超级电容与普通电容的特性比较(精)

超级电容与普通电容的特性比较(精)
超级电容与普通电容的特性比较(精)

超级电容与普通电容的特性比较

本文介绍超级电容与普通电容的特性比较。超级电容器(supercapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容。它与普通电容的最大区别是它是一种电化学的物理部件,但本身并不进行化学反应,超级电容的储电量特别大,达到法拉级的电容量。

超级电容器(super capacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容。它与普通电容的最大区别是它是一种电化学的物理部件,但本身并不进行化学反应,超级电容的储电量特别大,达到法拉级的电容量。

怎么样增加两极板的面积呢?超级电容通过注入电解质来储能,电解质在电极的作用下,电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。

超级电容融合了普通电容的物理特性,很多优势是传统电容、电池无法比拟的:

1.具有法拉级的超大电容量,这比普通电容要大得多。

2.可以瞬间释放的功率比普通电池高近十倍,而且不会损坏。

3.充放电循环寿命在十万次以上,这是最大的优点之一,传统电池一般只能充放数百次。

4.能在40度至60度的环境温度中正常使用,传统电池低温下效能将会大大降低。

5.有超强的荷电保持能力,漏电量非常小,传统电池要经常充电才能保持状态。

6.充电迅速,它的速度比普通电池快几十倍,几分钟就可充满一辆汽车所需要的电量。

7.本身不会对环境造成污染,真正免维护,而传统电池仍是有污染。

但超级电容器有最致命的两个缺点:一是它的体积比较大,与体积相当的电池相比,它的储电量要小。二是即使达到法拉级的电量,但与传统电池相比,仍然少得可怜,按目前的技术,它仍然不能作为电动力的主要储电器,因为它的电量只能驱动车辆行驶几公里。

超级电容车在未来仍有作为

即使超级电容不能支持电动车行驶几百公里的路程,但在一些特殊的车辆上,仍将有很大的实用价值。如果把超级电容的电量提升到可行驶几十公里,除了短距离行驶的公交车以外,很大一部分城市使用的微型车将是这一技术的受惠者。例如哈尔滨工业大学研制成功一款超级电容电动车,一次只需充电15分钟便能连续行驶25公里,最高时速可达52公里。

在其它领域,超级电容已经有很好的发展前景,例如使用超级电容制造的手机电池,只需要充电一分钟就可充满电,而且不惧零下低温的环境考验。用在一些大功率的起动电动机上,例如为大型柴油引擎或燃汽轮机的起动,这些电动机需要很大的瞬间电流,用传统蓄电池寿命将会很短,但超级电容则完全胜任。

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

超级电容器与电池的优缺点对比

超级电容器比电池更好? ◆ 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。 ◆ 超级电容器在其额定电压范围内可以被充电至任意电位,且可以完全放出。而电池则受自身化学反应限制工作在较窄的电压范围,如果过放可能造成永久性破坏。 ◆ 超级电容器的荷电状态(SOC)与电压构成简单的函数,而电池的荷电状态则包括多样复杂的换算。 ◆ 超级电容器与其体积相当的传统电容器相比可以存储更多的能量,电池与其体积相当的超级电容器相比可以存储更多的能量。在一些功率决定能量存储器件尺寸的应用中,超级电容器是一种更好的途径。 ◆ 超级电容器可以反复传输能量脉冲而无任何不利影响,相反如果电池反复传输高功率脉冲其寿命大打折扣。 ◆ 超级电容器可以快速充电而电池快速充电则会受到损害。 ◆ 超级电容器可以反复循环数十万次,而电池寿命仅几百个循环。 超级电容与电池拉平差距的机会? 尽管超级电容器的制作成本每年都在以低于10%的比例减少,但这项技术依然不能在运输行业和自然能源采集方面扩大生产规模。相比电池领域,超级电容器的技术过于落后,想要缩小两者在研发方面的差距,首要任务应解决如下问题: ■ 增加超级电容器生产厂商数量,通过市场竞争的手段刺激相关技术的研发; ■ 扩大高比功率超级电容器的生产规模,实现突破百万件的年生产量; ■将超级电容器当前的制造成本降低50%; ■ 拟定一个超级电容器可持续发展战略,主要针对更高效电极材料的探索。 要达到上述目标需要厂商对超级电容器市场有一个逐年上升的投资力度,主要用于在设备的研发和生产两方面。与此同时,政府扩大资金和技术支持也将起到至关重要的作用。 ————鸣曦电子

电容的标识与分类(有空看看)

