衡水中学2018届高三下学期全国统一联合考试3月数学理试题

合集下载

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(原卷版)

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(原卷版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合)B. C. D.2. 在复平面内,复数对应的点的坐标为)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. )C.4. 设为)C.5. 函数的图象大致是()A. B. ......C. D.6. 已知一个简单几何体的三视图如图所示,若该几何体的体积为)B.D.7. )B.8. 执行如下程序框图,则输出结果为()C.9. 如图,:的右顶点为右焦点为,,若直线平分线段于,则椭圆)C.10. 设函数为定义域为的奇函数,且时,)B. C.11. 已知函数()12. 已知直线:,若存在实数使得一条曲线与直线点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:;④的“绝对曲线”的条数为()C.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数_______.14. 双曲线的左右焦点分别为、,是双曲线右支上一点,的内心,,且__________.15. 若平面向量________.16. 观察下列各式:;;……__________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1)求数列的通项公式;(2.18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2)若从学习时间不少于人,设选到的男生人数为.(3.(只需写出结论)19. 如图所示,四棱锥的底面为矩形,已知(1(2.20. 在平面直角坐标平面中,.(1)求顶点的轨迹的方程;(2)作两条互相垂直的直线,,,的中点分别为①求四边形②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.21. 已知函数(1,求函数(2)若函数上单调递增,求实数(3)已知请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程]在极坐标系中,曲线中,曲线的参数方程为:.(1)求曲线(2后得到曲线的最小值.23. [选修4-5:不等式选讲](1)当时,解不等式(2.。

