高光谱图像分类
综合纹理特征的高光谱遥感图像分类方法

W U a H o
( o t we tCh n n t u e o h e t o i Te h o o y S u h s i a I s i t ft e Elc r n c t c n lg ,Ch n d 1 0 6 e g u 6 0 3 ,Chn ) ia Ab t a t s r c :A VM l s i c t n me h d lg o i e t b rt x u ef a u e f rh p r p cr l e t e sn g a a i S c a sf a i t o o o y c mb n d wi Ga o e t r e t r y e s e ta mo es n i g i i o h o r ma e d t s p o o e .By i to u ig t x u e f a u e p o u e y Ga o i e r u t VM l s ii t n h l o i m a e d a t g r p sd r d cn e t r e t r r d c d b b r f t r g o p i o S n l n ca s c i ,t e a g rt fao h tk sa v n a e o VM h t sp o e rh g i n in l a a ca sf a in,a d i tg ae p t l n p c r l n o ma in d rn l s i c t n fS t a r p rf i h dme so a t ls i c t i o d i o n e r t ss a i d s e ta f r t u i g ca sf a i n aa i o i o poes r c s .Th x e i n s wih OM I ( p r t emo u a a i g s e t o ty e lh p r p c r l ma ed t h w h tt ea — e e p rme t t S o e a i d lr i g n p c r me r )r a y e s e t a g a as o t a h l v m i
高光谱遥感图像分类算法中的应用研究

第9 第 期 2卷 2
文 章 编 号 :0 6— 3 8 2 1 ) 2—08 0 10 9 4 (0 2 0 2 1— 4
计
算
机
仿
真
21年2 0 2 月
高光 谱 遥 感 图像 分 类算 法 中的应 用 研 究
张 敬 朱献 文 何 , , 宇
( .黄淮学 院国际学 院, 1 河南 驻马店 43 0 6 0 0;
r mo e s n i g i g e t r x r cin,r mo i g fau e ewe n c re ain a d r d cn h e t r i n in e t e s ma e f au e e ta t n o e vn e t r s b t e o r lt n e u ig t e fau e d me so . o
b sdo eD cs nB ud r F a r E t c o ( B E )a dS M.Frt ,h B Ew s sdf yeset l ae nt eio on ay et e x atn D F h i u r i n V i l t D F a e r pr cr sy e u oh p a
hsi分类综述 -回复

hsi分类综述-回复文章题目:HSI分类综述:从原理到应用的一步一步解析引言:随着人工智能和计算机视觉的快速发展,图像分类成为一个备受关注和研究的领域。
HSI(Hyper-spectral Imaging)分类作为一种新兴的图像分类技术,对于光谱数据的高效处理和准确分类具有重要意义。
本文将从HSI分类的原理到应用的多个方面进行逐步解析,以帮助读者全面了解这项技术及其潜力。
一、HSI分类的原理解析1.1 HSI分类介绍HSI分类是一种基于光谱信息的高光谱图像分类技术,可以对图像数据进行细致精确地分析和分类。
相比于传统的图像分类方法,HSI分类能够利用图像中多个波段的光谱信息,提供更加丰富的图像特征,从而达到更高的分类准确度。
1.2 HSI分类的基本原理HSI分类的基本原理是将图像数据从三维的光谱空间转化为二维的特征空间,然后利用分类算法对特征空间进行处理和分类。
具体来说,通过提取和选择合适的光谱特征,将高维的光谱数据降维到低维的特征空间中,再使用分类算法进行模型训练和分类任务的完成。
1.3 HSI分类的关键技术在实现HSI分类过程中,有几个关键的技术需要关注:- 光谱信息提取:提取图像中每个像素点的光谱信息,获取不同波段的光谱曲线。
- 光谱特征选择:从光谱数据中选择出具有较高分类能力的光谱特征,如主成分分析(PCA)、线性判别分析(LDA)等方法。
- 分类算法选择:选择适合HSI分类的算法,如支持向量机(SVM)、随机森林(RF)等。
二、HSI分类算法的研究进展2.1 传统HSI分类算法在HSI分类算法的研究中,传统的分类方法主要包括最大似然分类(MLC)、支持向量机分类(SVM)、随机森林分类(RF)等。
这些方法在一定程度上满足了HSI分类的需求,但仍然存在一些问题,例如计算复杂度高、泛化能力差等。
2.2 深度学习在HSI分类中的应用随着深度学习技术的发展,越来越多的研究者开始尝试将深度学习方法应用于HSI分类中。
高光谱空谱一体化图像分类研究

・
图像 与信 号 处理 ・
高 光 谱 空 谱 一 体 化 图像 分 类 研 究
高 晓健 , 郭 宝峰 , 于 平
( 1 .杭州电子科技 大学信 息与控 制研究所 , 浙江 杭州 3 1 0 0 1 8 :
