聚合物驱油机理

合集下载

油田用聚合物驱油剂相关知识

油田用聚合物驱油剂相关知识

许多学者认为,聚合物溶液在多孔介质中的粘弹效应引
起了驱油剂粘度的大幅度增加,进一步改善了驱替前缘的流
度比,因而当驱油剂流量增加时,采油速度迅速上升。 用聚合物溶液驱替后,所有类型的残余油均减少,减少 量取决于驱替液的粘弹性。聚合物溶液在驱替不同类型残余 油时,表现出很强的“拉、拽”作用。残余油不是被聚合物
(2)粘滞作用:聚合物的粘弹性加强了水相对残余 油的粘滞作用,在聚合物溶液的携带下,残余油会 重新流动,从而被夹带而出。聚合物溶液在多孔介 质中的粘滞力增加,是驱替膜状、孤状残余油的主 要机理
(3)增加驱动压差:提高了岩石内部的驱动压差,使注入液可以克服 小孔道产生的毛细管压力,进入细小的孔道中,从而把原油驱替出来。 (4)绕流作用:聚合物进入高渗透层后,增加了水相的渗透阻力,产 生了由高渗透层指向低透层的压差,使注入液发生绕流,进入到中、 低渗透层中,扩大了水驱的波及体积,提高了原油的采收率。
Vsw EV V
Vsw-驱油剂的驱替体积; V-油藏总体积; Ev-体积波及系数;
影响因素: 流度比、岩石的宏观非均质性、注采井网对非均
质性的适应程度等
(1)流度比 指注入驱油剂的流度与被驱原油的流度之比。 流度 :流体的渗透率
K
与其粘度 之比。

水油流度比:
K

岩石允许流体 通过的能力
(2)油层岩石宏观非均质的影响
实际油层是在水流冲刷过程中沉积形成的
顺水流方向与垂直水流方向的渗透率必然有差异 流体沿渗透率好的方向流动快 形成不轨则驱动前缘 注采井网安排不当 油井会过早水淹,油藏留下一些“死油区”
油层结构的非均质性: • 油和水都是在油层岩石颗粒之间的细小孔道(孔隙、 裂缝)内运动的。这些孔道大小不一,纵横交错,变 化万千,这就是油层结构的非均质性。 • 水(驱油剂)驱动石油在这些孔道中流动时,由于孔 道大小不同,所遇到的阻力也不一样,使得水在不同 的孔道中驱油时的流动速度不同。

【采油PPT课件】聚合物驱油基础知识

【采油PPT课件】聚合物驱油基础知识

60
0
200
400
600
800
1000
1200
聚合物用量(PV.mg/L)
喇南一区中心井含水与聚合物用量关系
40
产 油
30 (104t)
年产油 比例 累积产油
33.8
26.74 24.4
31.15
33.07
34.50
40
年 产 油 比 30 例
(%)
20
10 2.38
0 0
19.3 18.33
11.67 8.42
喇南一区油层注聚前后流度变化
试验 区块
一区葡 I1-2
流动 系数
872
注聚前
吸水厚 流度 度(m) (k/μ)
14.8 58.7
流动 系数
注聚后
吸水厚 度(m)
流度 (k/μ)
k/μ下 降幅度 (%)
144
14.8
9.7
82.2
油井生产压差放大,产液指数下降
生产
10.0 8.0
6.07
6.75
7.08
压差
6.0 4.0 3
3.77 3
生产压差放大4.26MPa
2.0 0
150
300
450
600
750
产液 指数
4.0 3.5 3.37 3.0 2.5 2.0 1.5 1.0
0
3.76 2.6
150
产液指数下降幅 度62.7%
1.49
1.38
1.4
300
450
600

