PID控制器的参数整定(经验总结)
PID控制器的参数整定

PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。
PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。
下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。
一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。
经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。
该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。
2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。
该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。
然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。
3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。
该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。
4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。
通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。
该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。
5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。
该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。
自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。
二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。
PID控制器的参数整定

PID控制器的参数整定PID控制器是一种常用的控制器,可以通过调节其参数来实现系统的稳定性和性能要求。
PID控制器的参数整定是指通过试验和经验总结来确定合适的比例系数Kp、积分时间Ti和微分时间Td,从而使得控制系统的闭环响应最优。
在进行PID控制器参数整定之前,首先需要清楚系统的控制目标和性能指标,例如稳态误差要求、响应时间要求、超调量要求等。
根据这些要求,可以选择不同的参数整定方法。
一般来说,PID控制器参数整定可以分为以下几个步骤:1.基本参数选择:首先根据系统特性选择基本的调节参数范围,比如比例系数Kp通常在0.1-10之间选择,积分时间Ti通常在1-100之间选择,微分时间Td通常在0-10之间选择。
2.步进试验法:通过给系统输入一个步进信号,观察系统的输出响应,并根据实验数据计算系统的动态响应特性,如超调量、峰值时间、上升时间等指标。
根据这些指标可以初步估计出Kp、Ti和Td的数量级。
3. Ziegler-Nichols法:这是一种经典的参数整定方法。
首先将积分时间Ti和微分时间Td设置为0,只有比例系数Kp。
逐渐增大Kp的值,观察系统响应的特性,当系统开始出现超调时,记录下此时的比例系数Kp为Kp_c。
然后,根据实验结果计算出Kp_c对应的周期时间Tu,即峰值时间的时间。
最后,根据经验公式,可以得到Kp=0.6*Kp_c,Ti=0.5*Tu,Td=0.12*Tu的参数。
4.直接调节法:根据实际控制需求和经验,直接选择合适的比例系数Kp、积分时间Ti和微分时间Td。
比如,Kp较大时可以提高系统的响应速度,但可能会增加超调量;Ti较大时可以消除稳态误差,但会延长系统的响应时间;Td较大时可以提高系统的稳定性,但可能会引入噪声。
5.整定软件辅助:现在有很多控制软件可以辅助进行参数整定,可以通过输入系统的数学模型、参数范围和性能指标,来进行自动参数整定和优化。