2 .中国科学院长春光学精密机械与物理研究所 , 吉林 长春 1 3 0 0 0 0 )
摘 要 : 高 光谱 图像分 类是 遥感 图像 处理 技 术 中 的一个 热点 , 提 高 分类 精度 是 目前 一个 重要研 究方 向。 常规 的高 光谱 图像 分 类技 术 主要关 注 于如 何 更 好地 利 用 光 谱 空 间 的分 类 信 息 , 往往
忽视 图像 空间域信息。本文提 出了一种基于空谱 一体化处理 的高光谱 图像分类方法, 在利用 数据进行 自身光谱特征分类的同时采用区域 生长法和二值形态学法相结合 的空间域有效信息 对 光谱 分 类结果 进行 补充 。 实验证 明本 方 法能提 高 高光 谱 图像 分 类精度 。 关键 词 : 图像 处理 ; 高光谱 分 类 ; 空谱 一体 化 ; 空 间信 息
Ab s t r a c t : Hy p e r s p e c t r l a i ma g e c l a s s i i f c a t i o n i s a n i mp o r t a n t r e s e a r c h a r e a i n r e mo t e s e n s i n g d a t a p r o c e s s i n g , a n d e x — t e n s i v e r e s e a r c h h a s b e e n c a r r i e d o u t t o o b t a i n h i g h e r c l a s s i i f c a t i o n a c c u r a c y .T h e t r a d i t i o n a l h y p e r s p e c t r a l i ma g e c l a s — s i f i c a t i o n t e c h n i q u e s u s u ll a y c o n c e n t r a t e o n t h e i n f o m a r t i o n d r a wn f r o m t h e s p e c t r l a d o ma i n, w h i l e t h e i n f o r ma t i o n o f s p a t i a l d o ma i n i s i g n o r e d .I n t h i s p a p e r , a h y p e r s p e c t r a l c l a s s i i f c a t i o n me t h o d b a s e d o n t h e c o mb i n a t i o n o f s p e c t r a l a n d s p a t i a l i n f o r ma t i o n i s p r o p o s e d .S p a t i l a d o ma i n me t h o d s , s u c h a s t h e r e g i o n g r o w i n g me t h o d a n d t h e b i n a r y mo t —
gru 高光谱分类

gru 高光谱分类英文回答:GRU (Gated Recurrent Unit) is a type of recurrent neural network (RNN) that has been widely used in various natural language processing tasks, including text classification. However, it can also be applied to other domains, such as hyperspectral image classification. In hyperspectral image classification, the goal is to classify each pixel in an image into different land cover classes based on the spectral information. GRU can be used to learn the complex relationships between the spectral features and the corresponding land cover classes.The advantage of using GRU for hyperspectral image classification lies in its ability to capture long-term dependencies in the spectral information. Unliketraditional feedforward neural networks, which only consider the current input, GRU takes into account the previous inputs as well. This allows it to capture thetemporal dependencies in the hyperspectral data, which can be crucial for accurate classification.For example, let's say we have a hyperspectral image of a forested area, and we want to classify each pixel into either "tree" or "non-tree" class. GRU