喇南一区生产压差、产液指数变化曲线
粘7 度
6
5
4
3 20

聚合物驱油

聚合物驱油

⑶聚丙烯酰胺的合成
•丙烯晴的合成:氨氧化法
• CH2═CH-CH3+NH3+ 3/2O2→CH2═CH-CN+ 3H20
•丙烯酰胺的合成: •CH2═CH-CN+H2O→CH2═CH -CONH2 •丙烯酸的合成: •CH2═CH-CH2+O2→CH2═CH -CHO+H2O •2CH2═CH-CHO+ O2→2CH2═CHCOOH
3.聚合物驱油机理
⑴吸附作用:
•聚合物大分子在孔隙介质的表 面由于氢键,静电力的作用和 介质表面结合在一起而丧失流 动能力的现象,称为吸附。
• ⑵捕集作用:
•机械捕集
水力学捕集
• 低渗透油层,其滞留主要以捕 集为主 • 高渗透地层,以吸附为主。
•⑶流体黏弹效应对改善流度比的贡 献。
4.聚合物驱基础研究最新进展:
• ⑸能阻止其他化学剂副反应的发生;
• ⑹注水用表面活性剂应考虑 到它与地层矿 物组分,地层水注入水成分,地层温度以 及油藏的枯竭程度等的相互关系; • ⑺具有抗地层高温,高盐浓度的能力; • ⑻具有较高的经济价值,投入产出比具备 优势。
分类
• ①阴离子表面活性剂:石油磺酸盐,烷基苯磺酸盐, 木质素磺酸盐,脂肪醇聚氧乙烯醚硫酸盐,烷基酚聚 氧乙烯聚氧丙烯多硫酸盐等。
特点
1
聚合物的相对分子质量与地 层的渗透率密切相关。 对于油层聚合物的特定要求: 好的增粘性能,热稳定性高, 化学稳定性好,耐剪切,在油 层吸附量不大等。
2
好的聚合物中,主链应为碳链(热 稳定性好),有一定量的负离子基 团(增粘效果好),和一定量的非 离子亲水基团(化学稳定性好)
天然聚合物
1
纤维素
• 聚合物溶液在多孔介质中的渗流规律和微观驱油机理研 究。 • 适合聚合物驱油田的筛选标准

油田聚合物驱油原理

油田聚合物驱油原理

油田聚合物驱油原理
油田聚合物驱油是一种常用的增油技术,其原理是通过注入聚合物溶液,增加油层中的黏度,形成较大的剪切应力和流动阻力,促使原油顺着聚合物流动,从而增加采油效果。

聚合物驱油机理主要包括以下几个方面:首先,聚合物分子与原油分子之间存在吸附作用,这种吸附作用可以提高原油的黏度,增加流动阻力,防止原油的快速流出,从而实现增油效果;其次,聚合物本身的分子结构可以形成一定的弹性和黏性,使其在油层井道中能够形成较大的剪切应力,进一步促进原油的流动;最后,聚合物的分子结构还可以吸附油层中的金属离子和其他杂质,从而减少沉积和堵塞,保持油层的通畅性和稳定性。

聚合物驱油技术具有很多优点,如增油效果好、操作简单、节约成本等。

但同时也存在一些不足之处,如聚合物的稳定性不高、溶液粘度过高等问题,需要不断进行优化和改进。

- 1 -。

《低渗透油藏纳微米聚合物驱油实验和渗流机理研究》

《低渗透油藏纳微米聚合物驱油实验和渗流机理研究》

《低渗透油藏纳微米聚合物驱油实验和渗流机理研究》篇一一、引言随着全球能源需求的增长,低渗透油藏的开发显得越来越重要。

然而,低渗透油藏的开采过程中面临着诸多挑战,如采收率低、渗流性能差等。

为了提高采收率,研究者们不断探索新的驱油技术和渗流机理。

其中,纳微米聚合物驱油技术因其独特优势受到了广泛关注。

本文通过实验和理论研究,探讨了纳微米聚合物在低渗透油藏中的驱油效果及渗流机理。

二、纳微米聚合物驱油实验1. 实验材料与设备实验所使用的纳微米聚合物由本实验室合成,并采用低渗透油藏的岩心样品进行实验。

实验设备包括高压驱油装置、显微镜、粒度分析仪等。

2. 实验方法与步骤实验采用岩心样品在高压驱油装置中进行,分别对比了无聚合物和加入纳微米聚合物的驱油效果。

在相同条件下,观察岩心样品的采收率、渗流速度等指标的变化。

同时,利用显微镜和粒度分析仪对聚合物在岩心孔隙中的分布和渗流过程进行观察和分析。

3. 实验结果与分析实验结果表明,加入纳微米聚合物后,低渗透油藏的采收率得到了显著提高。

在相同条件下,加入聚合物的岩心样品采收率提高了约20%。

同时,通过显微镜观察发现,纳微米聚合物在岩心孔隙中分布均匀,有效改善了渗流性能。

粒度分析结果显示,聚合物分子能够更好地适应低渗透油藏的孔隙结构,从而提高采收率。

三、渗流机理研究通过对实验过程的分析,发现纳微米聚合物驱油的渗流机理主要包括以下几个方面:1. 纳微米聚合物具有较小的分子尺寸,能够更好地适应低渗透油藏的孔隙结构,有效降低流体在孔隙中的流动阻力。