总的来说,PID控制器参数整定是一个基于试验和经验的过程,需要根据具体的系统和性能要求来选择合适的方法和参数。
四轴飞行器的串级PID参数整定经验

四轴飞行器的串级PID参数整定经验四轴飞行器的串级PID参数整定是提高飞行控制系统性能的重要一环。
串级PID控制器使用两层PID控制环节,分别为外环和内环。
外环控制飞行器的姿态(如俯仰、横滚和偏航),内环控制飞行器的速度和加速度。
通过串级PID控制器,可以实现更加精确和稳定的飞行控制。
串级PID参数整定的经验可以总结如下:1.确定目标性能:首先需要明确所需的飞行器性能指标,比如姿态的保持精度、速度的响应时间等。
这有助于确定整定参数的侧重点。
2.外环参数整定:外环控制飞行器的姿态,常用的整定方法有试错法和经验法。
试错法通过修改PID控制器的参数,观察飞行器的响应,不断进行调整,直到得到满意的结果。
经验法则是基于先前成功结果得到的经验,如果有类似的应用场景可以参考。
整定时可以逐步增大比例增益和积分时间常数,观察系统的响应,并通过逐步减小参数调整的幅度来找到最佳参数设置。
3.内环参数整定:内环控制飞行器的速度和加速度,一般采用相同的参数整定方法。
整定时需根据飞行器的速度动态特性和外环响应时间来选择合适的参数。
通常需要先调整PID参数的比例增益,使系统快速响应。
然后,通过增加积分时间常数来减小误差,最后根据需要进一步微调参数。
4.联合整定:外环和内环之间相互影响,需要进行联合整定。
通常是先确定外环的整定参数,然后根据外环参数确定内环参数。
可以根据外环参数和飞行器的动力学特性选择合适的内环参数,然后通过试错法进行微调。
5.飞行试验和调整:进行参数整定后,进行实际飞行试验来验证系统的性能是否满足要求。
根据飞行试验结果,对参数进行进一步微调,直到达到满意的飞行控制性能。
总的来说,串级PID参数整定是一个迭代的过程,需要根据实际情况进行调整。
经验是根据先前成功的整定结果总结得出的,但是不同的控制系统可能存在不同的参数整定方法和经验。
因此,在实际应用中,需要根据飞行器的具体情况和要求进行参数整定,并进行实时监控和调整,以达到最佳的飞行控制性能。
pid控制器参数整定方法及应用

pid控制器参数整定方法及应用PID控制器是工业自动化中常用的一种控制器,其参数整定方法及应用对于控制系统的稳定性和性能有着至关重要的作用。
本文将详细介绍PID控制器参数整定方法及应用。
一、PID控制器概述PID控制器是由比例控制器、积分控制器和微分控制器三部分组成的,利用反馈信号进行控制。
其中比例控制器通过测量误差的大小,对被控制对象进行控制,积分控制器通过测量误差的积分,对被控制对象进行控制,微分控制器通过测量误差的微分,对被控制对象进行控制。
PID控制器通过组合三个控制方式,可以对被控制对象进行更加精确的控制。
二、PID控制器参数整定方法1. 经验法PID控制器参数整定的第一步是通过经验法确定参数初值。
经验法是根据实际经验和实验数据得出的整定参数,是参数初值的基础。
经验法的参数初值如下:比例系数Kp取值为被控对象动态响应曲线的最大斜率处的斜率倒数;积分时间Ti取值为被控对象动态响应曲线从起点到终点的时间长度;微分时间Td取值为被控对象动态响应曲线的最大曲率处的时间。
2. Ziegler-Nichols法Ziegler-Nichols法是广泛应用的PID控制器参数整定方法之一,其步骤如下:a.将比例系数Kp调至临界增益Kcr处,此时系统开始振荡;b.测量振荡周期Tu;c.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5Kcr ——PI型系统 0.45Kcr Tu/1.2 —PD型系统 0.8Kcr — Tu/8PID型系统 0.6Kcr 0.5Tu Tu/83. Chien-Hrones-Reswick法Chien-Hrones-Reswick法是另一种常用的PID控制器参数整定方法,其步骤如下:a.测量被控对象的动态响应曲线,并计算出其惯性时间常数L、时延时间T和时间常数K;b.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5K ——PI型系统 0.45K L —PD型系统 0.8K — TPID型系统 0.6K 0.5L 0.125T三、PID控制器应用PID控制器广泛应用于工业自动化中,例如温度控制、压力控制、流量控制等。