can take thespectral information of each pixel as input and learn the patterns that distinguish tree pixels from non-tree pixels. By considering the previous spectral information, GRU can capture the spatial and temporal dependencies in the data, such as the texture and growth patterns of trees. This allows it to make more accurate predictions compared to traditional classification algorithms.中文回答:GRU(门控循环单元)是一种经常用于各种自然语言处理任务的循环神经网络(RNN),包括文本分类。
一种新的高光谱图像分类方法

ห้องสมุดไป่ตู้
该实 验主要是利用m a t l a b 编程 实现 对上述数 据立方体 的
特 征提取 以及 分类 。 为了验证算 法 的可行性 , 此处利用 已知的 矿物 光谱 建立了数据立方体示。 进行 了基 于先验知识的光谱影
1 . 2基于傅立叶变换幅度谱的分类算法设计
上文 中已证实对于不同的矿物 , 对其波谱 曲线作 傅里叶变
换后的幅度谱最值具有可分性 , 可在此基础上 进行高光谱影像 的分类 。 首先依次提取 出分类 目标 影像 中每 个像元 点的特征值
A b s t r a c t: B a s e d o n t h e f e a t u r e p i x e l s p e c t r u m c u r v e e x t r a c t i o n a n d U s e t h e e x t r a c t e d f e a t u r e S f o r
遥 感 图像分类 是利用计 算机 对 图像 中各类 地物 的光谱信 合, 其 中, ①: 含砷 黄铁矿、 ②: 斜辉石、 ③: 斧石、 ④: 蓝铜 矿、
息和空 间信息进行分析和特征选择 , 并通 过一定 的手段将特征 ⑤: 重 晶石、 ⑥: 古铜辉石、 ⑦: 基 铁矾、 ⑧: 斜 绿泥石;
Ne w M e t hod f o r H ype r ‘ _ 。 s pe c t r a l Re m o t e S e ns i ng I ma g e Cl a s s i f i c a t i o n
Y A N G Y u e t a o W A M G M a o z h i G U O Z e
联合纹理和光谱特征的高光谱图像分类方法

联合纹理和光谱特征的高光谱图像分类方法余健【摘要】高光谱图像分类是当前遥感信息处理的热点问题.传统高光谱遥感图像分类方法只利用图像的光谱特征,没有考虑高光谱遥感图像各像素点邻域的空间特征.文中提出了一种联合纹理特征与光谱特征的高光谱图像分类方法.首先,使用灰度共生矩阵提取了高光谱遥感图像每一像素点邻域的贡献较大的六个纹理特征,再联合各像素点的光谱特征,形成纹理-光谱特征.最后,基于支持向量机和极端随机树算法对公开的高光谱遥感图像数据集Indian Pines和Pavia University scene进行分类实验,结果表明该方法相比传统方法取得更高的分类性能.【期刊名称】《韩山师范学院学报》【年(卷),期】2017(038)006【总页数】9页(P18-26)【关键词】高光谱遥感图像;分类;纹理特征;光谱特征;极端随机树【作者】余健【作者单位】韩山师范学院计算机与信息工程学院,广东潮州 521041【正文语种】中文【中图分类】TP7511 引言高光谱遥感技术通过成像光谱仪能够获取地物几十至上百个电磁波段的光谱信息,形成“图谱合一”的高光谱图像数据.高光谱图像数据是二维空间和一维光谱构成的图像立方体,在图像空间中每个波段是一幅二维图像,而在光谱空间中每个像素(也称为像元)则反映为一条连续光谱响应曲线,不同的物质在高光谱图像中表现为不同的辐射强度.高光谱遥感图像具有较高的空间平面分辨率以及丰富的地物光谱信息,从而使高精度的地物分类和目标识别成为可能.但由于高光谱数据的波段数目较多,部分波段存在较强的相关性以及冗余信息,抑制了地物分类的性能,甚至产生“维数灾难(Huges)”现象[1].传统的高光谱遥感图像分类只考虑光谱特征信息,而没有充分利用其空间特征信息,导致分类的准确率不高.越来越多的学者将空间信息融入到高光谱图像的分类中,以提高分类器性能.Li Jun等[2]使用马尔科夫随机场分割的结果作为多类logistic 回归分类器的贝叶斯先验,从而将空间信息和基于光谱分类特征的分类器结合起来.He Zhi、Wang Qiang和Shen Yi等[3]利用经验模态分解和形态学小波变换得到光谱和空间特征,基于多任务稀疏学习方法对空谱域特征进行同时分类,达到了较高的分类准确率.Zhang等[4]采用了图像分割和主动学习方法来提升高光谱图像分类性能,取得了不错成果.Chen等[5]则采用了旋转森林和多尺度图像分割法取得了较高的分类准确率.一些学者[6-11]将空间特征和光谱特征相结合提出了多种高光谱图像分类方法,也取得较好效果.本文通过主成分分析(PCA)算法对高光谱图像进行降维处理,选取主成分最大的一个波段,使用灰度共生矩阵提取其像元空间邻域纹理特征信息,从中选取贡献最大的6个特征,并采用4个不同方向表示,获取了24维纹理特征向量,联合其光谱特征信息,进行地物分类.2 纹理和光谱特征提取高光谱遥感图像具有几十到上百个波段,波段间存在较大冗余.如果采用所有波段的平面图像参与分类,则会出现维数灾难现象.