第八章机械优化设计实例

合集下载

机械优化设计三个案例

机械优化设计三个案例

机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。

2.已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。

3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。

由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。

单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ式中符号意义由结构图给出,其计算公式为b c d m u m z d d d mu m z D m z d m z d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为T z z T d d l m z b x x x x x x x ][][211654321==3.2目标函数为min)32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0.9,max ϕ=1.4,得04.1)()(0)(9.0)(32133212≤-=≤-=x x x x g x x x x g3)动力传递的齿轮模数应大于2mm ,得 02)(34≤-=x x g4)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于max 1d ,得0300)(325≤-=x x x g 5)齿轮轴直径的范围:max min z z z d d d ≤≤得0200)(0130)(0150)(0100)(69685756≤-=≤-=≤-=≤-=x x g x x g x x g x x g 6)轴的支撑距离l 按结构关系,应满足条件:l 2min 5.02z d b +∆+≥(可取min ∆=20),得0405.0)(46110≤--+=x x x x g7)齿轮的接触应力和弯曲应力应不大于许用值,得400)10394.010177.02824.0(7098)(0400)10854.0106666.0169.0(7098)(0550)(1468250)(224222321132242223211213211≤-⨯-⨯+=≤-⨯-⨯+=≤-=---x x x x x x g x x x x x x g x x x x g8)齿轮轴的最大挠度max δ不大于许用值][δ,得0003.0)(04.117)(445324414≤-=x x x x x x g 9)齿轮轴的弯曲应力w δ不大于许用值w ][δ,得5.5106)1085.2(1)(05.5104.2)1085.2(1)(1223246361612232463515≤-⨯+⨯=≤-⨯+⨯=x x x x x g x x x x x g4.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab 优化工具箱中的fmincon 函数来求解此非线性优化问题,避免了较为繁重的计算过程。

机械优化设计案例

机械优化设计案例

机械优化设计案例:某生产线自动送料机构的改进
在制造领域,生产线上的自动送料机构是确保生产流程顺畅、高效的关键环节。

然而,传统的自动送料机构往往存在效率低下、易损坏、维护成本高等问题。

为了解决这些问题,我们采用了机械优化设计的方法,对某生产线上的自动送料机构进行了改进。

该自动送料机构的主要任务是将原材料从存储区输送到生产线,并确保每次输送的数量准确。

但是,在长时间使用后,传统的送料机构常常出现卡顿、输送不准确等问题。

经过分析,我们发现这些问题主要是由于机构中的某些部件设计不合理,导致机械效率降低。

为了解决这些问题,我们采用了以下优化策略:
结构优化:利用拓扑优化技术,对送料机构的主体结构进行了重新设计,使其在满足强度和刚度的同时,减轻了重量,从而减少了动力消耗。