PID参数的工程整定方法

PID参数的工程整定方法1.试误法试误法是一种通过观察系统响应特性来调整PID参数的方法。
该方法主要分为两步:首先设置合理的比例增益Kp,使系统实现最佳超调;然后根据实验结果,调整积分时间Ti和微分时间Td,达到使系统快速稳定的目标。
步骤如下:1.1设置比例增益Kp,通过手动调节Kp,使系统响应产生一定的超调,并确定合适的超调量。
1.2根据超调量的大小,选择合适的积分时间Ti和微分时间Td。
-当超调较小,可以选择较大的积分时间和微分时间,以提高系统响应速度。
-当超调较大,可以选择较小的积分时间和微分时间,以减小系统超调。
2.经验公式法经验公式法是一种基于经验公式的快速整定方法,适用于一些常用的控制对象类型和工程实践中的经验总结。
它通常包括以下公式:-平稳过程:Kp=0.5Kc,Ti=3.33τ,Td=0.83τ-快速过程:Kp=0.3Kc,Ti=2τ,Td=0.5τ-慢速过程:Kp=0.2Kc,Ti=4τ,Td=τ上述公式中,Kc为临界增益,τ为对象的时间常数。
根据不同的控制对象类型,选择对应的公式进行初始参数整定,然后根据实际情况进行微调。
3. Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于系统临界增益的整定方法,该方法通过寻找系统的临界增益和周期来确定PID参数。
步骤如下:3.1将比例增益Kp调至最小值,然后逐渐增加Kp,直至系统发生持续的限幅振荡,记录此时的Kp值和周期Tp。
3.2根据所选择的整定方法,计算得到合适的PID参数:-P控制器:Kp=0.5Ku-PI控制器:Kp=0.45Ku,Ti=0.85Tp-PID控制器:Kp=0.6Ku,Ti=0.5Tp4.优化方法优化方法利用优化理论和算法,通过对系统特性的建模和参数优化求解,得到更优的PID参数配置。
常用的优化方法包括遗传算法、粒子群优化算法、模拟退火算法等。
优化方法首先需要建立系统的数学模型,并确定优化的目标函数,如稳定性、超调、控制精度等。
PID控制器设计与参数整定方法综述

PID控制器设计与参数整定方法综述一、本文概述本文旨在全面综述PID(比例-积分-微分)控制器的设计与参数整定方法。
PID控制器作为一种广泛应用的工业控制策略,其设计的优劣直接影响到控制系统的性能和稳定性。
因此,深入理解并掌握PID控制器的设计原则与参数整定方法,对于提高控制系统的性能具有非常重要的意义。
本文将首先介绍PID控制器的基本原理和组成结构,包括比例、积分和微分三个基本环节的作用和特点。
在此基础上,详细阐述PID控制器设计的一般步骤和方法,包括确定控制目标、选择控制算法、设定PID参数等。
本文还将重点介绍几种常用的PID参数整定方法,如Ziegler-Nichols法、Cohen-Coon法以及基于优化算法的参数整定方法等,并对这些方法的优缺点进行比较分析。
本文将结合具体的应用实例,展示PID控制器设计与参数整定方法在实际工程中的应用效果,以期为读者提供有益的参考和借鉴。
通过本文的阅读,读者将能够全面了解PID控制器的设计与参数整定方法,掌握其在实际应用中的技巧和注意事项,为提高控制系统的性能和稳定性提供有力的支持。
二、PID控制器的基本原理PID(比例-积分-微分)控制器是一种广泛应用于工业控制系统的基本控制策略。
它的基本工作原理是基于系统的误差信号(即期望输出与实际输出之间的差值)来调整系统的控制变量,以实现对系统的有效控制。
PID控制器的核心在于其通过调整比例、积分和微分三个环节的参数,即比例系数Kp、积分系数Ki和微分系数Kd,来优化系统的动态性能和稳态精度。
比例环节(P)根据误差信号的大小成比例地调整控制变量,从而直接减少误差。
积分环节(I)则是对误差信号进行积分,以消除系统的静态误差,提高系统的稳态精度。
微分环节(D)则根据误差信号的变化趋势进行预测,提前调整控制变量,以改善系统的动态性能,抑制过冲和振荡。
PID控制器的这三个环节可以单独使用,也可以组合使用,以满足不同系统的控制需求。
pid参数整定方法。

pid参数整定方法。
PID控制器是一种广泛应用于自动化控制系统中的控制算法。
