回归分析(1)PPT课件
合集下载
线性回归分析ppt课件

21
多元回归分析中的其他问题 u变量筛选问题 Ø向前筛选策略
解释变量不断进入回归方程的过程,首先选择与被解释变量具有最高 线性相关系数的变量进入方程,并进行各种检验;其次在剩余的变量中挑 选与解释变量偏相关系数最高并通过检验的变量进入回归方程。 Ø向后筛选策略
变量不断剔除出回归方程的过程,首先所有变量全部引入回归方程并 检验,然后在回归系数显著性检验不显著的一个或多个变量中,剔除t检验 值最小的变量。 Ø逐步筛选策略
合准则。
最小二乘法将偏差距离定义为离差平方和,即
n
Q( 0, 1, p) ( yi E( yi ))2
i 1
最小二乘估计就是寻找参数β0
、β1、…
βp的估计
值β̂0 、β ̂1、… β ̂p,使式(1)达到极小。通过
求极值原理(偏导为零)和解方程组,可求得估计值,
SPSS将自动完成。
每个解释变量进 入方程后引起的 判定系数的变化 量和F值的变化 量(偏F统计量)
输出个解释变量 和被解释变量的 均值、标准差、 相关系数矩阵及 单侧检验概率值
输出判定系数、 调整的判定系数、 回归方程的标准 误、回归方程显 著性检验的方差 分析表
输出方程中各解 释变量与被解释 变量之间的简单 相关、偏相关系 数和部分相关
30
n回归分析的其他操作
Ø选项
DW值
输出标准化残差 绝对值大于等于 3(默认)的样 本数据的相关信 息
多重共线性分 析: 输出各解释变 量的容忍度、 方差膨胀因子、
特征值、条件 指标、方差 比例等
31
n回归分析的其他操作
Ø选项
•标准化预测值 •标准化残差 •剔除残差 •调整的预测值 •学生化残差 •剔除学生化残差
关于matlab的回归分析幻灯片PPT

1 x n 1x n 2.. x n .k
k
n
y 0 1 x 1 . . k x k 称 . 为 回 归 平 面 方 程 .
线 性 模 型 (Y ,X , 2 In )考 虑 的 主 要 问 题 是 :
返回
( 1 ) 用 试 验 值 ( 样 本 值 ) 对 未 知 参 数 和 2 作 点 估 计 和 假 设 检 验 , 从 而 建 立 y与
3 、 在 x = x 0 处 对 y 作 预 测 , 对 y 作 区 间 估 计 .
2021/5/23
返回 5
二、模型参数估计
1、回归系数的最小二乘估计
有 n组 独 立 观 测 值 , ( x 1, y 1) , ( x 2, y 2) , … , ( x n, y n)
设 E yi i 0 0, D x i1 i2 ,i且 1 1 ,2 2 ,, ...n ..n.相 ,, 互独立
n
n
记Q Q (0,1) i2 yi01xi 2
i 1
i 1
最 小 二 乘 法 就 是 选 择 0和 1的 估 计 ˆ0 , ˆ1 使 得
Q (ˆ0,ˆ1)m 0,1Q i(n 0, 1)
2021/5/23
6
2 2
n
记Qe Q(ˆ0,ˆ1)
yi ˆ0 ˆ1xi 2 n (yi yˆi)2
y ˆ ( x ) y ,y ˆ ( x ) y 要 求 y y 2 ( x ) . 若 y ˆ ( x ) y ,y ˆ ( x ) y 分 别 有 解 x
和 x , 即 y ˆ ( x ) y ,y ˆ ( x ) y . 则 x , x 就 是 所 求 的 x 的 控 制 区 间 .
y 0 的 置 信 水 平 为 1 的 预 测 区 间 为
3.2回归分析(1)

1035 1107
1177 1246
解:作出11个点(x,y)构成的散点图, 由图可知,这些 点在一条直线附 近,可以用线性 回归模型
y a bx
来表示它们之间的关系. 根据公式(1)可得
y 因此线性回归方程为 527.591 14.453x
b 14.453, 这里 a, b 分别为a,b的估计值, a 527.591.
(i 1, 2,3,, n) ,
根据线性回归模型,对于每一个 对应的随机误差项
xi ,
i2
i 1 n
i yi (a bxi ) ,
Q( , ) ( yi xi ) 2
i 1 n
我们希望总误差越小越好,即要使 越小越好.故只要求出使
b 取得最小值时的 , 的值作为 a ,
例1.下表给出我国从1949至1999年人口数 据资料,试根据表中数据估计我国2004年 的人口数。
年份 人口 数/ 百万 49 542 54 603 59 672 64 705 69 807 74 909 79 975 84 89 94 99 1035 1107 1177 1246
分析:先画图
年份 人口 数/ 百万 0 542 5 603 10 672 15 705 20 807 25 909 30 975 35 40 45 50
解决这个问题的方法是:先作散点图,如下图所示: 从散点图中可以看出,样 本点呈直线趋势,时间x与 位置观测值y之间有着较好 的线性关系.因此可以用 线性回归方程来刻画它们 之间的关系.
根据线性回归的 系数公式:
n xi yi nx y ˆ n b i 1 b xi2 n( x ) 2 i 1 a y bx ˆ a
第1章 开场白与回归分析概论 《应用回归分析》 PPT课件