传动系统优化:采用了新型的齿轮和链条传动系统,减少了传动过程中的摩擦和能量损失,提高了传动效率。

控制系统优化:引入了PLC和传感器技术,实现了对送料过程的精确控制,确保了每次输送的数量准确。

维护性优化:设计了易于拆卸和维护的结构,减少了维护时间和成本。

经过上述优化后,新的自动送料机构的性能得到了显著提升。

与传统的送料机构相比,新的机构在输送速度、准确性、使用寿命和维护成本等方面都有了显著的优势。

经过实际生产验证,新的自动送料机构不仅提高了生产效率,还降低了生产成本,为企业带来了显著的经济效益。

第八章机械优化设计应用实例

第八章机械优化设计应用实例
给定初始步长 三,计算结果 最优点
最优值 上面的最优解是连续性的,需进一步离散化处理,从略。
1,确定设计变量
铰链四杆机构按主从动连架杆给定的角度对应关系进行 设计时,各杆长度按同一比例缩放并不影响主,从动杆转 角的对应关系。因此可把曲柄长度作为单位长度,即令 L1=1,其余三杆表示为曲柄长度的倍数,用其相对长度l2, L3,l4作为变量。一般考虑,本问题与初始角 , 也有 关系,所以变量本应为l2,l3,l4, 和 五个。但是两 转角变量并不是独立变量,而是杆长的函数。写出如下式
D:
二,选择优化方法及结果分析
该题维数较低,用哪一种优化方法都适宜。这里选用约束 坐标轮换法。
计算时,曾用若干组不同的初始数据进行计算,从中选出 其中三组。见课本表8.1
由其中的计算结果可以看出,第二次计算结果应为最优解。
, 为相对杆长。最后,根据机构的结构设计需要按一定 的比例尺求出机构实际杆长L1,L2,L3,L4。
由余弦定理a图
整理得约束条件 同理由上页b图传动角最小位置写出 整理得约束条件
⑵按曲柄存在条件建立约束条件 写成约束条件有
用全部约束条件画成次下图所示的平面曲线,则可见, g3(x)~g7(x)均是消极约束。而可行域D实际上只是由g1(x) 与g2(x)两个约束条件围成的。综合上述分析,本题的优 化数学模型如下
输 出 角 函 数 图
对于该机构设计问题,可以取机构输出角的平方偏差 最小为原则建立目标函数。为此,将曲柄转角为
的区间分成n等分,从动摇杆输出角也有相对
应的分点。若各分点标号记作i,以各分点输出角的偏差 平方和作为目标函数,则有
式中的有关参数按如下步骤及公式计算 ①曲柄各等分点的转角
②期望输出角 ③实际输出角

机械优化设计范例(共9张PPT)

机械优化设计范例(共9张PPT)

设计变量
现设 甲矿运往东站x万吨
乙矿运往东站y万吨
则甲矿运往西站200-x万吨
乙矿运往西站260-y万吨 令x=x1,y=x2
所以:X43;1.5(200-x1)+0.8x2+1.6(260-x2) =716-0.5x1-0.8x2(万元)
所以:Min f(X)= 716-0.5x1-0.8x2
约束条件
- x1 ≤0 X1-200 ≤0 -x2 ≤0 x2 - 260 ≤ 0
x1+x2-280≤ 0 100-x1-x2≤0
求解结果
x2 280 260
100
Z
(20,260)
x1=20 x2=260
Minf(X)= 498万元
100
200 280
x1
所以: 乙矿运往西站260-y万吨
Mx2in-f(26X0)≤ =0 498万元 则令甲x=矿x1运,y=往x2西站200-x万吨
最少的运费为498万元 x令1x+=xx21-2,y8=0x≤20
己 x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 M甲i煤nf(矿X运)往=东49站8和万西元车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所。以:Min f(X)= 716-0. 煤乙矿应 运怎往样东编站制y万调吨运方案才能使总运费最少? 己x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 xM1i+nfx(2-X2)80=≤ 4098万元 现甲设煤矿甲运矿往运东往站东和站西x万车吨站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所 。以:X = [ x1, x2 ]T