PID 控制器可以通过调整其三个参数来实现对系统的精确控制,这三个参数分别是比例系数Kp、积分时间Ti和微分时间Td。
但是,PID参数整定是一项具有挑战性的任务,需要根据系统的特性和控制需求进行适当的调整。
下面是一些常用的PID参数整定方法:1. 经验法经验法是最简单的PID参数整定方法之一,它基于经验规律来进行参数调整。
其中一种经验法是以经验公式为基础的Ziegler-Nichols方法。
该方法需要通过试验和观察系统的动态响应来确定参数。
具体来说,该方法需要将比例系数Kp增加到系统稳定性极限的一半,然后测量系统的振荡周期,并根据周期计算出积分时间Ti和微分时间Td。
然后按照计算出的参数进行系统控制即可。
2. 模型法模型法是一种基于数学模型的PID参数整定方法,它可以通过分析系统的数学模型来确定参数。
该方法需要先建立系统的数学模型,然后根据模型的特性进行参数调整。
具体来说,该方法需要根据系统的动态特性和控制需求来选择合适的模型,然后根据模型的参数来计算PID参数。
3. 试验法试验法是一种基于试验数据的PID参数整定方法,它可以通过实际试验来确定参数。
该方法需要设计一组试验方案,然后根据试验数据来确定参数。
具体来说,该方法需要先确定试验方案,然后根据试验数据来计算PID参数。
该方法的优点是可以直接反映系统的实际特性,但是需要进行大量的试验工作。
总之,PID参数整定是一项复杂的任务,需要根据具体的应用环境和控制需求来选择合适的方法进行参数调整。
同时,也需要注意参数调整过程中的稳定性和系统响应速度等因素。
PID参数的整定方法

PID参数的整定方法PID控制器是目前最常用的控制算法之一,其调节参数(也称为PID 参数)的合理设置对控制系统的性能起着关键作用。
下面将介绍几种常用的PID参数整定方法。
1.经验法:经验法是最为简单直接的方法,通常由经验工程师根据自身经验来设定PID参数。
这种方法适用于一些简单的控制系统,但是对于复杂的系统来说,由于经验法不能提供具体的参数值,容易出现性能较差的情况。
2. Ziegler-Nichols 整定法:Ziegler-Nichols 整定法是PID参数整定中较为经典的方法,其步骤如下:-首先将PID控制器的I和D参数设置为零。
-逐渐增大比例参数(P)直到系统出现持续且稳定的振荡。
-记录此时的比例参数为Ku。
- 根据不同的控制对象类型,Ziegler-Nichols方法会有不同的参数整定公式,常见的有:-P型系统:Kp=0.50Ku,Ti=0.50Tu,Td=0.125Tu-PI型系统:Kp=0.45Ku,Ti=0.83Tu,Td=0.125Tu-PID型系统:Kp=0.60Ku,Ti=0.50Tu,Td=0.125Tu其中Ku为临界增益值,Tu为临界周期。
3. Chien-Hrones-Reswick (CHR) 整定法:CHR整定法基于频域设计方法,通过系统的频率响应曲线来确定PID参数。
其步骤如下:-绘制系统的频率响应曲线(一些软件和仪器可以直接测量)。
-根据曲线的特征,确定比较慢的过程的时间常数τ和极点频率ωp。
-根据以下公式得到PID参数:-P参数:Kp=2/(ωpτ)-I参数:Ti=τ/2-D参数:Td=τ/8不能掉进方法的误区,如超调范围不合适,调节周期过大或周期过小时,传递函数为微分型等。
4.设计优化法:设计优化法是基于性能指标的优化算法,通过对系统的模型进行优化,得出最佳的PID参数。
这种方法较复杂,通常使用数学工具或计算机软件进行参数优化。
常见的优化算法有遗传算法、粒子群算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。
在选择数字PID参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
一般来说,PI、PID和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
这些要求,对控制系统自身性能来说,有些是矛盾的。
我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。
PID控制器的参数整定,可以不依赖于受控对象的数学模型。