因此,需要先采用主成分分析(PCA)方法对高光谱遥感图像进行降维处理,再分类.本文只选择高光谱遥感图像PCA降维后,主成分最大的那个波段的二维图像,作为最能够代表图像空间平面维变化的一个二维平面表征,联合其光谱信息来抑制高光谱图像分类中的“同谱异物”现象,提高分类的准确率.基于灰度共生矩阵的纹理特征提取方法是纹理分析中常用的方法,该方法的实现原理是图像灰度元素之间的空间相关性,通过计算图像中存在一定相对位置关系(一定方向上,相距一定距离)的某两个像素之间的灰度相关性,建立起图像的一个灰度共生矩阵,并从这个矩阵中统计所需要的特征量来进行图像纹理特征分析.2.1 灰度共生矩阵一幅图像的灰度共生矩阵能反映出图像灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图像的局部模式和它们排列规则的基础[12].设 f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,θ).对距离为d,水平方向(即θ=0)的灰度共生矩阵计算公式为同理可得其他三个方向的灰度共生矩阵.在得到了上述灰度共生矩阵后,可以从中计算出一些能够反映图像纹理特征的向量,有二阶距、对比度、相关、熵、方差、逆差距、和平矩、和方差、和熵、差平均、差方差、差熵等14个特征向量,本文采用了其中贡献最大的6个特征,分别为:角二阶矩(ASM)、相关(Correlation)、对比度(Contrast)、熵(Entropy)、相异性(Dissimilarity)和逆差距(Homogeneity),统称为GLCM-6.2.2 GLCM-6特征(a)角二阶矩(ASM):反应图像的灰度分布以及纹理颗粒的粗细,也被称为能量,描述的是灰度共生矩阵中所有元素的平方和.ASM值越大,说明图像的纹理分布越均匀,变化越规矩.(b)相关(Correlation):用于反映图像中的像素的灰度相关性,描述的是灰度共生矩阵中行或列间的矩阵元素的相似程度,若矩阵元素相似程度越大,则相关度越大,图像纹理特征的灰度相关性越大.其中μi、μj、σi、σj的定义如下(c)对比度(Contrast):用于反映图像的纹理深浅和清晰度,灰度共生矩阵中的灰度相差较大的像素对越多,其对比度越大,对应的,其纹理沟纹越深,清晰度越好.(d)熵(Entropy):用于反映图像纹理特征的复杂度,熵是信息量的度量,其值越大,表明灰度共生矩阵中的元素越分散,图像的纹理分布越均匀.(e)相异性(Dissimilarity):同对比度类似,但在计算灰度差时所采取的增长方式与计算对比度时不同,对比度计算时期灰度差权值权重呈指数增长,相异性的计算权重呈线性增长.(f)逆差距(Homogeneity):用于反映图像的不同局部区域间的相异性,逆差距越大,说明图像不同局部区域间的纹理变化越小,其纹理在局部区域分布得越均匀.2.3 高斯归一化方法本文使用灰度共生矩阵提取其像元空间邻域纹理特征信息,从中选取贡献最大的6个特征,即GLCM-6,并采用4个不同方向(0°,45°,90°,135°)表示,获取了24维纹理特征向量.对获得的24维纹理特征,选用高斯归一化方法进行处理,方便分类器的训练.归一化公式如下其中,μ、σ分别为原始数据集的均值和方差,上标(n)表示n维特征向量,取n=24,μj,σj表示第j维的均值、方差.使用3σj进行归一化,保证了V(n)的值落在[-1,1]区间上的概率接近100%,对于离群点,小于-1则置-1,大于1则置1.对特征向量采用高斯归一化至[-1,1]区间内,然后用归一化后的数据进行分类.经测试,经过高斯归一化后的特征,可以加快分类的训练速度,也能够提高准确率.2.4 联合纹理和光谱特征假设高光谱遥感图像使用PCA降维后主成分最大的波段平面图像为X.不失一般性,设高光谱图像中任意像元xi,提取像元xi的k×k邻域矩阵的GLCM-6的纹理特征,并将其展开形成一个24维和向量ti.再设像元xi的光谱特征为si,设该高光谱遥感图像具有m个波段,则像元xi的纹理-光谱特征为:该特征具有24+m维.提取纹理和光谱特征之后,分别采用支持向量机(SVM)和扩展随机森林方法训练分类器,并进行高光谱遥感图像地物分类实验.3 分类算法3.1 SVM算法支持向量机(Support Vector Machine,SVM)是Cortes和Vapnik于1995年首先提出的[13],它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的泛化能力.本文选用引入RBF核函数的支持向量机算法,以获得非线性分类能力.3.2 极端随机树极端随机树(Extremely randomized trees,ERT)是由PierreGeurts等人于2006年提出[14,15].该算法与随机森林算法十分相似,都是由许多决策树集成的分类器.但与随机森林分类器相比,主要有两点不同:一是不采用随机森林bootstrap采样替换策略,即对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.而是直接采用原始的训练样本,目的在于减少偏差.二是在对每棵决策树的节点划分时,先随机选取特征的一个子集,在对数据进行划分时,则是对子集中的每个特征随机选取一个划分阈值,然后从这些划分条件中选取划分效果最好的一个做为当前节点的最终划分依据.极端随机树完全随机地选择特征,得到的结果相比随机森林方差更小、更稳定.4 实验结果及分析为验证所提出方法的有效性,选用二组高光谱遥感图像数据集,即Indian Pines 和Pavia University scene(PaviaU)进行实验,分别选择传统的光谱特征与本文提出的纹理-光谱特征的分类结果进行对比.