【全国百强校】河北省衡水中学2018届高三下学期第6周周考数学(理)试题

【全国百强校】河北省衡水中学2018届高三下学期第6周周考数学(理)试题

理数周日测试6 一、选择题1.已知集合{}{}2,,1,0,2,3,4,8A x x n n Z B ==∈=-,则()R A B ⋂=ð() A. {}1,2,6 B. {}0,1,2 C. {}1,3- D.{}1,6- 2.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( ) A. 32i -- B. 33i -- C. 24i -+ D. 22i -- 3.已知2sin 3α=,则()3tan sin 2ππαα⎛⎫++= ⎪⎝⎭( ) A. 23-B. 23 C. 5- D.54.已知椭圆()222210x y a b a b +=>>的离心率为12,且椭圆的长轴与焦距之差为4,则该椭圆为方程为( )A. 22142x y +=B. 22184x y +=C. 221164x y +=D.2211612x y += 5.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为( ) A.2831 B. 1921 C. 2231 D. 17216.运行如图所示的程序,输出的结果为( )A. 8B. 6C. 5D.47.已知某几何体的三视图如图所示,则该几何体的表面积为( )A. 6πB. 8πC. 6π+6D.8π+48.已知直线1:1l y x =+与2:l y x m =+之间的距离为2,则直线2l 被圆()22:18C x y ++=截得的弦长为( )A. 4B.3C.2D.19.已知实数,x y 满足不等式组10201x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数3z x y =-的最大值为( )A.1B.2C.53 D. 7310.在边长为1的正ABC ∆中,点D 在边BC 上,点E 是AC 中点,若316AD BE =-u u u r u u u r g ,则BDBC=( )A.14 B. 12 C. 34 D. 7811.已知定义在R 上的函数()f x ,满足()()()f m x f m x x R +=-∈,且1x ≥时,()22x nf x -+=,图象如图所示,则满足()2n mf x -≥的实数x 的取值范围是( ) A. []-1,3 B. 1322⎡⎤⎢⎥⎣⎦, C. []0,2 D. 15,22⎡⎤-⎢⎥⎣⎦12.已知函数()()23sin cos 4cos0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭( )A.52- B.92- C.112- D.132-二、填空题13.在正方体1111ABCD A B C D-中,点M是11C D的中点,则1A M与AB所成角的正切值为.14.已知双曲线()222210,0x ya ba b-=>>的离心率为2,过双曲线的右焦点垂直于x轴的直线被双曲线截得的弦长为m,则ma=.15.已知函数()()()()ln0ln0x xf xx x>⎧⎪=⎨--<⎪⎩,若()()()20,0f a f b a b=><,且224a b+的最小值为m,则()22logm ab+-=.16.已知ABC∆的三个内角所对的边分别为,,a b c,且cos cos2cosb Cc B a B+=,sin3sinB A=,则ac=.三、解答题17.(12分)已知等比数列{}n a满足:112a=,且895618a aa a+=+.(1)求{}n a的通项公式及前n项和;(2)若n nb na=,求{}n b的前n项和n T.18.(12分)如图,三棱锥P ABC-中,PAB ABC⊥平面平面,PA PB=,且AB PC⊥.(1)求证:CA CB=;(2)若2,11PA PB AB PC====,求三棱锥P ABC-的体积.19.(12分)某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x ,每小时点击次数为y ,则点(x ,y )近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y 关于x 的回归直线ˆˆˆybx a =+.(附:回归方程系数公式:1221ˆˆˆ,niii nii x y nxybay bx xnx =-=-==--∑∑) 20.(12分)如图,直线:210l x y ++=与y 轴交于点A ,与抛物线()2:20C x py p =>交于P ,Q ,点B 与点A 关于x 轴对称,连接QB ,BP 并延长分别与x 轴交于点M ,N. (1)若43PQ =,求抛物线C 的方程; (2)若433MN =,求BMN ∆外接圆的方程.21.(12分)已知函数()()2ln f x x axa R =+∈.(1)若()y f x =在2x =处的切线与x 轴平行,求()f x 的极值;(2)若函数()()1g x f x x =--在()0∞,+上单调递增,求实数a 的取值范围. 选考题22.(10分)选修4-4坐标系与参数方程以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()253cos28ρθ-=,直线l的参数方程为22x m y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数). (1)把曲线C 的极坐标方程化为普通方程;(2)若直线l 与曲线C 有两个公共点,求实数m 的取值范围.23.(10分)选修4-5不等式选讲 已知函数()12f x x x =-+.(1)关于x 的不等式()2f x <的解集为M ,且(),12m m M -⊆,求实数m 的取值范围; (2)求()()22g x f x x x =-+-的最小值,及对应的x 的取值范围. 附加题. 已知函数()()()2ln f x x g x ax bx a b ==-,、为常数.(Ⅰ)求函数()f x 在点()()1,1f 处的切线方程;(Ⅱ)当函数()2g x x =在处取得极值-2,求函数()g x 的解析式; (Ⅲ)当12a =时,设()()()h x f x g x =+,若函数()h x 在定义域上存在单调减区间,求实数b 的取值范围.河北衡水中学2018届高三数学复习 周日测答案1.【答案】C 【解析】由条件可知A 为偶数集,故(){}R 1,3A B =-I ð.2.【答案】B 【解析】()()()22231i 3i 3i i i 12i i 33i 1i 2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌. 3.【答案】A 【解析】()()32tan sin tan cos sin 23p p a a a a a 骣÷ç++=-=-=-÷ç÷ç桫. 4.【答案】D 【解析】设椭圆的焦距为2c ,由条件可得12c a =,故2a c =,由椭圆的长轴与焦距之差为4可得()24a c -=,即2a c -=,所以,4a =,2c =,故22212b a c =-=,故该椭圆的方程为2211612x y +=.5.【答案】A 【解析】从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种不同情况,其中使得到的数字不大于3.14的情况有3种不同情况,故所求概率为32813131-=. 6.【答案】D 【解析】所给程序的运行过程如下:1b =,3a =;2b =,7a =;3b =,15a =;4b =,31a =,不满足30a <,输出b 的值为4.7.【答案】C 【解析】由三视图可知,该几何体是一个圆柱的34,故表面积为()232123213664p p p ??创=+.8.【答案】A 【解析】由条件可知,直线1l 过圆心():1,0C -,则圆心C 到直线2l 的距离等于直线1l 与2l 之间的距离2,故直线2l 被圆C 截得的弦长为2844-=.9.【答案】B 【解析】不等式组表示的平面区域如下图中的阴影部分所示:且点12,33A 骣÷ç-÷ç÷ç桫,()1,2B ,()1,2C -,易得目标函数3z x y =-在点C 处取得最大值5. 10.【答案】C 【解析】设AB =uu u r a ,AC =uuu r b ,BD BC l =uu u r uu u r,则()()1AD AB BD l l l =+=+-=-+uuu r uu u r uu u r a b a a b ,12BE AE AB =-=-u u u r u u u r u u u r b a ,则()()()()()()2211111312221133131142416AD BEl l l l l l l l l 骣÷ç轾?-+?=-?-+÷ç臌÷ç桫=-+-+=-=-uuu r uu u r a b b a a b a b故34l =,即34BD BC =. 11.【答案】B 【解析】由条件可知,()f x 的图象关于直线1x =对称,结合()()()f m x f m x x +=-?R 可得1m =,而()11f =,即221n -+=,解之得2n =,由()2n m f x -≥可得()12f x ≥,当1x ≥时,由22122x -+≥,解之得32x ≤,所以,312x ≤≤,再结合对称性可得x 的取值范围是13,22轾犏犏臌.12.【答案】B 【解析】()()2353sin cos 4cos sin 22cos22sin 2222f x x x x x x x w w w w w w j =-=--=--,其中4sin 5j =,3cos 5j =,由()12f q =可得()sin 21wq j -=,即()f x 关于x q =对称,而2x pq =+与x q=的距离为12个周期,故sin 212p w q j 轾骣÷ç犏+-=-÷ç÷ç犏桫臌,所以,592222f p q 骣÷ç+=--=-÷ç÷ç桫. 13.【答案】2【解析】11MA B Ð即为1A M 与AB 所成角,取11A B 中点N ,连接MN ,则11MN A B ^,则111tan 2MNMA B A N?=. 14.【答案】6【解析】设双曲线的焦距为2c ,则2ca=,即2c a =,则b =把2x c a ==代入双曲线可得2b y a =?,故22b m a =,所以,2226m b a a==.15.【答案】3【解析】由()()()20,0f a f b a b =><可得()ln ln 2a b =--,即21ab -=, ∴12ab =-,则2242242a b a bab +?=≥,当且仅当122ab a b ìïï=-ïíïï=-ïî,即112a b ì=ïïïíï=-ïïî时,224a b +取得最小值2.故()22212log 2log 32m ab +=+=. 16.cos cos 2cos b C c B a B +=及正弦定理可得sin cos sin 2sin cos B C Ccos B A B +=,即()sin 2sin cos B C A B +=,而()sin sin 0A B C =+>,∴1cos 2B =.由sin 3sin B A =可得3b a =,由余弦定理可得2222cos b a c ac B =+-,即2229a a c ac =+-,解之得ac=(舍去负值).17.【解析】(1)设{}n a 的公比为q ,由895618a a a a +=+可得318q =,∴12q =,∴12n n a =,∴11112211212n n n S 骣÷ç-÷ç÷ç桫==--.(5分) (2)由(1)可得2n n n b =,则231232222n n nT =++++L ① 所以,2341112322222n n nT +=++++L ②由①-②可得2311111111111222112222222212n n n n n n n n n T +++骣÷ç-÷ç÷ç桫+=++++-=-=--L , 所以,222n nn T +=-.(12分) 18.【解析】(1)取AB 的中点O ,连接PO ,PC .∵PA PB =,∴PO AB ^, ∵AB PC ^,PC PO P =I ,PC ,PO Ì平面POC , ∴AB ^平面POC ,又∵OC Ì平面POC ,∴AB OC ^, 而O 是AB 的中点,∴CA CB =.(6分)(2)∵平面PAB ^平面ABC ,PO Ì平面PAB ,平面PAB I 平面ABC AB =, ∴PO ^平面ABC ,由条件可得3PO =,2222OC PC PO =-.则112222222ABC S AB OC =?创V ∴三棱锥P ABC -的体积为:112622333ABC V S PO =?鬃V .(12分) 19.【解析】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10. 甲公司每小时点击次数的平均数为:9578768677710x +++++++++==甲,乙公司每小时点击次数的平均数为:24687789071091x +++++++++==乙.甲公司每小时点击次数的方差为:()()222222122212140 1.210S 轾=+-+??+?犏臌甲;乙公司每小时点击次数的方差为:()()()22222222153******** 5.410S 轾=-+-+-+??+?犏臌乙,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定.(6分) (2)根据折线图可得数据如下:则3x =, 5.4y =,则152215 1.4i i i ii x y xy b x n x=-=-==-åå$, 1.2a =$, ∴所求回归直线方程为: 1.4 1.2y x =+$.(12分)20.【解析】(1)由2102y x pyìï++=ïíï=ïî可得220x p ++=, 设点()11,P x y ,()22,Q x y ,则()280p D =->,即1p >,12x x +=-,122x x p =,故12PQ x =-=.由2p =(舍去负值), ∴抛物线C 的方程为24x y =.(5分)(2)设直线BN ,BM 的斜率分别为1k ,2k 点,21221111212111111122222x y x p x x x x x p k x x px px p -----=====,22222221221222221122222x y x p x x x x x p k x x px px p-----=====,∴120k k +=.直线BN 的方程为:11y k x =+,直线BM 的方程为:21y k x =+,则11,0N k 骣÷ç÷-ç÷÷ç桫,21,0M k 骣÷ç÷-ç÷÷ç桫,则12211211k k MN k k k k -=-==,由120k k +=可得12k k =-,∴1212k k =,∴1k =,∴2k =120k k <,故tan tan BNM BMN??,即BMN V 是等腰三角形,且1OB =,则BMN V 的外接圆的圆心一定在y 轴上,设为()0,t ,由圆心到点M ,B 的距离相等可得()2221t t -=+桫,解之得16t =-,外接圆方程为22149636x y 骣÷ç++=÷ç÷ç桫.(12分) 21.【解析】(1)∵()2ln f x x ax =+,∴()()120f x ax x x¢=+>, 由条件可得()11402f a ¢=+=,解之得18a =-, ∴()21ln 8f x x x =-,()()()()2211044x x f x x x x x --+¢=-=>,令()0f x ¢=可得2x =或2x =-(舍去)当02x <<时,()0f x ¢>;当2x >时,()0f x ¢< 即()f x 在()0,2上单调递增,在()2,+?上单调递减, 故()f x 有极大值()12ln 22f =-,无极小值(5分) (2)()2ln 1g x x ax x =+--,则()()2121210ax x g x ax x x x-+¢=+-=> 设()221h x ax x =-+, ①当0a =时,()1x g x x-¢=-,当01x <<时,()0g x ¢>, 当1x >时,()0g x ¢<,即()g x 在()0,1上单调递增,在()1,+?上单调递减,不满足条件;②当0a <时,()221h x ax x =-+是开口向下的抛物线,方程2210ax x -+=有两个实根,设较大实根为0x . 当0x x >时,有()0h x <,即()0g x ¢<,∴()g x 在()0,x +?上单调递减,故不符合条件(8分)③当0a >时,由()0g x ¢≥可得()221h x ax x =-+在()0,+?上恒成立, 故只需()0010400h a a ìïïïï-ïï-ïíïïD >ïïïï>ïî≥≤或0D ≤,即101041800a a a ìïïïïïïïíïï->ïïïï>ïî≥≤或1800a a ì-ïïíï>ïî≤,解之得18a ≥. 综上可知,实数a 的取值范围是1,8轹÷ê+?÷÷êøë.(12分) 22.【解析】(1)方程()253cos 28r q -=可化为()22532cos 18r q 轾--=犏臌,即22243cos 4r r q -=,把222cos xx y r r q ìï=+ïíï=ïî代入可得()222434x y x +-=,整理可得2214x y +=.(5分)(2)把22x m t y t ìïï=-ïïïíïïï=ïïî代入2214x y +=可得22522280t mt m -+-=,由条件可得()()222220280m m D =--->,解之得55m -<<,即实数m 的取值范围是()5,5-.(10分) 23.【解析】(1)当1x ≤时,不等式()2f x <可变为()122x x --+<,解之得1x <,∴1x <;当1x >时,不等式()2f x <可变为()122x x -+<,解之得1x <,∴x 不存在.综上可知,不等式()2f x <的解集为(),1M =-?.由(),12m m M -?,可得12121m m m ì<-ïïíï-ïî≤,解之得103m <≤,即实数m 的取值范围是10,3轹÷ê÷÷êøë.(5分) (2)()()()()2212121g x f x x x x x x x =-+-=-+----=≥,当且仅当()()120x x --≤,即12x ≤≤时,()g x 取得最小值1,此时,实数x 的取值范围是[]1,2.(10分) 附加题(1)1y x =-(2)()2122g x x x =-(3)()2,b ∈+∞ 试题解析:(Ⅰ)由()ln f x x =(0x >),可得()1'f x x =(0x >), ∴()f x 在点()()1,1f 处的切线方程是()()()111y f f x '-=-,即1y x =-,所求切线方程为1y x =-. (Ⅱ)∵又()2g x ax bx =-可得()2g x ax b '=-,且()g x 在2x =处取得极值2-. ∴()()20,22,g g '⎧=⎪⎨=-⎪⎩可得40,422,a b a b -=-=-⎧⎨⎩解得12a =,2b =. 所求()2122g x x x =-(x R ∈). (Ⅲ)∵()()()21ln 2h x f x g x x x bx =+=+-,()21x bx h x x -+'=(0x >). 依题存在0x >使()210x bx h x x-+'=<,∴即存在0x >使210x bx -+<, 不等式210x bx -+<等价于1b x x >+(*) 令()1x x x =+λ(0x >),∵()()()221111(0)x x x x x x λ+-'=-=>. ∴()x λ在()0,1上递减,在[)1,+∞上递增,故()[)12,x x x=+∈+∞λ, ∵存在0x >,不等式(*)成立,∴2b >,所求()2,b ∈+∞.。