电容 电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF 一、电容器的型号命名方法 国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。 第一部分:名称,用字母表示,电容器用C。 第二部分:材料,用字母表示。 第三部分:分类,一般用数字表示,个别用字母表示。 第四部分:序号,用数字表示。 用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I- 玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介 二、电容器的分类 1、按照结构分三大类:固定电容器、可变电容器和微调电容器。 2、按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介 质电容器等。 3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型 电容器。 4、频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容 器。

5、低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。 6、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。 7、调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。 8、高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器。 9、低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容 器。 10、小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。 三、常用电容器 1、铝电解电容器 用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器.因为氧化膜有单向导电性质,所以电解电容器具有极性. 容量大,能耐受大的脉动电流,容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz以上频率低频旁路、信号耦合、电源滤波。 电容量:0.47--10000u 额定电压:6.3--450V 主要特点:体积小,容量大,损耗大,漏电大 应用:电源滤波,低频耦合,去耦,旁路等 2、钽电解电容器(CA)铌电解电容(CN) 用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可靠机件中。 电容量:0.1--1000u 额定电压:6.3--125V

电容参数资料

电容的型号功能和应用的详细介绍 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 定义: 电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离, k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。)

电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 电容器的型号命名方法 第一部分 | 第二部分 | 第三部分 | 第四部分 名称 | 材料 | 特征 | 序号 电容器 | 符号 | 意义 | 符号 | 意义 | 符号 C 高频瓷 T 铁电 T 低频瓷 W 微调 I 玻璃 J 金属化 符号 Y 釉云母 X 小型 C Z 纸介 D 电压用字母或数字 J 金属化 M 密封 L 纸涤纶 Y 高压

电容分类及各种电容的特点用途

主要技术参数特点容量范围 容量 误差范围 损耗角正切值耐压绝缘电阻漏电流容量 误差范围损耗角正切值 耐压漏电流绝缘电阻 容量误差范围损耗角正切值 耐压绝缘电阻 漏电流 耐压值容量值 绝缘阻抗容量/误差范围 损耗角正切值耐压 漏电流绝缘电阻容量/误差范围 损耗角正切值 耐压 漏电流绝缘电阻 容量/误差范围 损耗角正切值 耐压 漏电流 绝缘电阻 容量/误差范围 损耗角正切值耐压 电容器资料 电源电路或中频、低频电路中起电源 滤波、调谐、滤波、耦合、旁路、能量转换和延时等作用,广泛应用各种电子产品中。 用在对稳定性和漏电流要求高的电路中代替铝电解电容.适用于谐振回路、滤波电路、耦合回路等,但在高频电路或绝缘电阻高的 场合不宜使用。广泛应用于各种电子 产品中。 使用于对频率和稳定性要求不高的电路中。适用于对频率和稳定性要求不高的场 合。 x电容是跨接在电力线两线(L-N)之间的电容,用于抑制共模干扰,一 般选用金属薄膜电容。Y电容是分别 跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现,抑制差膜干扰,用于电源市电输入端即电容器失效后,不会导致电击,不危及人身安全。 高频瓷介电容(CC)适用于高频电 路,广泛应用于各种电子产品中。 低频瓷介电容(CT)主要用于旁路电容和电源滤波对损耗及容量要求不高 的场合 用于对稳定性和可靠性要求高的场合,以及高频高压大功率设备。 0.47~ 10000uF 0.1~1000uF Y≤4700pF 优点:频率稳定性好,高频特性 好,损耗小,绝缘电阻搞,分布 电感小,不易老化;缺点:但价格较贵,容量较小。绝缘电阻高,损耗小,温度系数 小,电容量精确,最高可达± 0.05%;耐压强度高,对化学剂的稳定性高;但工作温度不高,上限为70~75℃. 小体积,大容量,耐热耐湿性 好,价廉;但稳定性差。 比纸介电容的体积小,容量大, 且击穿后能自愈;但稳定性差, 容量误差大,漏电流大,容量和楼电流随温度变化产生明显变化。 聚苯乙烯薄膜电容(CB)涤纶薄膜电容(CL)金属化纸介电容(CJ)容量大,能耐受大的脉动电流,容量误差大,泄漏电流大;普通 的不适于在高频和低温下应用, 不宜使用在25kHz以上频率低频 旁路、信号耦合、电源滤波。 优点:寿命长、耐高温、准确度 高、滤高频谐波性能极好,体积 小。 缺点:价格也比铝电容贵,而且耐电压及电 流能力较弱。 优点:性能稳定,损耗和漏电流小,能耐高温;缺点:容量小,机械强度低,易碎易裂。体积比CC小,容量比CC大,但稳定性差,耐压低,损耗大。 X电容的容量较大,一般为uF 级,Y电容容量叫小一半为pF 级, 主要功能及应用场合 铝电解电容(CD)钽电解电容(CA)陶瓷电容 安规电容 云母电容(CY)