在分类方法方面,分别采用SVM算法(RBF核函数)和极端随机树方法,选择PCA算法获取主成分最大的那个波段,对该波段的二维空间提取纹理特征,形成联合的纹理-光谱特征.以10折交叉验证的方式得到结果,分类指标采用平均精度、Kappa系数、Jaccard(相似)系数和混淆矩阵,所有实验运行10次,取平均值.Indian Pines数据集是1992年采用AVIRIS(机载可见/红外成像光谱仪)系统在美国印第安纳州的印度松树测试地拍摄的航空数据,空间分辨率为20 m,图像大小为145×145像素,共224波段.去除大气水汽吸收波段及低信噪比波段后,波段数降为200.光谱范围为0.4~2.5μm,图像数据包含16类地物类别,具体情况如表1所示.表1 Indian Pines数据集地物类别类别1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16英文名称Alfalfa Corn-notill Corn-mintill Corn Grass-pasture Grass-trees Grass-pasture-mowed Hay-windrowed Oats Soybean-notill Soybean-mintill Soybean-clean Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel-Towers中文名称苜蓿免耕玉米少耕玉米玉米草地/牧草草地/树木收割牧草干草料堆燕麦免耕大豆少耕大豆纯净大豆小麦森林建筑/草/树/道路石钢塔样本数46 1 428 830 237 483 730 28 478 20 972 2 455 593 205 1 265 386 93采用SVM算法和极端随机算法对Indian Pines数据集进行分类,移动窗口大小为3×3像素,其性能评价结果如表2所示.表2 Indian Pines检测性能对比平均准确率Kappa系数Jaccard系数82.21%0.79 0.82 89.86%0.88 0.90 87.46%0.85 0.87 91.23%0.90 0.91由表2可以发现,采用Indian Pines数据集,使用本文提出的纹理-光谱联合特征,不论选择SVM算法,还是极端随机树,其平均准确率、Kappa系数和Jaccard系数均优于只采用光谱特征的传统方法.以极端随机树分类算法为例,只采用光谱特征,对Indian Pines数据集进行分类后,各地物类别的混淆矩阵(归一化后)分别如图1所示.图1 Indian Pines光谱特征分类混淆矩阵通过图1和图2对比,可以发现,纹理-光谱方法相比传统的光谱特征方法,对于Alfalfa(苜蓿)、Corn-notill(免耕玉米)、Corn-mintill(少耕玉米)、Corn (玉米)、Grass-pasture(草地/牧草)、Grass-tree(草地/树木)、Oats(燕麦)、Soybean-notill(免耕大豆)、Soybean-clean(纯净大豆)、Woods (森林)、Buildings-Grass-Trees-Drives(建筑/草/树/道路)、Stone-Steel-Towers(石钢塔)等12个地物类别的分类精度分别提高了20%、7%、3%、9%、2%、1%、50%、7%、8%、3%、11%、11%,而Wheat(小麦)类别的分类精度低了10%,其它3个类别的分类精度与传统方法相同.因此,联合纹理-光谱特征方法对于该数据集大多数地物类别的分类精度都优于传统光谱特征方法.Pavia University scene(PaviaU)数据集为ROSIS(反射光学系统成像光谱仪)系统在意大利南部拍摄的帕维亚大学图像,空间分辨率为1.3 m,图像大小为610×340像素,127个波段,光谱范围0.43~8.6μ m.去除大气水汽吸收波段及低信噪比波段后,剩余103个波段用来分类,此地区共包含9种地物类别,见表3.以极端随机树分类算法为例,采用本文提出的纹理-光谱特征,对Indian Pines数据集进行分类后,各地物类别的混淆矩阵(归一化后),如图2所示.图2 Indian Pines纹理-光谱特征分类混淆矩阵表3 PaviaU数据集地物类别英文名称类别中文名称样本数Asphalt Meadows Gravel Trees Painted metal sheets Bare Soil Bitumen Self-Blocking Bricks Shadows 1 2 3 4 5 6 7 8 9沥青马路低洼地砂砾树木涂覆金属板裸土沥青屋顶地砖阴影6 631 18 649 2 099 3 064 1 345 5 029 1 330 3 682 947采用SVM算法和极端随机算法对PaviaU数据集进行分类,其性能评价结果如表4所示.由表4可以发现,采用PaviaU数据集,使用本文提出的纹理-光谱联合特征,不论选择SVM算法还是极端随机树,其平均准确率、Kappa系数和Jaccard系数均优于只采用光谱特征的传统方法.以极端随机树分类算法为例,只采用光谱特征,对PaviaU数据集进行分类后,各地物类别的混淆矩阵(归一化后),如图3所示.以极端随机树分类算法为例,采用本文提出的纹理-光谱特征,对PaviaU数据集进行分类后,各地物类别的混淆矩阵(归一化后),如图4所示.通过图3和图4对比,可以发现,纹理-光谱方法相比传统的光谱特征方法,对于Asphalt(沥青马路)、Meadows(低洼地)、Gravel(砂砾)、Trees(树木)、Bare Soil(裸土)、Self-Blocking Bricks(地砖)6个地物类别的分类精度分别提高了2%、1%、5%、3%、1%、4%,而其它3个类别的分类精度与传统方法相同.因此,采用本文提出的联合纹理-光谱特征方法对于该数据集大多数地物类别的分类精度都优于传统光谱特征方法.