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. )A. B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},B={x|x≤1},则∁A故选:B.2. 对应的点的坐标为)A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】设∴故选:D.3. )A. B. C. D.【答案】A【解析】∵化为B为锐角,C为钝角.,当且仅当∴tanA的最大值是故选A点睛:本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,属于综合题是三角和不等式的结合.4.,则满足的概率是()A. B. C. D.【答案】C【解析】由题意,∴,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为=(x﹣lnx﹣1﹣lne+ln1=e﹣2.S阴影所求的概率为故选:C.5. )A. B.C. D.【答案】D【解析】函数B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知x=C.故选:D.6. )A. B.C. D.【答案】D【解析】该几何体是一个棱锥与四分之一的圆锥的组合体,其表面积为D.7. 已知,,,则,,的大小关系为()A.【答案】A【解析】由题易知:故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.........................8. 执行如下程序框图,则输出结果为()A. B. C.【答案】C【解析】由题意得:则输出的故选:C9. :,,若直线平分线段于)A. B. C. D.【答案】C【解析】如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.)B. C.【答案】A【解析】,期为4的零点,分别画与两个函数的图象都关于直线6个,可得所有零点的和为6,故选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11. 已知函数()A. B. D.【答案】A的图象关于点中心对称,为奇函数,y轴对称,故选:A12. 已知直线:为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:其中直线的“绝对曲线”的条数为()A. B. C. D.【答案】C【解析】由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;对于③,将y=ax+1﹣a代入x2+3y2=4,得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.x1+x21x2若直线l被椭圆截得的线段长度是|a|,化简得.令f(a)=f(1,f(3).所以函数f(a)在(1,3而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.故曲线x2+3y2=4是直线的“绝对曲线”.对于④将y=ax+1﹣a把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,∴x1+x2x1x2若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2化为a6-16a2+16a-16=0,令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故选:C.点睛:本题以新定义“绝对曲线”为背景,重点考查了二次曲线弦长的度量问题,本题综合性较强,需要函数的零点存在定理作出判断.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数,则实数_______.【答案】【解析】如图,作出可行域:表示可行域上的动点与定点显然最大值为,最小值为故答案为:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 的左右焦点分别为,且__________.【答案】【解析】可设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,由I 为△PF 1F 2的内心,可得,则|QF 1|=,若|F 1Q|=|PF 2, 又PQ 为∠F 1PF 2的角平分线,则n=4c ﹣m , 又m ﹣n=2a ,n=m , 解得m=4a ,n=2a ,,即, 则e== 故答案为:15. 若平面向量________.【答案】【解析】由16. 观察下列各式:……__________.【答案】【解析】由题意可得第n 个式子的左边是n 3,右边是n 个连续奇数的和,设第n 个式子的第一个数为a n ,则有a 2﹣a 1=3﹣1=2, a 3﹣a 2=7﹣3=4,…a n ﹣a n ﹣1=2(n ﹣1), 以上(n ﹣1)个式子相加可得a n ﹣a 1=故a n =n 2﹣n+1,可得a 45=1981,a 46=2071, 故可知2017在第45个式子, 故答案为:45三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1的通项公式;(2为数列.【答案】(1)(2)【解析】试题分析:(1,因为存在以存在,使得成立,即存在,使得.即可解得.试题解析:(1,所以所以.(2因为存在,使得成立,所以存在成立,即存在..所以,即实数的取值范围是18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2.(3)试比较男生学习时间的方差.(只需写出结论)【答案】(1)240人(2)见解析(3【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.试题解析:(1人,其中男生中学习时间不足.∴可估计全校中每天学习不足.(2本的学生共人,其中男学生人数为人,故的所有可能取值为由题意可得所以随机变量的分布列为(3)由折线图可得.19. 如图所示,四棱锥的底面为矩形,已知,.(1(2.【答案】(1) (2)【解析】试题分析:(1得到(2)求出平面EAC的法向量和平面DAC的法向量,平面角的余弦值.试题解析:(1为的中点.(2)连接平面为原点,轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).,.显然,是平面的一个法向量.所以二面角点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20..(1)求顶点的轨迹的方程;(2),,,的中点分别为①求四边形②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.【答案】(1(2【解析】试题分析:(1)由,则即可求得顶点方程;(2的斜率存在且不为0.联立直线方程与椭圆方程,化为关于标得到和与积.①根据焦半径公式得②根据中点坐标公式得得到直线值,可得直线,有一条直线的斜率不存在时,另一条直线的斜率为0,直线试题解析:(1)∵∴由①知的重心,由②知(2恰为①当直线的斜率存且不为0时,设直线则①根据焦半径公式得,,即时取等号.②根据中点坐标公式得,同理可求得的斜率为的方程为,整理化简得恒过定点②当直线0点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.21. 已知函数(1,求函数(2)若函数上单调递增,求实数(3,求证【答案】(1) (2) (3)见解析【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,(0,1)上单调递增,从而可得结论.试题解析:(1∴函数的图象在(2时,只需∵函数在上单调递增,∴即上恒成立.在上的值域为.综合①②得实数的取值范围为.(3)由(2)知,当时,时,,,即,三式相加得.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程]在极坐标系中,曲线中,曲线.(1(2后得到曲线的最小值.【答案】(1)【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求出C3的参数方程,根据点到直线的距离公式计算即可.试题解析:(1标方程为(2)将曲线经过伸缩变换后得到曲线的方程为.的距离为当时,有最小值,所以的最小值为23. [选修4-5:不等式选讲](1)当时,解不等式(2.【答案】(1) (2)【解析】试题分析:(1)把原不等式转化为三个不等式组,分别求解集,最后求并集即可;(2.试题解析:(1所以原不等式的解集为(2上是增函数,时,取最小值且最小值为,∴实数的取值范围为点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.。