工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。
常用的方法,采样周期选择,实验凑试法实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。
整定步骤实验凑试法的整定步骤为"先比例,再积分,最后微分"。
(1)整定比例控制将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。
(2)整定积分环节若在比例控制下稳态误差不能满足要求,需加入积分控制。
先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。
然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。
(3)整定微分环节若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。
先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。
实验经验法扩充临界比例度法实验经验法调整PID参数的方法中较常用的是扩充临界比例度法,其最大的优点是,参数的整定不依赖受控对象的数学模型,直接在现场整定、简单易行。
扩充比例度法适用于有自平衡特性的受控对象,是对连续-时间PID控制器参数整定的临界比例度法的扩充。
整定步骤扩充比例度法整定数字PID控制器参数的步骤是:(1)预选择一个足够短的采样周期TS。
一般说TS应小于受控对象纯延迟时间的十分之一。
(2)用选定的TS使系统工作。
这时去掉积分作用和微分作用,将控制选择为纯比例控制器,构成闭环运行。
逐渐减小比例度,即加大比例放大系数KP,直至系统对输入的阶跃信号的响应出现临界振荡(稳定边缘),将这时的比例放大系数记为Kr,临界振荡周期记为Tr。
(3)选择控制度。
控制度,就是以连续-时间PID控制器为基准,将数字PID控制效果与之相比较。
通常采用误差平方积分作为控制效果的评价函数。
定义控制度采样周期TS的长短会影响采样-数据控制系统的品质,同样是最佳整定,采样-数据控制系统的控制品质要低于连续-时间控制系统。
因而,控制度总是大于1的,而且控制度越大,相应的采样-数据控制系统的品质越差。
控制度的选择要从所设计的系统的控制品质要求出发。
(4)查表确定参数。
根据所选择的控制度,查表3一2,得出数字PID中相应的参数TS,KP,TI和TD。
(5)运行与修正。
将求得的各参数值加入PID控制器,闭环运行,观察控制效果,并作适当的调整以获得比较满意的效果。
②方法二2.3 PID参数整定方法2.3.1 工程整定法PID数字调节器的参数,除了比例系数K p,积分时间T i和微分时间T d外,还有1个重要参数即采样周期T。
1.采样周期T的选择确定从理论上讲,采样频率越高,失真越小。
但是,对于控制器,由于是依靠偏差信号来进行调节计算的,当采样周期T太小,偏差信号也会过小,此时计算机将失去调节作用;若采样周期T太长,则将引起误差。
因此采样周期T必须综合考虑。
采样周期的选择方法有两种,一种是计算法,另一种是经验法。
计算法由于比较复杂,特别是被控对象各环节时间常数难以确定,工程上较少用。
经验法是一种凑试法,即根据人们在控制工作实践中积累的经验以及被控对象的特点,先选择一个采样周期T,进行试验,再反复改变T,直到满意为止。
2.K p,T i,T d的选择方法1)扩充临界比例度法扩充临界比例度法是简易工程整定方法之一,用它整定K p,T i,T d的步骤如下。
选择最短采样周期T min,求出临界比例度S u和临界振荡周期T u。
具体方法是将T min输入计算机,只有P环节控制,逐渐缩小比例度,直到系统产生等幅振荡。
此时的比例度即为临界比例度S u,振荡周期称为临界振荡周期T u。
选择控制度为:(2-15)通常当控制度为1.05时,表示数字控制方式与模拟方式效果相当。
根据计算度,查表2-1可求出K p,T i,T d。