超级电容器材料电化学电容特性测试电子教案

超级电容器材料电化学电容特性测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日 实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理

双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。 目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。 2、循环伏安法(CV)测定材料的比电容 循环伏安法是电化学测量中经常使用的一种重要方法,它一方面能较快的观测到较宽电位范围内发生的电极过程,为电极过程研究提供丰富的信息;另一方面又能通过扫描曲线形状的分析、估算电极反应参数,由此来判断不同因素对电极反应的影响。 控制研究电极的电势以速率ν从起始电位Ei开始向电势负方向扫描,到电势为Em时(时间为λ),电势改变扫描方向,以相同的速率回扫至起始电势,然后再次换向,反复扫描,即采用的电势控制信号为连续三角波信号,如图2-1所示。记录i-E曲线,称为循环伏安曲线(cyclic voltammogram),如图2-2所示。这一测量方法称为循环伏安法(cyclic voltammetry)。

电解电容参数特性

电解电容器的参数特性 上海BIT-CAP技术中心2.1容量 2.1.1标称容量(C R) 电容器设计所确定的容量和通常在电容器上所标出的电容量值。 2.1.2容量公差 容量偏差是指电容器的实际容量离开标称容量的范围,容量偏差一般会标示在出货检验单上和包装箱盒贴上。YM产品的容量公差为±20%。 2.1.3容量偏差等级 为了保证每批电容器容量的一致性,保证客户装在同一台机器上的所有电容器之间的容量偏 差在。特别为每一个电容器贴上表示容量偏差的标签。客户在装机时选用同一标签的电容器装在一台设备内,这样能够有效的保证了同一台设备内的电容器容量的一致性。偏差等级见表1。 容量等级代码容量偏差 D-20%≤Cap<-15% C-15%≤Cap<-10% B-10%≤Cap<-5% A-5%≤Cap<0 E0≤Cap<5% F5%≤Cap<10% G10%≤Cap<15% H15%≤Cap≤20% 表1容量偏差等级表 2.1.4容量的温度特性 电解电容的容量不是所有的工作温度下都是常量,温度对容量的影响很大。温度降低时,电解液的粘性增加,导电能力下降,容量下降。

图4容量温度特性(测试频率120Hz ) 2.1.5 容量的频率特性 电解电容器的容量决定于温度,还决定于测试频率。容量频率关系:C 代表容量,单位F f 代表频率,单位Hz z 代表阻抗,单位Ω 图5容量频率特性曲线(测试温度20℃) 2.1.6频繁的电压波动及充放电 频繁的电压波动及充放电都会导致容量下降,为了应对频繁的电压波动及充放电的使用条件,特别设计了ER6系列产品(充放电应对品)。详细情况请联系我们。2.2损耗角的正切值tan δ 用于脉动电路中的铝电解电容器,实际上要消耗一部分的有功功率,这可以用损耗角的正切值来表征。损耗角的正切值为在正弦电压下有功功率与无功功率的比值。对于电解电容器较常采用的等效电路,如图6,则损耗角的正切值为: 图6等效串联电路图

电池和超级电容器基础知识

一、电池基础知识 1、一次电池和充电电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一放电,它内结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应有尽有选择真正的循环次数在1000次左右的充电电池,这种电池也可称为一次电池或蓄电池。 2、一次电池和二次电池还有其他的区别吗? 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、可充电便携式电池的优缺点是什么? 充电电池寿命较长,可循环1000次以上,虽然价格比干电池贵,但如果经常使用的话,是比较划算的。充电电池的容量比同规格的碱锰电池或锌碳电池低,比如,他们放电较快。 另一缺点是由于他们几近恒定的放电电压,很难预测放电何时结束。当放电结束时,电池电压会突然降低。假如在照相机上使用,突然电池放完了电,就不得不终止。 但另一方面可充电电池能提供的容量比太部分一次电池高。 但Li-ion电池却可被广泛地用照相器材中,因为它容量高,能量密度大,以及随放电深度的增加而逐渐降低的放电电压。 4、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电子(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上,而我司产品li-ion可重复充放电1000次以上。Li-ion是一种新型的可充电便携式电池。它的额定电