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. )B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁B={x|x≤1},A故选:B.2. )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】设∴故选:D.3. )【答案】A化为B为锐角,C为钝角.,当且仅当∴tanA的最大值是故选A点睛:本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,属于综合题是三角和不等式的结合.4.)【答案】C【解析】由题意,∴,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为(x﹣lnx﹣1﹣lne+ln1=e﹣2.S阴影所求的概率为故选:C.5. )A. B.C. D.【答案】D【解析】函数B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知C.故选:D.6. )【答案】D【解析】该几何体是一个棱锥与四分之一的圆锥的组合体,其表面积为D.7. 已知,,,则,,的大小关系为()B. D.【答案】A故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.........................8. 执行如下程序框图,则输出结果为()D.【答案】C则输出的故选:C9. 如图,:右焦点为,,若直线平分线段于)【答案】C【解析】如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10. 时,)B. D.【答案】A【解析】,期为4与两个函数的图象都关于直线6个,可得所有零点的和为6,故选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11. 已知函数()C.【答案】A的图象关于点中心对称,可得为奇函数,y轴对称,故选:A12. 已知直线使得一条曲线与直线点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:的“绝对曲线”的条数为()B.【答案】C【解析】由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;对于③,将y=ax+1﹣a代入x2+3y2=4,得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.x1+x21x2若直线l被椭圆截得的线段长度是|a|,令f(a)=f(1,f(3).所以函数f(a)在(1,3而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.故曲线x2+3y2=4是直线的“绝对曲线”.对于④将y=ax+1﹣a把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,∴x1+x2x1x2若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2化为a6-16a2+16a-16=0,令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故选:C.点睛:本题以新定义“绝对曲线”为背景,重点考查了二次曲线弦长的度量问题,本题综合性较强,需要函数的零点存在定理作出判断.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数,则实数_______.【解析】如图,作出可行域:表示可行域上的动点与定点显然最大值为故答案为:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 的左右焦点分别为,是双曲线右支上一点,的内心,,且__________.【解析】可设|PF1|=m,|PF2|=n,|F1F2|=2c,由I为△PF1F2的内心,可得,则|QF 1,若|F 1Q|=|PF 2,又PQ 为∠F 1PF 2的角平分线,则n=4c ﹣m , 又m ﹣n=2a ,n=m , 解得m=4a ,n=2a ,,即,则e= 故答案为:15. 若平面向量________.【解析】由16. 观察下列各式:……__________.【答案】【解析】由题意可得第n个式子的左边是n3,右边是n个连续奇数的和,设第n个式子的第一个数为an ,则有a2﹣a1=3﹣1=2,a 3﹣a2=7﹣3=4,…an﹣an﹣1=2(n﹣1),以上(n﹣1)个式子相加可得an ﹣a1故an =n2﹣n+1,可得a45=1981,a46=2071,故可知2017在第45个式子,故答案为:45三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1的通项公式;(2.【答案】 (2)【解析】试题分析:(1裂项相消求和,因为存在所以存在,使得成立,即存在,使得.的取值范围.试题解析:(1,所以所以.(2因为存在,使得成立,所以存在..所以,即实数的取值范围是18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2)若从学习时间不少于人,设选到的男生人数为.(3.(只需写出结论)【答案】(1)240人(2)见解析(3)【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.试题解析:(1人,其中男生中学习时间不足..(2本的学生共的所有可能取值为所以随机变量的分布列为(3)由折线图可得.19. 如图所示,四棱锥的底面为矩形,已知于.(1(2.【答案】【解析】试题分析:(1(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角面角的余弦值.试题解析:(1,因为,平面为的中点.(2)连接平面为原点,轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).,.显然,是平面的一个法向量.是平面的余弦值为点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20..(1)求顶点的轨迹的方程;(2),,,的中点分别为②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.【答案】(1(2【解析】试题分析:(1)由则的外心,轴上,再由,可得即可求得顶点方程;(2的右焦点.当直线的斜率存在且不为0.联立直线方程与椭圆方程,化为关于标得到和与积.①根据焦半径公式得②根据中点坐标公式得值,可得直线,另一条直线的斜率为0,直线试题解析:(1)∵的重心轴上由③知(2恰为的斜率存且不为0时,设直线则,,即时取等号.②根据中点坐标公式得,同理可求得,恒过定点有一条直线斜率不存在时,另一条斜率一定为0点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.21. 已知函数(1(2)若函数上单调递增,求实数(3,求证【答案】见解析【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,(0,1)上单调递增,从而可得结论.试题解析:(1则,∴函数的图象在(2)∵函数上单调递增,∴在在上无解满足,时,只需∵函数在上单调递增,∴即上恒成立.上单调递增,在上的值域为.②(3)由(2时,时,,,即,三式相加得.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程],极轴为中,曲线的参数方程为:.(1(2的最小值.【答案】【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求的参数方程,根据点到直线的距离公式计算即可.出C3试题解析:(1(2)将曲线经过伸缩变换后得到曲线的方程为.的距离为当时,有最小值,所以的最小值为23. [选修4-5:不等式选讲](1)当时,解不等式(2.【答案】 (2)【解析】试题分析:(1)把原不等式转化为三个不等式组,分别求解集,最后求并集即可;(2. 试题解析:(1所以原不等式的解集为(2上是增函数,时,取最小值且最小值为的取值范围为点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.。