表4 PaviaU检测性能对比平均准确率Kappa系数Jaccard系数 91.78%0.890.92 95.05%0.93 0.95 93.01%0.91 0.93 95.53%0.94 0.95图3 PaviaU光谱特征分类混淆矩阵5 结束语通过灰度共生矩阵方法获取贡献最大的6个统计量,形成24维纹理特征向量,联合光谱特征,分别采用SVM算法和极端随机树算法,对公开的高光谱遥感数据集进行分类测试,获得了比传统采用单一光谱特征方法更高的分类精度.但在某些地物类别上,仍存在错分结果,这需要进一步研究高光谱遥感图像中的同谱异物特点,更好地提取其非线性特征进行分类,以达到更高的分类精度.图4 PaviaU纹理-光谱特征分类混淆矩阵【相关文献】[1]Hughes G.On the mean accuracy of statistical pattern recognizers[J]//IEEE Trans.Inf.Theory,1968,14(1):55-63.[2]LI Jun,Bioucas-Dias J M,Plaza A.Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):809-823.[3]He Zhi,Wang Qiang,Shen Yi,et al.Kernel sparse multi-task learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):5150-5163.[4]Zhang Z,Pasolli E,Crawford M M,et al.An active learning framework for hyperspectral image classification using hierarchi⁃cal segmentation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(2):640-654.[5]Chen J,Xia J,Du P,et al.Combining Rotation Forest and Multiscale Segmentationfor the Classification of Hyperspectral Data[J].IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing,2017,9(9):4060-4072.[6]朱勇,吴波.光谱与空间维双重稀疏表达的高光谱影像分类[J].地球信息科学学报,2016,18(2):263-271.[7]李铁,孙劲光,张新君,等.高光谱遥感图像空谱联合分类方法研究[J].仪器仪表学报,2016,37(6):1379-1389.[8]叶珍,白璘,粘永健.基于Gabor特征与局部保护降维的高光谱图像分类算法[J].光学学报,2016(10):504-513.[9]李垒,任越美.基于随机森林的高光谱遥感图像分类[J].计算机工程与应用,2016,52(24):189-193.[10]付琼莹,余旭初,张鹏强,等.联合空谱信息的高光谱影像半监督ELM分类[J].华中科技大学学报(自然科学版),2017(7):89-93.[11]李吉明,贾森,彭艳斌.基于光谱特征和纹理特征协同学习的高光谱图像数据分类[J].光电工程,2012,39(11):88-94.[12]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158.[13]齐滨,赵春晖,王玉磊.基于支持向量机与相关向量机的高光谱图像分类[J].吉林大学学报(工),2013,43(s1):143-147.[14]王爱平,万国伟,程志全,等.支持在线学习的增量式极端随机森林分类器[J].软件学报,2011,22(9):2059-2074.[15]吕伟民,王小梅,韩涛.结合链路预测和ET机器学习的科研合作推荐方法研究[J].数据分析与知识发现,2017,1(4):38-45.。
双分支多维注意特征融合的高光谱图像分类

双分支多维注意特征融合的高光谱图像分类
马亚美;王双亭;都伟冰
【期刊名称】《计算机工程与应用》
【年(卷),期】2024(60)7
【摘要】为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。
DBMD采用两个分支分别进行光谱特征提取和混合特征提取。
光谱分支通过密集连接的扩张卷积逐级提取特征,然后融合低、中、高级语义信息作为特征输出。
混合分支采用3D-2D 网络架构,并通过改进的Inception块提取空间尺度特征。
此外,注意力机制分别应用于光谱、空间和空谱特征,进行特征细化,增强重要区域的特征响应。
最后,将不同维度的细化特征联合输入至分类器进行分类。
在Indian Pines和Salinas Valley 数据集上利用5%和1%的样本进行实验,分别取得了98.40%和99.78%的总体精度,与其他六种网络架构相比,该模型在准确性和稳定性上都具有更优的表现。
【总页数】12页(P192-203)
【作者】马亚美;王双亭;都伟冰
【作者单位】河南理工大学测绘与国土信息工程学院
【正文语种】中文
【中图分类】TP751
【相关文献】
1.融合注意力机制与混合CNN模型的高光谱图像分类
2.改进双分支胶囊网络的高光谱图像分类
3.融合MS3D-CNN和注意力机制的高光谱图像分类
4.融合ConvLSTM和多注意力机制网络的高光谱图像分类
5.融合注意力空洞残差网络的高光谱图像分类方法