超级电容器和电池的区别.doc

超级电容器和电池的区别 超级电容器与电池的比较 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。 超级电容器在其额定电压范围内可以被充电至任意电位,且可以完全放出。而电池则受自身化学反应限制工作在较窄的电压范围,如果过放可能造成永久性破坏。 超级电容器的荷电状态(SOC)与电压构成简单的函数,而电池的荷电状态则包括多样复杂的换算。 超级电容器与其体积相当的传统电容器相比可以存储更多的能量,电池与其体积相当的超级电容器相比可以存储更多的能量。在一些功率决定能量存储器件尺寸的应用中,超级电容器是一种更好的途径。 超级电容器可以反复传输能量脉冲而无任何不利影响,相反如果电池反复传输高功率脉冲其寿命大打折扣。 超级电容器可以快速充电而电池快速充电则会受到损害。 超级电容器可以反复循环数十万次,而电池寿命仅几百个循环。

如何选择超级电容器 超级电容器的两个主要应用:高功率脉冲应用和瞬时功率保持。高功率脉冲应用的特征:瞬时流向负载大电流;瞬时功率保持应用的特征:要求持续向负载提供功率,持续时间一般为几秒或几分钟。瞬时功率保持的一个典型应用:断电时磁盘驱动头的复位。不同的应用对超电容的参数要求也是不同的。高功率脉冲应用是利用超电容较小的内阻(R),而瞬时功率保持是利用超电容大的静电容量(C)。 两种计算公式和应用实例 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效***电阻; Uwork(V):在电路中的正常工作电压 Umin(V):要求器件工作的最小电压; t(s):在电路中要求的保持时间或脉冲应用中的脉冲持续时间; Udrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流;

电容的分类和应用

电容的分类和应用 一、电容的分类和作用 电容,由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容 按介质材料可分为:空气电容、液体电容、无机固体电容、有机固体电容、电解电容。 按极性分为:有极性电容和无极性电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐 二、电容的符号 电容的符号同样分为国内标表示法和国际电子符号表示法,但电容符号在国内和国际表示都差不多,唯一的区别就是在有极性电容上,国内的是一个空筐下面一根横线,而国际的就是普通电容加一个"+"符号代表正极。(见下图) 三、电容的单位 电阻的基本单位是:F (法),此外还有μF(微法)、pF(皮法),另外还有一个用的比较少的单位,那就是:nF(纳法)。电容 F 的容量很大,我们看到的一般都是μF、nF、pF的单位,而不是F的单位。 它们之间的具体换算关系如下: 1F=1000000μF 1μF=1000nF 1nF=1000pF 四、电容的耐压单位:V(伏特) 每一个电容都有它的耐压值,这是电容的重要参数之一。普通无极性电容的标称耐压值有:63V、100V、160V、250V、400V、600V、1000V等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 五、电容的种类 电容的种类可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。 各种电容的优缺点及用途 无极性可变电容 制作工艺: 1、可旋转动片为陶瓷片表面镀金属薄膜,定片为镀有金属膜的陶瓷

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

电容参数X5R,X7R,Y5V,COG详解(精)

电容参数:X5R,X7R,Y5V,COG 详解 在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。 这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。具体来说,就是: X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C 变化为70°C时,电容容量的变化为±15%; Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者 +22%/-82%。 对于其他的编码与温度特性的关系,大家可以参考表4-1。例如,X5R的意思就是该电容的正常工作温度为 -55°C~+85°C,对应的电容容量变化为±15%。 表4-1 电容的温度与容量误差编码 下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在

使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一、NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%, 相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO 电容器可选取的容量范围。 NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二 X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 三 Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。 Z5U电容器的其他技术指标如下:工作温度范围+10℃ --- +85℃ 温度特性 +22% ---- -56% 介质损耗最大 4% 四 Y5V电容器 Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%。 Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器。 Y5V电容器的取值范围如下表所示 Y5V电容器的其他技术指标如下:工作温度范围 -30℃ --- +85℃ 温度特性 +22% ---- -82% 介质损耗最大 5% 贴片电容器命名方法可到AVX网站上找到。 NPO,X7R及Y5V电容的特性及主要用途 NPO的特性及主要用途 属1类陶瓷介质,电气性能稳定,基本上不随时间、温度、电压变化,适用于高可靠、高稳定的高额、特高频场合。特性: 电容范围 1pF~0.1uF (1±0.2V rms 1MHz) 环境温度: -55℃~+125℃ 组别:CG 温度特性:0±30ppm/℃ 损耗角正切值: 15x10-4 绝缘电阻:≥10GΩ 抗电强度: 2.5倍额定电压 5秒浪涌电流:≤50毫安