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. )A. B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.2. )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】设z=x+∴在复平面内对应的点位于第四象限故选:D.3. )【答案】A【解析】化为B为锐角,C为钝角.=-,当且仅当∴tanA故选A点睛:本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,属于综合题是三角和不等式的结合.4.)【答案】C【解析】由题意,s=∴,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影(x﹣lnx﹣1﹣lne+ln1=e﹣2.所求的概率为故选:C.5. )A. B.C. D.【答案】D【解析】函数B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知C.故选:D.6. )【答案】D【解析】该几何体是一个棱锥与四分之一的圆锥的组合体,其表面积为D.7. )【答案】A故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.........................8. 执行如下程序框图,则输出结果为()【答案】C则输出的故选:C9. :,于点,若直线平分线段于)【答案】C【解析】如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB=故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.)B. D.【答案】A【解析】,期为4两个函数的图象都关于直线6个,可得所有零点的和为6,故选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11.()C.【答案】A∴的图象关于点中心对称,可得为奇函数,y轴对称,故选:A12. :为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:;④其中直线的“绝对曲线”的条数为()B.【答案】C【解析】由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;对于③,将y=ax+1﹣a代入x2+3y2=4,得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.x1+x21x2若直线l被椭圆截得的线段长度是|a|,令f(a)=f(1,f(3).所以函数f(a)在(1,3而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.故曲线x2+3y2=4是直线的“绝对曲线”.对于④将y=ax+1﹣a把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,∴x1+x2x1x2若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2化为a6-16a2+16a-16=0,令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故选:C.点睛:本题以新定义“绝对曲线”为背景,重点考查了二次曲线弦长的度量问题,本题综合性较强,需要函数的零点存在定理作出判断.二、填空题:(本大题共4小题,每题5分,共20分)13. ,则实数_______.【解析】如图,作出可行域:表示可行域上的动点与定点显然最大值为,最小值为故答案为:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 的左右焦点分别为,且__________.【解析】可设|PF1|=m,|PF2|=n,|F1F2|=2c,由I为△PF1F2的内心,可得,则|QF1|,若|F1Q|=|PF2|=,又PQ为∠F1PF2的角平分线,则n=4c﹣m,又m﹣n=2a,n=m,解得m=4a,n=2a,,即,则e=故答案为:15. 若平面向量________.【解析】由16. 观察下列各式:……__________.【答案】【解析】由题意可得第n个式子的左边是n3,右边是n个连续奇数的和,设第n个式子的第一个数为a n,则有a2﹣a1=3﹣1=2,a3﹣a2=7﹣3=4,…a n﹣a n=2(n﹣1),﹣1以上(n﹣1)个式子相加可得a n﹣a1故a n=n2﹣n+1,可得a45=1981,a46=2071,故可知2017在第45个式子,故答案为:45三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1的通项公式;(2.【答案】 (2)【解析】试题分析:(1裂项相消求和,因为存在所以存在,使得成立,即存在.的取值范围.试题解析:(1,所以所以.(2因为存在,使得成立,所以存在成立..所以,即实数的取值范围是18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2)若从学习时间不少于人,设选到的男生人数为.(3.(只需写出结论)【答案】(1)240人(2)见解析(3)【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.试题解析:(1人,其中男生中学习时间不足小时的有..(2本的学生共人,其中男学生人数为人,故所以随机变量的分布列为(3)由折线图可得.19. 如图所示,四棱锥,.(1(2.【答案】为【解析】试题分析:(1得到(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角平面角的余弦值.试题解析:(1,因为,所以为的中点.(2)连接平面为原点,轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).,.显然,是平面的一个法向量.是平面的余弦值为点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20..(1)求顶点的轨迹的方程;(2),,,的中点分别为①求四边形②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.【答案】(1(2【解析】试题分析:(1)由,则轴上,再由,可得即可求得顶点方程;(2的右焦点.当直线的斜率存在且不为0.联立直线方程与椭圆方程,化为关于标得到和与积.①根据焦半径公式得②根据中点坐标公式得值,可得直线,另一条直线的斜率为0试题解析:(1)∵的重心轴上由③知(2恰为的斜率存且不为0时,设直线则,,即时取等号.②根据中点坐标公式得,同理可求得,,解得恒过定点有一条直线斜率不存在时,另一条斜率一定为0轴,过点点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.21. .(1,求函数(2)若函数上单调递增,求实数(3【答案】见解析【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1)(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,(0,1)上单调递增,从而可得结论.试题解析:(1则,∴函数的图象在(2)∵函数上单调递增,∴在在上无解满足,时,只需,∴∵函数在上单调递增,∴即上恒成立.上单调递增,在上的值域为.综合①②得实数的取值范围为.(3)由(2时,时,,,即,三式相加得.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. [选修4-4:坐标系与参数方程]中,曲线的参数方程为:.(1(2后得到曲线的最小值.【答案】【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求出C3的参数方程,根据点到直线的距离公式计算即可.试题解析:(1(2)将曲线经过伸缩变换后得到曲线的方程为.的距离为的最小值为23. [选修4-5:不等式选讲](1)当时,解不等式(2.【答案】 (2)【解析】试题分析:(1)把原不等式转化为三个不等式组,分别求解集,最后求并集即可;(2. 试题解析:(1所以原不等式的解集为(2上是增函数,时,取最小值且最小值为的取值范围为点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.。

精品解析:【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(原卷版)

精品解析:【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(原卷版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序填涂在答题卡上)1. )A. B. C. D.2. )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. )4. 设为)A. C. D.5. 函数的图象大致是()A. B. 学+科+...学+科+...C. D.6. )A.7. )A. D.8. 执行如下程序框图,则输出结果为()A. B. C.9. :,于点,若直线平分线段于)A. C. D.10. 设函数为定义域为的奇函数,且)A. B. C. D.11.()A. D.12. :的“绝对曲线”的条数为()A. C. D.二、填空题:(本大题共4小题,每题5分,共20分)13. ,则实数_______.14. 的左右焦点分别为,且__________.15. ________.16. 观察下列各式:……__________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1的通项公式;(2.18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2.(3.(只需写出结论)19. 的底面为矩形,已知,(1(2.20.(1(2),,,①求四边形②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.21. .(1,求函数(2(3请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22. [选修4-4:坐标系与参数方程]中,曲线的参数方程为:.(1(2后得到曲线的最小值.23. [选修4-5:不等式选讲](1(2.。

【全国百强校】河北省衡水中学2018届高三第十次模拟考试数学(理)试题(解析版)

