 C.⎝⎛⎭⎫32,54π,3 D.⎝⎛⎭⎫32,74π,1 解析:选A由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,得⎩⎪⎨⎪⎧3=ρcos θ,3=ρsin θ,3=z ,∴ρ2=32+32=18,∴ρ=3 2. ∴cos θ=22,sin θ=22. 又∵θ∈[0,2π), ∴θ=π4.∴M 点的柱坐标为(32,π4,3).3.在柱坐标中,方程ρ=2表示空间中的( ) A .以x 轴为中心轴,底半径为2的圆柱面 B .以y 轴为中心轴,底半径为2的圆柱面 C .以z 轴为中心轴,底半径为2的圆柱面 D .以原点为球心,半径为2的球面解析:选C 由柱坐标的几何意义可知,方程ρ=2表示以z 轴为中心,底面半径为2的圆柱面.4.空间点P 的柱坐标为(ρ,θ,z ),关于点O (0,0,0)的对称的点的坐标为(0<θ≤π)( ) A .(-ρ,-θ,-z ) B .(ρ,θ,-z ) C .(ρ,π+θ,-z ) D .(ρ,π-θ,-z )解析:选C 点P (ρ,θ,z )关于点O (0,0,0)的对称点为 P ′(ρ,π+θ,-z ). 二、填空题5.已知点M 的直角坐标为(1,0,5),则它的柱坐标为________. 解析: ∵x >0,y =0,∴tan θ=0,θ=0.ρ=12+02=1.∴柱坐标为(1,0,5). 答案:(1,0,5)6.点P 的柱坐标为⎝⎛⎭⎫8,π4,2,则点P 与原点的距离为________.解析:点P 的直角坐标为(42,42,2).∴它与原点的距离为: (42-0)2+(42-0)2+(2-0)2=217. 答案:2177.设点M 的直角坐标为(1,-3,4),则点M 的柱坐标为________. 解析:ρ=x 2+y 2=12+(-3)2=2.tan θ=-31=- 3 又x >0,y <0.∴θ=5π3.∴柱坐标为(2,5π3,4).答案:(2,5π3,4)8.在直角坐标系中,(1,1,1)关于z 轴对称点的柱坐标为________.解析:(1,1,1)关于z 轴的对称点为(-1,-1,1),它的柱坐标为(2,5π4,1).答案:(2,5π4,1)三、解答题9.求点M (1,1,3)关于xOz 平面对称点的柱坐标. 解:点M (1,1,3)关于xOz 平面的对称点为(1,-1,3).由变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z得,ρ2=12+(-1)2=2,∴ρ= 2.tan θ=-11=-1,又x >0,y <0.∴θ=7π4.∴其关于xOz 平面的对称点的柱坐标为(2,7π4,3).10.已知点A 的柱坐标为(1,π,2),B 的柱坐标为⎝⎛⎭⎫2,π2,1,求A 、B 两点间距离.解:由x =ρcos θ得:x =cos π=-1. 由y =ρsin θ得:y =sin π=0. ∴A 点的直角坐标为(-1,0,2). 同理:B 点的直角坐标为(0,2,1). ∴|AB |=(-1-0)2+(0-2)2+(2-1)2= 6.故A 、B 两点间的距离为 6.11.如图建立柱坐标系,正四面体ABCD 的棱长为2,求A 、B 、C 、D 的柱坐标.(O 是△BCD 的中心)解:∵O 是△BCD 的中心, 则OC =OD =OB =23·32·2=233AO =AC 2-OC 2=263, ∴C (233,0,0) D (233,2π3,0) B (233,4π3,0)26A(0,0,3).。

相关文档
最新文档