机械优化设计实例

机械优化设计实例

机械优化设计实例公司生产的机械设备是用来处理废气的,该设备由风机和过滤系统组成。

一些客户反映在高温环境下,设备的性能下降严重,需要频繁维护和更换零部件。

为了解决这个问题,公司决定进行机械优化设计,提高设备在高温环境下的性能和可靠性。

首先,公司通过实地调研和用户反馈,发现高温环境下设备性能下降的主要原因是风机的叶轮脆性破坏和过滤系统的滤芯耐高温能力差。

因此,公司决定对风机和过滤系统进行优化设计。

风机优化设计的一项重要措施是改变叶轮材料。

公司与材料科学研究院合作,选用一种可耐高温的新型材料。

这种新材料具有良好的耐腐蚀性和高强度,能够在高温环境下保持稳定的性能。

通过对风机进行新材料叶轮的更换,可以大大提高设备在高温环境下的可靠性和寿命。

过滤系统的优化设计主要包括滤芯材料的改进和结构的优化。

公司与滤芯制造商进行合作,针对高温环境下滤芯易损的情况,选用了一种能够耐受高温的特殊材料制作滤芯。

该材料具有优异的耐热性和抗腐蚀性,能够有效过滤废气中的有害物质。

此外,公司还对滤芯的结构进行优化设计,增加了滤芯的表面积,提高了吸附效率和容尘量。

除了对零部件的优化设计,公司还对设备的工艺流程进行了改进。

在原有的设备上增加了高温预热和冷却系统,可以避免温度的突变对设备的影响,提高了设备的稳定性和寿命。

经过优化设计,该公司的机械设备在高温环境下的性能得到了显著提高。

经实际运行验证,设备在高温环境下能够稳定工作,无需频繁维护和更换零部件,极大地减少了停机时间和维修成本。

同时,设备的可靠性和寿命也得到了显著提升,增强了客户的信任和满意度。

这个实例充分展示了机械优化设计的重要性和成功应用。

通过对机械结构、工艺流程和材料的优化,可以提高机械产品的性能、效率和可靠性,满足客户的需求,提升企业的竞争力。

机械优化设计自学考试教学要求省公开课一等奖全国示范课微课金奖课件

机械优化设计自学考试教学要求省公开课一等奖全国示范课微课金奖课件
本章重点: 搜索区间确实定与区间消元法原理,用黄金 分
割法和牛顿法求一元函数极小点。 本章难点: 牛顿法,二次插值法。
第12页
第四章 无约束优化方法
一、考评知识点与考评要求
1. 最速下降法(梯度法) 识记: 最速下降法定义;最速下降法特点,最速下降法 搜索方向。 领会: 最速下降法搜索路径和步骤。 应用: 用最速下降法求函数极值。
识记: 离散变量组合型法原理;初始复合型顶点形成。 领会: 离散一维新点产生方法;约束条件处理及几何
意义;离散变量组合型法搜索步骤;离散变量组 合型法收敛准则。 应用: 离散处罚函数法求解一维优化问题几何意义。
作用约束。 应用: 二维约束优化问题极值点所处不一样位置几何描
述。
第5页
第一章 优化设计概述
3.优化设计问题基本解法 识记: 优化准则法;数值迭代法;搜索方向;最正确 步长;几个迭代收敛准则: 模准则、值准 则和梯度准则。 领会: 优化准则法和数值迭代法极值点搜索过程 及特点。 应用: 优化准则法和数值迭代法迭代公式;收敛准 则及收敛精度选取。
散处罚因子。 领会: 离散处罚函数构建和几何意义;离散处罚函数法计
算步骤。 应用: 离散处罚函数法求解一维优化问题几何意义。
第25页
第七章 多目标和离散变量优化方法
9. 离散变量搜索型方法——离散复合型法 识记: 离散复合型法原理;离散复合型顶点构建。 领会: 离散复合型法搜索迭代过程。 10.离散变量型网格法 识记: 离散变量型普通网格法和正交网格法原理。 领会: 正交网格表生成方法;正交网格法计算步骤。 11.离散变量组合型法
行条件,下降条件。 领会: 可行方向产生方法;步长确实定: 最优步长、试
验步长计算、试验点调整到约束面方法;可行 方向法计算步骤。 应用: 用可行方向法求约束优化问题最优解。

《机械优化设计》第8章机械优化设计实例

《机械优化设计》第8章机械优化设计实例

机械优化设计
第一节 应用技巧
❖ 三、数学模型的尺度变换
在工程实际问题中,不同的设计变量,其量纲一 般是不同的,数量集的差别往往也很大;
在优化迭代中,这种差别对计算数值变化的灵敏 性、收敛性、稳定性,都有不同程度的影响'。
为了提高优化收敛速度,提高计算稳定性,在机
械优化设计中,常采用尺度变换措施'。
f
x
1 4
x1
x3
x22 d 2
g1
x
64Fx32 x1 x3
3 E x24 d 4
/
y0
1
0
g2 x 1 x1 / lmin 0
g3 x 1 x2 / Dmin 0
g4 x x2 / Dmax 1 0
g5 x 1 x3 / amin 0
机械优化设计
第一节 应用技巧
❖ 1)、优化目标的选择:
应当对所追求的各项指标进行细致分析,从 中选择最重要、最具代表性的指标作为优化 目标
2)、优化指标矛盾的处理
机械优化设计
第一节 应用技巧
机械优化设计
❖ 3、约束条件的确定
约束条件是就工程设计本身而提出的对设计变量 取值范围的限制条件,也是设计变量的可计算函 数'。
机械优化设计
x x1x2x3 T l daT
机床主轴优化设计的目标函数为
f
x
1
4
x1
x3
x22 d 2
再确定约束条件
g x y y0 0
在外力F给定的情况下,y是设计变量x的函数,其值按
下式计算
Fa2 l a
y
3 I
机械优化设计
I D4 d 4 64