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机器学习》课程项目报告高光谱图像分类——基于CNN和ELM学院信息工程学院专业电子与通信工程学号35学生姓名曹发贤同组学生陈惠明、陈涛硕士导师 _______ 杨志景_______2016年11月一、项目意义与价值高光谱遥感技术起源于20世纪80年代初,是在多光谱遥感技术基础之上发展起来的[11 o高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物儿何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。
随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。
在将高光谱数据应用于各领域之前,必须进行必要的数据处理。
常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。
其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。
相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。
目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。
高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。
高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3, 4],因此对其进行研究显得尤为重要。
高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。
波段维数的增加不仅加重了数据的存储与传输的负担, 同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的兀余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。
传统的分类方法往往需要很多数目的己知类别的训练样本,从而导致计算量大,时间复杂度高。
另外,如果训练样本的数目较少,采用传统分类算法进行分类时分类精度往往是很低的,因此提高分类精度并减少运算量成为高光谱领域的热点问题。
高光谱遥感图像的波段数目多,并且波段与波段间存在着很大的相关性,因此在进行遥感图像的处理(例如分类)之前通常需要进行降维预处理,这样做不仅可以降低数据空间的维数,减少冗余信息,而且还有利于人工图像解译和后续分类处理和地物识别,从而为解决高光谱遥感分类的难点提供了方便[5]。
二、高光谱图像分类的发展与现状高光谱图像分类作为高光谱图像的基础研究,一直是高光谱图像重要的信息获取手段,它的主要目标是根据待测地物的空间儿何信息与光谱信息将图像中的每个像素划分为不同的类别。
高光谱图像分类按照是否有已知类别的训练样本的参与,高光谱图像的分类方式分为监督分类与非监督分类[6]。
在遥感图像自动分类中,传统的基于数理统计的分类方法,主要包括最小距离分类、最大似然分类、波谱角分类、混合距离法分类等,主要依赖地物的光谱属性,基于单个像元进行分类。
统计模式识别方法本身的不足:1、最大似然法计算强度大,且要求数据服从正态分布2、K-means聚类分类精度低,分类精度依赖于初始聚类中心3、最小距离法没有考虑各类别的协方差矩阵,对训练样本数目要求低近年来对于神经网络分类方法的研究相当活跃。
它区别于传统的分类方法:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的。
在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。
人工神经网络(ANN)分类方法一般可以获得更高精度的分类结果,因此ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN方法显示了其优越性。
专家系统分类法也在遥感分类取得了一定的应用。
专家系统是模拟人类逻辑思维的智能系统,将其应用于遥感分类最大的优点就是可以充分利用更多的辅助分类数据。
不过由于专家系统知识库难以建立,影响了它的进一步发展。
支持向量机(SVM)具有严格的理论基础,能较好地解决小样本、非对于高光谱数据而言,由于波段多、数据量大、数据不确定性等,易受Hughes现象(即训练样本固定时,分类精度随特征维数的增加而下降)影响。
而样本的获取在高光谱分类中往往是一项比较困难的工作,特别是采用高维特征向量时要求每类的样本数都要比特征维数高,因此在高维信息处理中的精度与效率和高光谱遥感信息精细光谱与大数据量之间仍然存在着极大的矛盾。
线性、高维数等问题,被成功地应用到多光谱、高光谱遥感图像分类领域。
个平面又由多个独立的神经元组成。
图2为卷积神经网络的整体结构图。
三、卷积神经网络理论基础卷积神经网络是人工神经网络的一种,它的权值共享网络结构使之更 类似于生物神经网络,降低了网络模型的复杂度,减少的权值的数量以节 约训练和测试的计算时间。
该优点在网络的输入是多维图像时表现得更加 明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特 征提取和数据重建过程。
卷积神经网络是为识别二维数据而专门设计的一 个多层感知机,其网络对平移、比例变化和倾斜等具有高度不变性[7]。
在CNN 中,图像的一小部分(局部感受区域)作为层级结构的最低层 的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观 测数据的最显着的特征。
这个方法能够获取对平移、缩放和旋转不变的观 测数据的显着特征,因为图像的局部感受区域允许神经元或者处理单元可 以访问到最基础的特征,例如定向边缘或者角点。