2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. )B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},B={x|x≤1},则∁A故选:B.2. 在复平面内,复数)A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】设∴故选:D.3. )【答案】A化为B为锐角,C为钝角.,当且仅当∴tanA的最大值是故选A点睛:本题考查了三角形内角和定理、诱导公式、和差公式、基本不等式的性质,属于综合题是三角和不等式的结合.4.,则满足的概率是()【答案】C【解析】由题意,∴,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为(x﹣lnx﹣1﹣lne+ln1=e﹣2.S阴影所求的概率为故选:C.5. )A. B.C. D.【答案】D【解析】函数B.当x=10时,y=1000,对应点在x轴上方,排除A,当x>0时,y=x3lgx,y′=3x2lgx+x2lge,可知C.故选:D.6. )【答案】D【解析】该几何体是一个棱锥与四分之一的圆锥的组合体,其表面积为D.7. 已知,,,则,,的大小关系为()B. D.【答案】A故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.........................8. 执行如下程序框图,则输出结果为()D.【答案】C则输出的故选:C9. 如图,设椭圆:,,若直线平分线段于的离心率是()【答案】C【解析】如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10. 时,)B.【答案】A【解析】周期为4的函数图象,两个函数的图象都关于直线6个,可得所有零点的和为6,故选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11. 已知函数()C.【答案】Ay轴对称,故选:A12. 已知直线使得一条曲线与直线点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:的“绝对曲线”的条数为()【答案】C【解析】由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;对于③,将y=ax+1﹣a代入x2+3y2=4,得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.x1+x21x2若直线l被椭圆截得的线段长度是|a|,化简得.令f(a)=f(1,f(3).所以函数f(a)在(1,3而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.故曲线x2+3y2=4是直线的“绝对曲线”.对于④将y=ax+1﹣a把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,∴x1+x2x1x2若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2化为a6-16a2+16a-16=0,令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故选:C.点睛:本题以新定义“绝对曲线”为背景,重点考查了二次曲线弦长的度量问题,本题综合性较强,需要函数的零点存在定理作出判断.二、填空题:(本大题共4小题,每题5分,共20分)13. 已知实数,则实数_______.【解析】如图,作出可行域:表示可行域上的动点与定点显然最大值为故答案为:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 的左右焦点分别为、,是双曲线右支上一点,的内心,,且__________.【解析】可设|PF1|=m,|PF2|=n,|F1F2|=2c,由I为△PF1F2的内心,可得,则|QF 1,若|F 1Q|=|PF 2,又PQ 为∠F 1PF 2的角平分线,则n=4c ﹣m , 又m ﹣n=2a ,n=m , 解得m=4a ,n=2a ,,即,则e= 故答案为:15. 若平面向量________.【解析】由16. 观察下列各式:……”这个数,则__________.【答案】【解析】由题意可得第n个式子的左边是n3,右边是n个连续奇数的和,设第n个式子的第一个数为an ,则有a2﹣a1=3﹣1=2,a 3﹣a2=7﹣3=4,…an﹣an﹣1=2(n﹣1),以上(n﹣1)个式子相加可得an ﹣a1故an =n2﹣n+1,可得a45=1981,a46=2071,故可知2017在第45个式子,故答案为:45三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. .(1)求数列的通项公式;(2,使得.【答案】 (2)【解析】试题分析:(1裂项相消求和,因为存在所以存在,使得成立,即存在.的取值范围.试题解析:(1(2因为存在,使得成立,所以存在..所以,即实数的取值范围是18. 为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1.(2.(3的大小.(只需写出结论)【答案】(1)240人(2)见解析(3)【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.试题解析:(1小时的有人,女生中学习时间不足..(2)学习时间不少于本的学生共人,其中男学生人数为人,故的所有可能取值为所以随机变量的分布列为(3)由折线图可得.19. 如图所示,四棱锥的底面为矩形,已知于.(1(2.【答案】【解析】试题分析:(1得到(2)求出平面EAC的法向量和平面DAC平面角的余弦值.试题解析:(1,所以为的中点.(2平面为原点,轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).,.显然,是平面的一个法向量.,的余弦值为点睛:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20..(1)求顶点的轨迹的方程;(2),,的轨迹,的中点分别为①求四边形②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.【答案】(1(2恒过定点【解析】试题分析:(1)由则的外心,轴上,再由,可得即可求得顶点方程;(2的斜率存在且不为0.联立直线方程与椭圆方程,化为关于标得到和与积.①根据焦半径公式得,代入四边形面积公式,再由基本不等式求得四边形的最小值;②根据中点坐标公式得得值,可得直线,另一条直线的斜率为0,轴,过点(试题解析:(1)∵的重心轴上由③知,化简整理得:(2恰为的斜率存且不为0时,设直线,,即时取等号.,恒过定点有一条直线斜率不存在时,另一条斜率一定为0恒过定点点睛:(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.21. 已知函数(1,求函数(2)若函数(3,求证.【答案】见解析【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,(0,1)上单调递增,从而可得结论.试题解析:(1则,∴函数的图象在(2在时,只需∵函数在上单调递增,∴即.上单调递增,综合①②得实数的取值范围为.(3)由(2时,时,,,即,三式相加得.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22. [选修4-4:坐标系与参数方程]中,曲线的参数方程为:.(1)求曲线(2后得到曲线的最小值.【答案】【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求的参数方程,根据点到直线的距离公式计算即可.出C3试题解析:(1(2)将曲线后得到曲线的方程为.的距离为当时,有最小值,所以的最小值为23. [选修4-5:不等式选讲](1(2.【答案】 (2)【解析】试题分析:(1)把原不等式转化为三个不等式组,分别求解集,最后求并集即可;(2)不等式. 试题解析:(1(2上是增函数,时,取最小值且最小值为的取值范围为点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.。