机械优化设计经典实例

机械优化设计经典实例

机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。

机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。

本文将介绍几个经典的机械优化设计实例。

第一个实例是汽车发动机的优化设计。

汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。

一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。

例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。

此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。

第二个实例是飞机机翼的优化设计。

飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。

机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。

例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。

第三个实例是电机的优化设计。

电机是广泛应用于各种机械设备和电子产品中的核心动力装置。

电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。

例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。

总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。

通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。

这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章机械优化设计实例
第一节应用技巧
一、机械优化设计的一般过程
机械设计的全过程一般可分为:
1.建立优化设计的数学模型。 2.选择适当的优化方法。 3.编写计算机程序。 4.准备必须的初始数据并上机计算。 5.对计算机求得的结果进行必要的分析。
二、建立数学模型的基本原则
数学模型的建立要求确切、简洁的反映工程问题的客 观实际。
2)曲柄摇杆机构的传动角应在 min 和 max 之间,可得
g7
x
arccos
l2
2
l32 l1
2l2l3
l4 2
max
0
g8
x
min
arccos
l22
l32 l1
2l2l3
l4
2
0
二、曲柄摇杆机构再现已知运动轨迹的优化设计
所谓再现已知运动轨迹:是指机构的连杆曲线尽可能 地接近某一给定曲线。
x x1x2 x3x4 x5 T l1l2l3l40 T
考虑到机构的杆长按比例变化时,不会改变其运动
规律,因此在计算时常取l1=1 ,而其他杆长按比例取为
l1 的倍数。
0
arccos
l1
l2 2 l42 2l1 l2 l4
l32
0
arccos
l1
l2 2 l4
2l3l4
谢谢大家!
第二节机床主轴结构优化设计 一、数学模型的建立
在设计这根主轴时,有两个重要因素需要考虑。一 是主轴的自重;一是主轴伸出端c点的挠度。
对于普通机床,不要求过高的加工精度,对机床主 轴的优化设计,以选取主轴的自重最轻为目标,外伸 端的挠度为约束条件。
当主轴的材料选定时,其设计方案由四个设计变量决 定。孔径d、外径D、跨距l及外伸端长度a。由于机床 主轴内孔用于通过待加工的棒料,其大小由机床型号 决定。不作为设计变量。故设计变量取为
g1
x
64Fx32
3 E
x1 x3
x24 d 4
/
y0
1
0
g2 x 1 x1 / lmin 0
g3 x 1 x2 / Dmin 0
g4 x x2 / Dmax 1 0
g5 x 1 x3 / amin 0
第三节 圆柱齿轮减速器的优化设计
圆柱齿轮减速器是一种非常广泛的机械传动装置。
展开式圆柱齿轮减速器:齿轮齿数、模数、齿宽、 螺旋角及变位系数等。
行星齿轮减速器:除此之外,还可加行星轮个数。
设计变量应是独立参数,非独立参数不可列为设计 变量。例如齿轮齿数比为已知,一对齿轮传动中,只 能取Z1或Z2一个为设计变量。