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,每一般地,C 层(卷积层)为特征提取层,每个神经元的输入与前一层的 局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;s层(下采样层)是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。
特征映射结构釆用sigmoid函数等映射函数作为卷积网络的激活函数,使得特征映射具有位移不变性。
此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。
卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用來求局部平均与二次提取的计算层(S-层), 这种特有的两次特征提取结构使网络在识別时对输入样本有较高的畸变容忍能力。
卷积神经网络采用有监督学习的方式进行训练,即任何一个训练样本的类别是已知的,训练样本在空间中的分布不再是依据其自然分布倾向來划分,而是根据同类样本和不同类样本中的空间关系进行划分,这需要不断调整网络模型的参数用以划分样本空间的分类边界的位置,是一个耗时且复杂的学习训练过程[8]。
神经网络在进行训练时,所有的网络权值都用一些不同的小随机数进行初始化,这些小的随机数能偶保证网络不会因为权值过大而进入饱和状态,导致训练失败。
神经网络训练算法包括4个主要部分:(1)样本集中取出样本(X,*)并将其输入网络,X代表图像数组,yp 代表其类别;(2)计算此次输入相应的实际输出Op,这是一个前向传播的过程;(3)用一个指定的损失函数计算出实际输出Op与理想输出Yp的误差;(4)按极小化误差的方法反向传播调整网络权值。
四、极限学习机极限学习机(extreme learning machine) ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。
2004年由南洋理工大学黄广斌副教授提出。
传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。
极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。
极限学习机的网络训练模型采用前向单隐层结构。
设uM,”分别为网络输入层、隐含层和输出层的节点数,g(x)是隐层神经元的激活函数,b,为阈值。
设有N 个不同样本(%,,/,) , \5iSN ,其中兀=[无i,兀2,x in,丫 e R"\t, = [t a,切,•••,订已R",则极限学习机的网络训练模型如图1所示。
图1极限学习机的网络训练模型极限学习机的网络模型可用数学表达式表示如下:MX 卩ig㈣吒+b) = Oj,j =1,2,…,N式中,表示连接网络输入层节点与第八个隐层节点的输入权值向量;0尸\虫、际…朋表示连接第:个隐层节点与网络输出层节点的输出权值向量;=[。
门,o i2,『表示网络输出值。
极限学习机的代价函数疋可表示为NE(S,0) =丈加-引式中,s = (q,Q,i = l,2,...,M),包含了网络输入权值及隐层节点阈值o Huang 等指出极限学习机的悬链目标就是寻求最优的S, 0,使得网络输出值与对应实际值误差最小,即min(E(S,0))。
min(E(S,0))可进一步写为式中,〃表示网络关于样本的隐层输出矩阵,0表示输出权值矩阵,T 表 示样本集的目标値矩阵,H. 0, 7分别定义如下:g (QZ+勺)…g (®a+如)g (©心+勺)…&(©血+如)极限学习机的网络训练过程可归结为一个非线性优化问题。
当网络隐 层节点的激活函数无限可微时,网络的输入权值和隐层节点阈值可随机赋 值,此时矩阵H 为一常数矩阵,极限学习机的学习过程可等价为求取线性 系统Hp = T 最小范数的最小二乘解B ,其计算式为B = H*T式中H+时矩阵H 的MP 广义逆。
五、具体实现及主要代码1、 训练的样本及其样本图min (E (S,0)) =min ||//(①,…®…厶f 心…旳)0-口ROSIS Pavia UniversityNo Name Train Test1 J Asphalt—54866312 n Meadows640186493 J Gravel392 _J20994Trees30645 J Metal sheets2帘—13456 J Bare soil532 I50297 J Bitumen37513308 J Bricks51436829Shadows231 ___ 947Total392142776ROSIS Pavia CenterNo Name Train TestWater82465971 2Trees82075983Meadow82430904Bricks80826855Soil82065846Asphalt81692847Bitumen80872878Tile1260428269Shadows4762863Total7456148152SalinasNo Name Train Test1 n Brocoli_green_weed_l30120092 J Brocoli_green_weed_25593726 |3Fallow29619764 J Fallow_rough_plow2095Fallow_smooth40226786 J Stubble59439597Celery53735798 J Grapes^u ntrained1691辻27久9 n Soil_vinyard_develop930620310Corn_sensced_green_weeds49232781 11Lettuce」。