【全国百强校】河北省衡水中学2018届高三下学期第6周周考数学(理)试题

理数周日测试6一、选择题1.已知集合{}{}2,,1,0,2,3,4,8A x x n n Z B ==∈=-,则()R A B ⋂=ð( ) A. {}1,2,6 B. {}0,1,2 C. {}1,3- D.{}1,6- 2.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( )A. 32i --B. 33i --C. 24i -+D. 22i -- 3.已知2sin 3α=,则()3tan sin 2ππαα⎛⎫++= ⎪⎝⎭( ) A. 23-B. 23C. 3-34.已知椭圆()222210x y a b a b +=>>的离心率为12,且椭圆的长轴与焦距之差为4,则该椭圆为方程为( )A. 22142x y +=B. 22184x y +=C. 221164x y +=D.2211612x y += 5.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为( ) A.2831 B. 1921 C. 2231 D. 17216.运行如图所示的程序,输出的结果为( )A. 8B. 6C. 5D.47.已知某几何体的三视图如图所示,则该几何体的表面积为( )A. 6πB. 8πC. 6π+6D.8π+48.已知直线1:1l y x =+与2:l y x m =+之间的距离为2,则直线2l 被圆()22:18C x y ++=截得的弦长为( )A. 4B.3C.2D.19.已知实数,x y 满足不等式组10201x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数3z x y =-的最大值为( )A.1B.2C.53 D. 7310.在边长为1的正ABC ∆中,点D 在边BC 上,点E 是AC 中点,若316AD BE =-,则BDBC=( ) A.14 B. 12 C. 34 D.78 11.已知定义在R 上的函数()f x ,满足()()()f m x f m x x R +=-∈,且1x ≥时,()22x nf x -+=,图象如图所示,则满足()2n mf x -≥的实数x 的取值范围是( ) A. []-1,3 B. 1322⎡⎤⎢⎥⎣⎦, C. []0,2 D. 15,22⎡⎤-⎢⎥⎣⎦12.已知函数()()23sin cos 4cos0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭( )A. 52-B. 92-C. 112-D. 132- 二、填空题13.在正方体1111ABCD A B C D -中,点M 是11C D 的中点,则1A M 与AB 所成角的正切值为.14.已知双曲线()222210,0x y a b a b-=>>的离心率为2,过双曲线的右焦点垂直于x 轴的直线被双曲线截得的弦长为m ,则m a=. 15.已知函数()()()()ln 0ln 0x x f x x x >⎧⎪=⎨--<⎪⎩,若()()()20,0f a f b a b =><,且224a b +的最小值为m ,则()22log m ab +-=.16.已知ABC ∆的三个内角所对的边分别为,,a b c ,且cos cos 2cos b C c B a B +=,sin 3sin B A =,则ac=. 三、解答题17.(12分)已知等比数列{}n a 满足:112a =,且895618a a a a +=+. (1)求{}n a 的通项公式及前n 项和; (2)若n n b na =,求{}n b 的前n 项和n T .18.(12分)如图,三棱锥P ABC -中,PAB ABC ⊥平面平面,PA PB =,且AB PC ⊥. (1)求证:CA CB =;(2)若2,PA PB AB PC ====P ABC -的体积.19.(12分)某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x ,每小时点击次数为y ,则点(x ,y )近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y 关于x 的回归直线ˆˆˆybx a =+.(附:回归方程系数公式:1221ˆˆˆ,ni ii nii x y nxybay bx xnx =-=-==--∑∑) 20.(12分)如图,直线:10l y ++=与y 轴交于点A ,与抛物线()2:20C x py p =>交于P ,Q ,点B 与点A 关于x 轴对称,连接QB ,BP 并延长分别与x 轴交于点M ,N. (1)若PQ =,求抛物线C 的方程; (2)若3MN =BMN ∆外接圆的方程.21.(12分)已知函数()()2ln f x x axa R =+∈.(1)若()y f x =在2x =处的切线与x 轴平行,求()f x 的极值;(2)若函数()()1g x f x x =--在()0∞,+上单调递增,求实数a 的取值范围. 选考题22.(10分)选修4-4坐标系与参数方程以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()253cos28ρθ-=,直线l的参数方程为22x m y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数). (1)把曲线C 的极坐标方程化为普通方程;(2)若直线l 与曲线C 有两个公共点,求实数m 的取值范围.23.(10分)选修4-5不等式选讲 已知函数()12f x x x =-+.(1)关于x 的不等式()2f x <的解集为M ,且(),12m m M -⊆,求实数m 的取值范围; (2)求()()22g x f x x x =-+-的最小值,及对应的x 的取值范围. 附加题. 已知函数()()()2ln f x x g x ax bx a b ==-,、为常数.(Ⅰ)求函数()f x 在点()()1,1f 处的切线方程;(Ⅱ)当函数()2g x x =在处取得极值-2,求函数()g x 的解析式; (Ⅲ)当12a =时,设()()()h x f x g x =+,若函数()h x 在定义域上存在单调减区间,求实数b 的取值范围.河北衡水中学2018届高三数学复习 周日测答案1.【答案】C 【解析】由条件可知A 为偶数集,故(){}R 1,3A B =-I ð.2.【答案】B 【解析】()()()22231i 3i 3i i i 12i i 33i 1i2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌. 3.【答案】A 【解析】()()32tan sin tan cos sin 23p p a a a a a 骣÷ç++=-=-=-÷ç÷ç桫. 4.【答案】D 【解析】设椭圆的焦距为2c ,由条件可得12c a =,故2a c =,由椭圆的长轴与焦距之差为4可得()24a c -=,即2a c -=,所以,4a =,2c =,故22212b a c =-=,故该椭圆的方程为2211612x y +=.5.【答案】A 【解析】从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种不同情况,其中使得到的数字不大于3.14的情况有3种不同情况,故所求概率为32813131-=. 6.【答案】D 【解析】所给程序的运行过程如下:1b =,3a =;2b =,7a =;3b =,15a =;4b =,31a =,不满足30a <,输出b 的值为4.7.【答案】C 【解析】由三视图可知,该几何体是一个圆柱的34,故表面积为()232123213664p p p ??创=+.8.【答案】A 【解析】由条件可知,直线1l 过圆心():1,0C -,则圆心C 到直线2l 的距离等于直线1l 与2l 之间的距离2,故直线2l 被圆C 截得的弦长为4.9.【答案】B 【解析】不等式组表示的平面区域如下图中的阴影部分所示:且点12,33A 骣÷ç-÷ç÷ç桫,()1,2B ,()1,2C -,易得目标函数3z x y =-在点C 处取得最大值5. 10.【答案】C 【解析】设AB =uu u r a ,AC =uuu r b ,BD BC l =uu u r uu u r,则()()1AD AB BD l l l =+=+-=-+u u u r u u u r u u u r a b a a b ,12BE AE AB =-=-u u u r u u u r u u u r b a ,则()()()()()()2211111312221133131142416AD BEl l l l l l l l l 骣÷ç轾?-+?=-?-+÷ç臌÷ç桫=-+-+=-=-uuu r uu u r a b b a a b a b故34l =,即34BD BC =. 11.【答案】B 【解析】由条件可知,()f x 的图象关于直线1x =对称,结合()()()f m x f m x x +=-?R 可得1m =,而()11f =,即221n -+=,解之得2n =,由()2n m f x -≥可得()12f x ≥,当1x ≥时,由22122x -+≥,解之得32x ≤,所以,312x ≤≤,再结合对称性可得x 的取值范围是13,22轾犏犏臌.12.【答案】B 【解析】()()2353sin cos 4cos sin 22cos22sin 2222f x x x x x x x w w w w w w j =-=--=--,其中4sin 5j =,3cos 5j =,由()12f q =可得()sin 21wq j -=,即()f x 关于x q =对称,而2x pq =+与x q=的距离为12个周期,故sin 212p w q j 轾骣÷ç犏+-=-÷ç÷ç犏桫臌,所以,592222f p q 骣÷ç+=--=-÷ç÷ç桫. 13.【答案】2【解析】11MA B Ð即为1A M 与AB 所成角,取11A B 中点N ,连接MN ,则11MN A B ^,则111tan 2MNMA B A N?=. 14.【答案】6【解析】设双曲线的焦距为2c ,则2ca=,即2c a =,则b =把2x c a ==代入双曲线可得2b y a =?,故22b m a =,所以,2226m b a a==.15.