又如中心距不可取为设计变量,因为齿轮齿数确定 后,中心距就随之确定了。
x x1x2x3 T l daT
机床主轴优化设计的目标函数为
f
x
1
4
பைடு நூலகம்
x1
x3
x22 d 2
再确定约束条件
g x y y0 0
在外力F给定的情况下,y是设计变量x的函数,其值按
下式计算
Fa2 l a
y
3 I
I D4 d 4 64
g
x
64Fx32 x1 x3
(2)性能约束
一、单级圆柱齿轮减速器的优化设计
第四节 平面连杆机构的优化设计
连杆机构的类型很多,这里只以曲柄摇杆机构两类 运动学设计为例来说明连杆机构优化设计的一般步骤 和方法。 一、曲柄摇杆机构再现已知运动规律的优化设计
1.设计变量的确定
决定机构尺寸的各杆长度,以及当摇杆按已知运 动规律开始运动时,曲柄所处的位置角φ0 为设计 变量。
xi* yi* / ki
3.约束函数的规格化
约束函数的尺度变换称规格化。
由于各约束函数所表达的意义不同,使得各约束函数 值在量级上相差很大。
例如某热压机框架的优化设计中,许用应力为 [σ]= 150MPa,而下横梁的许用挠度[δ]=0.5mm,约束函数 为:
g1 x 150 0 g2 x 0.5 0
l32
经分析后,只有三个变量为独立的:
x x1x2 x3 T l2l3l4 T
2.目标函数的建立
目标函数可根据已知的运动规律与机构实际运动规律 之间的偏差最小为指标来建立,即
m
2
f x Ei i min
i 1
3.约束条件的确定
1)曲柄摇杆机构满足曲柄存在的条件
g1 x l1 l2 0 g2 x l1 l3 0 g3 x l1 l4 0 g4 x l1 l4 l3 l2 0 g5 x l1 l2 l3 l4 0 g6 x l1 l3 l2 l4 0
对于一般机械,可按重量最轻或体积最小的要求建立目标函数; 对应力集中现象尤其突出的构件,则以应力集中系数最小为追 求的目标。
对于精密仪器,应按其精度最高或误差最小的要求建立目标函 数。
3.约束条件的确定 约束条件是就工程设计本身而提出的对设计变量取值 范围的限制条件。
三、数学模型的尺度变换 1.目标函数的尺度变换
目前我国减速器存在的问题:体积大,重量重、承载 能力低、成本高和使用寿命短等问题。
对减速器进行优化设计,就要考虑:提高承载能力、 减轻重量和降低经济成本。
减速器的优化设计一般是在给定功率P、齿数比u、 输入转速n以及其他技术条件和要求下,找出一组使 减速器的某项经济技术指标达到最优的设计参数。
不同类型的减速器,选取的设计变量使不同的。
不同的设计要求,目标函数不同。若减速器的中心
距没有要求时,可取减速器最大尺寸最小或重量最轻 作为目标函数。
f x m min f x l r1 a r4 min
若中心距固定,可取其承载能力为目标函数。
f x 1/ min
减速器类型、结构形式不同,约束函数也不完全相同。 (1)边界约束
第六节热压机机架的优化设计
机械结构优化设计,已经得到了广泛的应用和重视。 结构的优化设计通常以重量最轻和应力集中区的应 力最小作为目标函数。
1.重量最轻为目标函数 的优化设计
1)设计变量
2)目标函数——单片 框板的重量
3)约束函数
树立质量法制观念、提高全员质量意 识。20. 12.2020 .12.20Sunday , December 20, 2020 人生得意须尽欢,莫使金樽空对月。0 5:25:30 05:25:3 005:25 12/20/2 020 5:25:30 AM 安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20. 12.2005 :25:300 5:25De c-2020 -Dec-2 0 加强交通建设管理,确保工程建设质 量。05:25:3005 :25:300 5:25Su nday , December 20, 2020 安全在于心细,事故出在麻痹。20.12. 2020.1 2.2005:25:3005 :25:30 December 20, 2020 踏实肯干,努力奋斗。2020年12月20 日上午5 时25分 20.12.2 020.12. 20 追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2 020年1 2月20 日星期 日上午5 时25分 30秒05 :25:302 0.12.20 严格把控质量关,让生产更加有保障 。