• 应用回归分析
• Applied Regression Analysis (ARA)
1
关于RA的发展情况:
• 如果从高斯(Gauss,1777-1855)1809年提 出最小二乘法为回归分析的开端到今年正 好是202周年
• Galton(1822-1911)在1886年发表了关于回 归的开山论文《遗传结构中向中心的回归 (Regression towards mediocrity in heredity structure)》到现在是130多年
20
15
回归分析应用与发展述评
一个20阶的线性方程组要用克莱姆法则去求解,就 需要计算1022次乘法运算,这可是一个天文数字。 然而用矩阵变换的方法只需6000次乘法运算。也正 是由于计算方法的改进和现代计算机的发展,使得 过去不可想象的事情变成了现实。 计量经济学研究中涉及的变量和方程也越来越多。 例如英国剑桥大学的多部门动态模型,多达2 759个 方程,7 484个变量;由诺贝尔经济学奖获得者克莱 因发起的国际连接系统,使用了7 447个方程和3 368个外生变量。
17
回归分析应用与发展述评
回归分析方法自身的完善和发展至今是统计学家 研究的热点课题。例如自变量的选择、稳健回归、 回归诊断、投影寻踪、非参数回归模型等近年仍 有大量研究文献出现。 在回归模型中,当自变量代表时间,因变量不独立 并且构成平稳序列时,这种回归模型的研究就是 统计学中的另一个重要分支——时间序列分析。 它提供了一系列动态数据的处理方法,帮助人们 科学地研究分析所获得的动态数据,从而建立描 述动态数据的数学模型,以达到预测、控制的目 的。
yˆ 33.73 0.516x
9
1 .3 回归分析的主要内容及其一般模型
• Applied Regression Analysis (ARA)
1
关于RA的发展情况:
• 如果从高斯(Gauss,1777-1855)1809年提 出最小二乘法为回归分析的开端到今年正 好是202周年
• Galton(1822-1911)在1886年发表了关于回 归的开山论文《遗传结构中向中心的回归 (Regression towards mediocrity in heredity structure)》到现在是130多年
20
15
回归分析应用与发展述评
一个20阶的线性方程组要用克莱姆法则去求解,就 需要计算1022次乘法运算,这可是一个天文数字。 然而用矩阵变换的方法只需6000次乘法运算。也正 是由于计算方法的改进和现代计算机的发展,使得 过去不可想象的事情变成了现实。 计量经济学研究中涉及的变量和方程也越来越多。 例如英国剑桥大学的多部门动态模型,多达2 759个 方程,7 484个变量;由诺贝尔经济学奖获得者克莱 因发起的国际连接系统,使用了7 447个方程和3 368个外生变量。
17
回归分析应用与发展述评
回归分析方法自身的完善和发展至今是统计学家 研究的热点课题。例如自变量的选择、稳健回归、 回归诊断、投影寻踪、非参数回归模型等近年仍 有大量研究文献出现。 在回归模型中,当自变量代表时间,因变量不独立 并且构成平稳序列时,这种回归模型的研究就是 统计学中的另一个重要分支——时间序列分析。 它提供了一系列动态数据的处理方法,帮助人们 科学地研究分析所获得的动态数据,从而建立描 述动态数据的数学模型,以达到预测、控制的目 的。
yˆ 33.73 0.516x
9
1 .3 回归分析的主要内容及其一般模型
一元线性回归分析PPT课件

第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
线性回归分析教程PPT课件

实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。
回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
方差分析及回归分析ppt60页课件
单因素试验的方差分析
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2
…
As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2
…
As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
《logistic回归分析》课件
信用卡欺诈检测
应用逻辑回归模型检测信用 卡交易中的欺诈行为,保护 用户利益和减少风险。
电影推荐
利用逻辑回归模型根据用户 的历史行为和偏好进行电影 推荐,提供个性化的影片推 荐。
总结与展望
Logistic回归分析的优点和不足
总结逻辑回归分析的优点和限制,讨论其适用范围和局限性。
发展前景
展望逻辑回归分析在未来的发展趋势和应用领域。
探讨Logistic回归分析在实际问题中的广泛应用。
Logistic回归与线性回归的区别
比较Logistic回归和线性回归之间的差异和适用情况。
逻辑回归模型及其基本假设
1 Sigmoid函数
2 逻辑回归的数学模
型
介绍Sigmoid函数及其在
3 基本假设
描述逻辑回归模型中的
逻辑回归中的作用。
解释逻辑回归的数学模
《logistic回归分析》PPT 课件
介绍logistic回归分析的PPT课件,涵盖课程内容、逻辑回归模型、参数估计与 模型拟合、分类结果与型诊断、实战案例、总结与展望以及参考文献。
课程介绍
什么是Logistic回归分析
介绍Logistic回归分析的基本概念和原理。
Logistic回归分析的应用
• [3]C. Bishop (2006) Pattern recognition and machine learning. Springer.
讨论如何评估逻辑回归模型的分类结果,确定 哪些样本属于正类和负类。
ROC曲线
解释ROC曲线在逻辑回归模型中的作用,用于评 估模型的分类性能。
混淆矩阵
介绍混淆矩阵,用于评估逻辑回归模型的分类 准确性和误判情况。
模型的诊断