2. 聚合物分子带有电荷,与岩石表面发生静电作用,增强了岩石表面的润湿性,有利于油滴的附着和移动。

3. 聚合物分子在孔隙中形成网络结构,增大了孔隙间的流体交换速率和储集能力,进一步提高了采收率。

四、结论本研究通过实验和理论分析,深入探讨了纳微米聚合物在低渗透油藏中的驱油效果及渗流机理。

实验结果表明,纳微米聚合物能够有效提高低渗透油藏的采收率,改善渗流性能。

《聚驱驱油机理》PPT课件

《聚驱驱油机理》PPT课件

2003
目前最为成熟的化学驱方法是聚合物驱,在 大庆油田得到广泛应用。近年来,三元复合驱在 大庆油田发展较快,成为化学驱中最有潜力,提 高采收率幅度最大的储备技术。
化学驱采油原理
化学驱油机理
采收率由三个因素来决定:一是井网对油层的控制程度 (Ew),二是注入液的体积波及效率(Es),三是水驱油的效率 Er,总的采收率E将是这三个效率的乘积,即:
2.1 聚合物及其水溶液性质
化学驱油机理
水溶性聚合物及其分子构象 聚合物是由大量的简单分子(单体)聚合而成的高分子 量的天然或合成的物质,又称高聚物。油田注聚合物工程 中,常用的人工合成聚合物主要是部分水解聚丙烯酰胺, 为柔性长链,常简写成HPAM。若由n个丙烯酰胺分子聚合 成聚丙烯酰胺,n则称为聚合度。
目前比较普遍应用的表面活性剂是石 油磺酸盐类。
舌进是非均质油藏水驱波及体积降低的主要原因,当高 渗透层的油水前缘达到生产井后继续注水,大部分水仅仅无 效穿过高渗透层,不能扩大低渗透层的波及体积,聚合物用 于EOR主要有两个目的:改善流度比和调整平面及层内、层间 矛盾。其工作原理是在水中加入聚合物,提高注入水的粘度。
化学驱油机理
常用的增稠剂有 化学制剂 和 生物化学制剂 两大类。常用的化
学增稠剂为部分水解聚丙烯酰胺。这是一类高分子化合物,它的增 稠能力主要由其分子量来决定。常用的聚丙烯酰胺的水解度为25-30 %,平均分子量为几百万到上千万。聚丙烯酰胺不是一种单纯化合 物,它的分子量有一个分布范围,一般说来,分子量的分布范围愈 窄愈好。
化学驱油机理
聚合物是由很多基本结构单元连接起来的,根据基本结构单 元的化学结构,即分子内原子或原子团的种类以及它们的结合方 式,单个高分子化合物就有不同的结构形式:

聚合物驱提高石油采收率的驱油机理

聚合物驱提高石油采收率的驱油机理

1 聚合物驱提高石油采收率的驱油机理聚合物的驱油机理主要是利用水溶性高分子的增粘性,改善驱替液的流度比,在微观上改善驱替效率、并且在宏观上能提高平面和垂向波及效率,从而达到提高采收率的目的。

以下是水油流度度比的定义式:Mwo=(1)经典的前沿理论认为,降低油水流度比,能够改变分流量曲线。

聚合物驱的前沿含油饱和度和突破时的的含油饱和度都明显高于水驱,这表明聚合物驱能降低产出液含水率,提高采油速度,具有更好的驱替效果;(2)聚合物驱通过改善水驱流度比,可以改善水驱在非均质平面的粘性指进现象,提高平面波及效率;在垂向非均质地层,聚合物段塞首先进入高渗层,利用高粘度特性“堵”住高渗层,使后续水驱转向进入低渗层,增加了吸水厚度,扩大了垂向波及效率。

以下是聚合物驱和水驱的对比聚合物驱和水驱的波及系数(3)聚合物在通过孔隙介质时发生吸附、机械捕集等作用而滞留,改变了聚合物所在孔隙处的渗透率。

被吸附的聚合物分子链朝向流体的部分具有亲水性,能降低水相相对渗透率而不降低油相相对渗透率,即堵水不堵油;同时聚合物的滞留能增加阻力系数和残余阻力系数,表明渗流阻力增加,引起驱动压差增大,有利于驱动原来不曾流动的油层,提高油层波及体积。