表2-1 扩充临界比例度法整定参数表控制度控制规律参数T K p T i T d1.05PIPID0.03T u0.014T u0.53S u0.63S u0.88T u0.49T u/0.14T u1.2PIPID0.05T u0.43T u0.49S u0.47S u0.91T u0.47T u/0.16T u1.5PIPID0.14T u0.09T u0.42S u0.34S u0.99T u0.43T u/0.20Tu2.0PIPID0.22T u0.16T u0.36S u0.27S u1.05T u0.4T u/0.22T u2)扩充响应曲线法若已知系统的动态特性曲线,可以采用和模拟调节方法一样的响应曲线法进行整定,其步骤如下。
断开微机调节器,使系统手动工作,当系统在给定值处处于平衡后,给一阶跃输入。
用仪表记录被调参数在此阶跃作用下的变化过程曲线。
如图2-12所示。
图2-12 阶跃信号下的曲线动画讲解图片说明在曲线最大斜率处做切线,求得滞后时间t,对象时间常数τ以及它们的比值τ/t。
根据所求得的τ,t 和τ/t值,查表2-2求得值K p,T i,T d。
表2-2 扩充响应曲线法整定参数表控制度控制规律参数T K p T i T d1.05PIPID0.1t0.05t0.84τ/t1.15τ/t0.34t2.0t/0.45t1.2PIPID0.2t0.15t0.78τ/t1.0τ/t3.6t1.9t/0.55t1.5PIPID0.50t0.34t0.68τ/t0.85τ/t3.9t1.62t/0.65t2.0PIPID0.8t0.6t0.57τ/t0.6τ/t4.2t1.5t/t2.3.2 经验法在实际工作过程中,由于被调对象的动态特性不是很容易确定,即使确定了,不仅计算困难,工作量大,往往其结果与实际相差较大,甚至事倍功半。
因此,在实际生产过程中采用的是经验法。
即根据各调节作用的规律,经过闭环试验,反复凑试,找出最佳调节参数。
微机调速器参数最终要在现场试验好后,才能选出最优参数。
厂家有规定的参考值,有一个范围,是理论计算出来的。
因此要选择出最优参数,就必须在生产现场进行试验做记录曲线后方能得到。
2.3.3 凑试法确定PID调节参数凑试法是通过模拟(或闭环)运行观察系统的响应(例如,阶跃响应)曲线,然后根据各调节参数对系统响应的大致影响,反复凑试参数,以达到满意的响应,从而确定PID的调节参数。
增大比例系数K p 一般将加快系统的响应,这有利于减小静差。
但过大的比例系数会使系统有较大的超调,并产生振荡,使稳定性变坏。
增大式(2-2)中的T d有利于加快系统响应,使超调量减小,稳定性增加,但对于干扰信号的抑制能力将减弱。
在凑试时,可参考以上参数分析控制过程的影响趋势,对参数进行先比例,后积分,再微分的整定步骤。
其具体步骤如下:首先整定比例部分。
将比例系数由小调大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。
如果系统没有静差或静差小到允许的范围之内,并且响应曲线已属满意,那么只需要用比例调节器即可,最优比例系数可由此确定。
当仅调节比例调节器参数,系统的静差还达不到设计要求时,则需加入积分环节。
整定时,首先置积分常数T i为一个较大值,经第一步整定得到的比例系数会略为缩小(如减小20%),然后减小积分常数,使系统在保持良好动态性能的情况下,静差得到消除。
在此过程中,可根据响应曲线的好坏反复修改比例系数和积分常数,直至得到满意的效果和相应的参数。
若使用比例积分器,能消除静差,但动态过程经反复调整后仍达不到要求,这时可加入微分环节。
在整定时,先置微分常数T d为零,在第二步整定的基础上,增大T d,同时相应地改变K p和T i,逐步凑试,以获得满意的调节效果和参数。
应该指出,在整定中参数的选定不是惟一的。
事实上,比例、积分和微分三部分作用是相互影响的。
从应用角度来看,只要被控制过程的主要性能指标达到设计要求,那么比例、积分和微分参数也就确定了。
表2-3给出了一些常见的调节器参数选择范围。
表2-3 常见被调量PID参数经验选择范围被调量特点参数K p T i/ min T d/ min流量时间常数小,并有噪声,故K p比较小,T i较小,不用微分1~2.5 0.1~1温度对象有较大滞后,常用微分 1.6~5 3~10 0.5~3 压力对象的滞后不大,不用微分 1.4~3.5 0.4~3液位允许有静差时,不用积分和微分 1.25~5(3)总结PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。