2020 年12月 上午5时 25分20 .12.200 5:25De cember 20, 2020 作业标准记得牢,驾轻就熟除烦恼。2 020年1 2月20 日星期 日5时25 分30秒 05:25:3 020 December 2020 好的事情马上就会到来,一切都是最 好的安 排。上 午5时25 分30秒 上午5 时25分0 5:25:30 20.12.2 0 一马当先,全员举绩,梅开二度,业 绩保底 。20.12. 2020.1 2.2005:2505:25 :3005:2 5:30De c-20 牢记安全之责,善谋安全之策,力务 安全之 实。202 0年12 月20日 星期日5 时25分 30秒Su nday , December 20, 2020 相信相信得力量。20.12.202020年12月 20日星 期日5 时25分3 0秒20. 12.20
两者对数值变化的灵敏度相差很大,这对优化设计 是不利的。
例如采用惩罚函数时,两者在惩罚项中的作用相差 很大,灵敏度高的约束条件在极小化过程中首先得到 满足,而灵敏度小的几乎得不到考虑。
g1 x / 1 0 g2 x / 1 0
这样,各约束函数得取值范围都限制在[0,1]之 间,起到稳定搜索过程和加速收敛的作用。
3 E x24 d 4
y0
0
刚度满足条件,强度尚有富裕,因此应力约束条件可 不考虑。边界约束条件为设计变量的取值范围,即
lmin l lmax Dmin D Dmax amin a amax
将所有的约束函数规格化,主轴优化设计的数学模型 可表示为:
f
x
1
4
x1
x3
x22 d 2
数学模型的三要素:设计变量、目标函数、约束条件。
1.设计变量的选择
在充分了解设计要求的基础上,应根据各设计参数 对目标函数的影响程度分析其主次,应尽量减少设计 变量的数目,以简化优化设计问题。
应注意各设计变量应相互独立,否则会使目标函数 出现“山脊”或“沟谷”,给优化带来困难。
2.目标函数的确定
把最重要的指标作为目标函数,其余的次要的指标可 作为约束条件。
2.设计变量的尺度变换 当各设计变量之间在量级上相差很大时,在给定的搜索 方向上各自的灵敏度相差也很大。灵敏度大的搜索变化 快,灵敏度小的搜索变化慢。为了消除这种差别,可以 对设计变量进行重新标度。使它成为无量纲或规格化的 设计变量,这种处理称设计变量的尺度变换。
yi ki xi
ki 1/ xi0
谢谢大家!
踏实,奋斗,坚持,专业,努力成就 未来。2 0.12.20 20.12.2 0Sunday , December 20, 2020 弄虚作假要不得,踏实肯干第一名。0 5:25:30 05:25:3 005:25 12/20/2 020 5:25:30 AM 安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20. 12.2005 :25:300 5:25De c-2020 -Dec-2 0 重于泰山,轻于鸿毛。05:25:3005:25:3 005:25 Sunday , December 20, 2020 不可麻痹大意,要防微杜渐。20.12.20 20.12.2 005:25:3005:2 5:30De cember 20, 2020 加强自身建设,增强个人的休养。202 0年12 月20日 上午5时 25分20 .12.202 0.12.20 追求卓越,让自己更好,向上而生。2 020年1 2月20 日星期 日上午5 时25分 30秒05 :25:302 0.12.20 严格把控质量关,让生产更加有保障 。2020 年12月 上午5时 25分20 .12.200 5:25De cember 20, 2020 重规矩,严要求,少危险。2020年12 月20日 星期日5 时25分 30秒05 :25:302 0 December 2020 好的事情马上就会到来,一切都是最 好的安 排。上 午5时25 分30秒 上午5 时25分0 5:25:30 20.12.2 0 每天都是美好的一天,新的一天开启 。20.12. 2020.1 2.2005:2505:25 :3005:2 5:30De c-20 务实,奋斗,成就,成功。2020年12 月20日 星期日5 时25分 30秒Su nday , December 20, 2020 抓住每一次机会不能轻易流失,这样 我们才 能真正 强大。2 0.12.20 2020年 12月20 日星期 日5时2 5分30 秒20.12. 20
相关文档
最新文档