替代蓄电池的超级电容储能模块设计

替代蓄电池的超级电容储能模块设计 引言 电能是当代社会不可或缺的重要资源,而储能设备的优劣直接影响着电力设备的充分应用。近年来随着便携式设备、不间断电源系统以及电动车的大量开发使用,蓄电池的使用量日益增加。可充电蓄电池,特别是铅酸蓄电池凭借其价格低廉、性能稳定、没有记忆功能等卓越特点普遍应用在各行各业。但蓄电池受其先天条件的制约,存在着循环寿命差、高低温性能差、充放电过程敏感、深度放电性能容量恢复困难、环境污染的问题,传统蓄电池已经越来越无法满足人们对储能系统的要求。 超级电容是近几年才批量生产的一种新型电力储能器件,也称为电化学电容。它既具有静电电容器的高放电功率优势又像电池一样具有较大电荷储存能力[1,2],单体的容量目前已经做到万法拉级。同时,超级电容还具有循环寿命长、功率密度大、充放电速度快、高温性能好、容量配置灵活、环境友好免维护等优点。自1957年美国人Becker发表第一篇关于超级电容的专利以来,超级电容的应用范围越来越广:在直流电气化铁路供电、UPS等应用方向进行研究,目前已开发出了50kVA和80kVA的实验样机[3];利用超级电容器配合蓄电池作为辅助动力源,促进汽车的能源回收,提高能源利用率[4],并出现了超级电容混合动力汽车[5]。随着超级电容性能的提升,它将有望在小功耗电子设备、新能源利用以及其他一些领域中部分取代传统蓄电池。 本文介绍了一种基于超级电容设计的用以替代12V蓄电池的超级电容模块,通过计算分析得出模块的组合结构、最佳充电电流范围、充电时间以及总的输出能量。该模块具有寿命长,不造成污染,功率和能量密度大等优点,具有很好的开发应用前景。 一、超级电容储能模块的设计 由于超级电容的放电不完全,存在最低工作电压,所以单体超级电容的能量为 ,其中C为超级电容的单体电容量,为单体超级电容充电 完成的电压值。 超级电容器单体储存能量有限且耐压不高,需要通过相应的串连并联方法扩容,扩大超级电容的使用范围。而通过相应的DC-DC芯片可以提高超级电容的最低工作电压。假设超级电容以m个串联,n组并联的方式构成。则每个超级电容的能量输出为 (1) 其中,为芯片的最低启动电压。故超级电容阵列的能量总输出为,为超级电容的总能量。 本文采用SU2400P-0027V-1RA超级电容,具有较高的功率比、能量比和较低的等效串联电阻(ESR(DC)=1mΩ)。为了构成替代12V蓄电池的超级电容模块,我们采用8

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

超级电容器跟锂电池区别

超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Double-Layer Capacitor)、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 突出优点是功率密度高、充放电时间短、循环寿命长、工作温度范围宽,是世界上已投入量产的双电层电容器中容量最大的一种。 锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应: Li+MnO2=LiMnO2该反应为氧化还原反应,放电。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。随着科学技术的发展,现在锂电池已经成为了主流。

本质来说,超级电容器(双电层)是电容器。储能少。锂电是化学电池。储能多。超级电容具有大功率密度,锂离子电池具有大能量密度。 超级电容器与锂电池相同点都可以贮存能量,不同点是超级电容量瞬间充电瞬间放电。 超级电容器充放电都是物理过程,锂电池是化学过程。 越级电容的最大优势在瞬时大电流上,而电池的优势在适当电流的持续释放上,所以二者可以互补使用,例如在电动车的使用方面最佳方案就是结合使用的,电容主要用于启动时的瞬态高流。 超容的优势在于其储能过程是一个物理过程,功率密度大,电池在于其持续的放电能力,能量密度远大于超容。 超级电容器,分为双电层电容器和不对称的赝电容:双电层电容器的正负极都使用活性炭作为电极材料,利用起超大的比表面积来储存电荷,是一种物理过程;不对称的正极使用的是氧化物,利用氧化还原来储存电荷,负极和上述双电层电容器一样。锂离锂电池,正极材料氧化还原,负极是锂离子的嵌入和脱出。 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。

相关文档
最新文档