(4)由于聚合物溶液粘滞力的作用,使得其很难沿孔隙夹缝和水膜窜进,在孔道中以活塞式推进,克服了水驱过程中产生的“海恩斯跳跃”现象,避免了孔隙对油滴的捕集和滞留。

(5)另外,聚合物溶液具有改善油水界面粘弹性的作用,使得油滴或油膜易于拉伸变形,更容易通过狭窄的喉道,提高驱油效率。

2 驱油用聚合物的性能要求通过对聚合物驱油机理的分析,可以知道驱油用水溶性聚合物的性能指标主要是能增加油水流度比,即具有增粘性。

另外,聚合物溶液由于要在地层条件下能通过多孔介质运移传播,并最终被采出地面。

所以还应具有滤过性、粘弹性、稳定性以及无污染性等性能(1)增粘性。

应该尽量获取在较低浓度下就具有较高表观粘度的水溶性聚合物。

聚合物驱提高采收率机理

聚合物驱提高采收率机理

聚合物驱提高采收率机理嘿,朋友!咱来聊聊聚合物驱提高采收率这事儿。

你看啊,聚合物驱就像是给油藏里的油请了个超级厉害的“交通指挥官”。

油在地下就像一群调皮的小虫子,到处乱窜,有时候就卡在那些岩石的小缝隙里,不愿意出来。

聚合物呢,就像那种超级有号召力的大明星,一到油藏里,油滴们就像粉丝见了偶像一样,都乖乖听话。

聚合物分子链在孔隙里就像编织了一个大网,把那些小油滴都网罗起来,这就是它的增粘作用,让油滴们聚集起来,就像把散兵游勇组成了纪律严明的军队,方便一起朝着井口出发。

而且啊,聚合物驱还像是给油藏做了个“瘦身计划”。

油藏里的孔隙有的大有的小,就像人的身材一样参差不齐。

聚合物溶液会优先进入那些大孔隙,就像水流总是先找宽敞的河道一样。

这样一来呢,就相当于把大孔隙给占了一部分,就像给大孔隙里塞了些“减肥球”,逼迫油滴们往小孔隙里去,把以前没开发到的油也给挤出来,这就是它的调剖作用,就像把藏在边边角角的小宝藏都给挖掘出来啦。

再说说这个聚合物驱对油滴的“按摩”功效。

油滴在地下待久了,就像人久坐不运动一样,有点懒洋洋的。

聚合物溶液在孔隙里流动的时候,就像给油滴做按摩一样,让它们活动起来,变得更有活力。

这就好比把一个睡眼惺忪的人给彻底叫醒,让油滴们有动力朝着井口跑,这个叫改善流度比的作用。

聚合物驱还像是油藏里的“环保卫士”呢。

它能减少水相的渗透率,就像在水流动的道路上设置了一些小障碍。

这可不是坏事哦,因为这样水就不会像脱缰的野马一样到处乱跑,而是规规矩矩地把油往前推,这就像水和油达成了一种默契,一起朝着采收的目标前进。

有时候啊,油滴在地下就像一群胆小的小动物,它们害怕那些岩石表面的电荷。

聚合物呢,就像一个贴心的保护神,它可以吸附在岩石表面,改变岩石的表面性质,就像给岩石穿上了一层柔软的“防护服”。

油滴就不再害怕了,就像小动物找到了安全的栖息地,然后大大方方地朝着井口流动,这就是聚合物的吸附作用带来的好处。

油藏里的油滴和水就像两个性格迥异的小伙伴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、聚合物溶液的流度控制作用
聚合物溶液的流度控制作用是聚合物驱油的重要机理之一,对于均质油层,在通常水驱油条件下,由于注入水的粘度往往低于原油粘度,驱油过程中油水流度比
不合理,导致采出液中含水率上升很快,过早地达到采油经济所允许的极限含水率的结果,使得实际获得的驱油效率远远小于极限驱油效率。

向油层注入聚合物的结果,可使驱油过程中的油水流度比大大改善,从而延缓了采出液中的含水上
升速度,使实际驱油效率更接近极限驱油效率,甚至达到极限驱油效率。

在水驱油条件下,水突破油层后采出液中油的分流量为:
KKro
入0 110
fo
X
w 入
KKrw KKro
1W (10
该式经简化得出:
1 fo
1
o ?Krw
w Kro
2、聚合物溶液的调剖作用
调整吸水剖面,扩大波及体积,是聚合物提高采收率的另一项重要机理。

因 为在聚
合物的调剖作用下,油层水淹体积的扩大,将在油层的未见水层段中采出 无水原油。

这就是说,油层水淹孔隙体积扩大多少,采出油的体积也就增加多少。

聚合物的调剖作用只有在油层剖面上存在渗透率的非均质状态时才能发生。

对于这类油层,在通常水驱条件下往往发生注入水沿不同渗透率层段推进不均匀 现象。

高渗透率层段注入水推进快,低渗透率层段注入水推进慢。

加上注入水的 粘度往往低于原油粘度,水驱油过程中高流度流体取代低流度流体的结果, 导致 注入水推进不均匀的程度加剧,甚至在很多情况下会出现高渗透率层段早巳被注 入水所突破,而低渗透率层段注入水推进距离仍然很小的情况,
致使低渗透率层
段原油不能得到有效的开采。

在不考虑重力影响的前提下,我们可以给出高渗透率层段水突破之前任一注 水阶段时两层段间吸水量之比:
K1Krw1 K1Kro1
—Krw1 w Kro1 q1
1 w 0 K1? q
2 2 K2Krw 2 K2Kro 2 K2 ' —Krw2 Kro2
K1> K2 w 0 w
3、聚合物溶液微观驱油机理
传统的聚合物驱油理论认为,聚合物驱只是通过增加注入水的粘度,降低水油流度比,扩大注入水在油层中的波及体积提高原油采收率,聚合物驱并不能增加油藏岩石的微观驱油效率,并认为聚合物驱后残留于孔隙介质中的油的体积与水驱之后相同。

经过几年的室内实验研究发现,聚合物驱不仅能够扩大波及体积,而且能够提高驱油效率。

我们知道水驱开采时,由于油层的非均质性,注入水往往波及不到相对渗透率较低的油层部位,成为未波及水驱的剩余油;在注入水波及到的油层,由于岩石表面润湿性和毛细管液阻效应的存在,水驱后还存在着大量的残余油。

这些残余油以簇状、柱状、孤岛状、膜(环)状、盲状的形态滞留在孔隙介质中。

那么,聚合物驱能否把这些残余油驱动呢研究表明:聚合物溶液存在着粘弹性,在水驱过程中,表现了三种粘度,即本体粘度、界面粘度、拉伸粘度。

在这三种粘度的共同作用下,聚合物驱不仅可以提高波及系数,而且还可以提高水波及域内的驱油效率。

其提高驱油效率的机理表现在以下几个方面:
(1)本体粘度使聚合物在油层中存在阻力系数和残余阻力系数,是驱替水驱未波及剩余油和簇状残余油的主要原因。

聚合物溶液本体粘度的增高,加上其弹性作用,改善了水油流度比和水驱前缘,可以驱替出水驱未波及剩余油和簇状残余油。

(2)界面粘度使聚合物溶液在多孔介质中的粘滞力增加,是驱替膜状、孤岛状 残余油的主要机理:
残余油与流过其表面的驱替液之间的粘滞力可用下式表示:
T = dv/dz •卩 r
式中:
T ――两相流体间的粘滞力;
dv/dz ――两相流体的界面速度梯度;
卩r 两相流体间的界面粘度。

聚合物溶液与残余油之间的界面粘度远远高于注入水与残余油间的界面 粘度值。

聚合物溶液粘度的增加,是由于聚合物分子中含有许多亲水基团, 这些亲水基团 在聚合物s IJO
f.2 ».4 0 怎 比与'\的关系
K £.4 u o
- C S 週


ff
塞站 水翘时衙却反麵率与流度比关系曰汀
2
分子外形成的“水鞘”,增加了相对移动的内摩擦力。

同时,上述基团在水中解离,产生许多带电符号相同的链节,这些链节互相排斥,使聚合物分子线团在水中更加伸展,因而有更好的增粘能力。

因此,聚合物溶液在多孔介质内的渗流过程中,其粘度值要比用粘度计测量的视粘度高许多倍。

由于聚合物的加入使油水界面粘度显著增加。

聚合物溶液在毛细管管壁附近的速度梯度远远大于水在其上的速度梯度
/油 _ _
V W = V p
V W 边<< V P 边
dV w 边
dV p 边
dY <Y V X
由于聚合物溶液是非牛顿粘弹性流体,在岩石孔道中的流场分布与水截然不
同,在相■同7平均流速聚合合溶液在管油的中的流速度远布大于水与油界面的 速度。

(3)拉伸粘度使聚合物溶液存在粘弹性,是驱替盲状残余油的主要原因。

柔性聚合物分子在应力作用下将产生形变,其弹性又会使其恢复、收缩,因 此,当具有粘弹性的柔性聚合物溶液通过多孔介质时,既存在着剪切流动, 也存在着拉伸流动。

特别是聚合物分子在流经孔道尺寸变化处时,聚合物分 子就受到拉伸而表现出弹性。

这种特性使进入盲端孔隙的聚合物溶液,具有 与流动方向垂直、指向连通孔道的法向力。

正是在上述聚合物溶液粘弹性的 作用下,才使 --- V X
— 汕水 卑面林度与事 合物溶液浓 度的关 系
得聚合物溶液能够进入盲端中驱油。

相关文档
最新文档