【答案】3【解析】由()()()20,0f a f b a b =><可得()ln ln 2a b =--,即21ab -=, ∴12ab =-,则2242242a b a bab +?=≥,当且仅当122ab a b ìïï=-ïíïï=-ïî,即112a b ì=ïïïíï=-ïïî时,224a b +取得最小值2.故()22212log 2log 32m ab +=+=. 16.cos cos 2cos b C c B a B +=及正弦定理可得sin cos sin 2sin cos B C Ccos B A B +=,即()s i n 2s i n c o s B C A B +=,而()s i ns i n 0A B C =+>,∴1c o s 2B =.由sin 3sin B A =可得3b a =,由余弦定理可得2222cos b a c ac B =+-,即2229a a c ac =+-,解之得a c=(舍去负值).17.【解析】(1)设{}n a 的公比为q ,由895618a a a a +=+可得318q =,∴12q =,∴12n n a =,∴11112211212n n n S 骣÷ç-÷ç÷ç桫==--.(5分) (2)由(1)可得2n n n b =,则231232222n n nT =++++L ① 所以,2341112322222n n nT +=++++L ②由①-②可得2311111111111222112222222212n n n n n n n n n T +++骣÷ç-÷ç÷ç桫+=++++-=-=--L , 所以,222n nn T +=-.(12分) 18.【解析】(1)取AB 的中点O ,连接PO ,PC .∵PA PB =,∴PO AB ^, ∵AB PC ^,PC PO P =I ,PC ,PO Ì平面POC , ∴AB ^平面POC ,又∵OC Ì平面POC ,∴AB OC ^, 而O 是AB 的中点,∴CA CB =.(6分)(2)∵平面PAB ^平面ABC ,PO Ì平面PAB ,平面PAB I 平面ABC AB =, ∴PO ^平面ABC,由条件可得PO =,OC =.则11222ABC S AB OC =?创V ∴三棱锥P ABC -的体积为:1133ABC V S PO =?V .(12分) 19.【解析】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10. 甲公司每小时点击次数的平均数为:9578768677710x +++++++++==甲,乙公司每小时点击次数的平均数为:24687789071091x +++++++++==乙.甲公司每小时点击次数的方差为:()()222222122212140 1.210S 轾=+-+??+?犏臌甲;乙公司每小时点击次数的方差为:()()()22222222153******** 5.410S 轾=-+-+-+??+?犏臌乙,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定.(6分) (2)根据折线图可得数据如下:则3x =, 5.4y =,则152215 1.4i i i i ix y xy b x n x=-=-==-åå$, 1.2a =$, ∴所求回归直线方程为: 1.4 1.2y x =+$.(12分)20.【解析】(1)由2102y x pyìï++=ïíï=ïî可得220x p ++=, 设点()11,P x y ,()22,Q x y ,则()280p D =->,即1p >,12x x +=-,122x x p =,故12PQ x =-=.由2p =(舍去负值), ∴抛物线C 的方程为24x y =.(5分)(2)设直线BN ,BM 的斜率分别为1k ,2k 点,21221111212111111122222x y x p x x x x x p k x x px px p -----=====,22222221221222221122222x y x p x x x x x p k x x px px p-----=====,∴120k k +=.直线BN 的方程为:11y k x =+,直线BM 的方程为:21y k x =+,则11,0N k 骣÷ç÷-ç÷ç÷桫,21,0M k 骣÷ç÷-ç÷ç÷桫,则12211211k k MN k k k k -=-==,由120k k +=可得12k k =-,∴1212k k =,∴1k =,∴2k =120k k <,故tan tan BNM BMN??,即BMN V 是等腰三角形,且1OB =,则BMN V 的外接圆的圆心一定在y 轴上,设为()0,t ,由圆心到点M ,B 的距离相等可得()2221t t -=+桫,解之得16t =-,外接圆方程为22149636x y 骣÷ç++=÷ç÷ç桫.(12分) 21.【解析】(1)∵()2ln f x x ax =+,∴()()120f x ax x x¢=+>, 由条件可得()11402f a ¢=+=,解之得18a =-, ∴()21ln 8f x x x =-,()()()()2211044x x f x x x x x --+¢=-=>,令()0f x ¢=可得2x =或2x =-(舍去)当02x <<时,()0f x ¢>;当2x >时,()0f x ¢< 即()f x 在()0,2上单调递增,在()2,+?上单调递减, 故()f x 有极大值()12ln 22f =-,无极小值(5分) (2)()2ln 1g x x ax x =+--,则()()2121210ax x g x ax x x x-+¢=+-=>设()221h x ax x =-+, ①当0a =时,()1x g x x-¢=-,当01x <<时,()0g x ¢>, 当1x >时,()0g x ¢<,即()g x 在()0,1上单调递增,在()1,+?上单调递减,不满足条件;②当0a <时,()221h x ax x =-+是开口向下的抛物线,方程2210ax x -+=有两个实根,设较大实根为0x . 当0x x >时,有()0h x <,即()0g x ¢<,∴()g x 在()0,x +?上单调递减,故不符合条件(8分)③当0a >时,由()0g x ¢≥可得()221h x ax x =-+在()0,+?上恒成立,故只需()0010400h a a ìïïïï-ïï-ïíïïD >ïïïï>ïî≥≤或0D ≤,即101041800a a a ìïïïïïïïíïï->ïïïï>ïî≥≤或1800a a ì-ïïíï>ïî≤,解之得18a ≥. 综上可知,实数a 的取值范围是1,8轹÷ê+?÷÷êøë.(12分) 22.【解析】(1)方程()253cos 28r q -=可化为()22532cos 18r q 轾--=犏臌,即22243cos 4r r q -=,把222cos xx y r r q ìï=+ïíï=ïî代入可得()222434x y x +-=,整理可得2214x y +=.(5分)(2)把2x m y ìïï=-ïïïíïïï=ïïî代入2214x y +=可得225280t m -+-=,由条件可得()()2220280m D =--->,解之得m -<,即实数m的取值范围是(-.(10分) 23.【解析】(1)当1x ≤时,不等式()2f x <可变为()122x x --+<,解之得1x <,∴1x <;当1x >时,不等式()2f x <可变为()122x x -+<,解之得1x <,∴x 不存在.综上可知,不等式()2f x <的解集为(),1M =-?.由(),12m m M -?,可得12121m m m ì<-ïïíï-ïî≤,解之得103m <≤,即实数m 的取值范围是10,3轹÷ê÷÷êøë.(5分) (2)()()()()2212121g x f x x x x x x x =-+-=-+----=≥,当且仅当()()120x x --≤,即12x ≤≤时,()g x 取得最小值1,此时,实数x 的取值范围是[]1,2.(10分) 附加题(1)1y x =-(2)()2122g x x x =-(3)()2,b ∈+∞ 试题解析:(Ⅰ)由()ln f x x =(0x >),可得()1'f x x=(0x >), ∴()f x 在点()()1,1f 处的切线方程是()()()111y f f x '-=-,即1y x =-,所求切线方程为1y x =-. (Ⅱ)∵又()2g x ax bx =-可得()2g x ax b '=-,且()g x 在2x =处取得极值2-. ∴()()20,22,g g '⎧=⎪⎨=-⎪⎩可得40,422,a b a b -=-=-⎧⎨⎩解得12a =,2b =. 所求()2122g x x x =-(x R ∈). (Ⅲ)∵()()()21ln 2h x f x g x x x bx =+=+-,()21x bx h x x -+'=(0x >). 依题存在0x >使()210x bx h x x-+'=<,∴即存在0x >使210x bx -+<, 不等式210x bx -+<等价于1b x x >+(*) 令()1x x x =+λ(0x >),∵()()()221111(0)x x x x x xλ+-'=-=>. ∴()x λ在()0,1上递减,在[)1,+∞上递增,故()[)12,x x x=+∈+∞λ, ∵存在0x >,不等式(*)成立,∴2b >,所求()2,b ∈+∞.。

【全国百强校】河北省衡水中学2018届高三下学期第7周周考理数试题

2017-2018届高三数学下学期理科数学 周日测试7 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合2Axx,320Bxx,则( )

A.ABRU B.ABI C.2ABxxI D.322ABxxU 2.记复数z的虚部为lmz,已知复数5221izii,(i为虚数单位),则lmz为( ) A.2 B.3 C.3i D.-3 3.已知命题p:“对任意0x,都有ln1xx”,则命题p的否定是( ) A.对任意0x,都有ln1xx B.存在00x,使得00ln1xx C.对任意0x,都有ln1xx D.存在00x,使得00ln1xx

4.下列函数:12xy,2yx,3yx,3yx在0,上是增函数且为偶函数的有( ) A.1个 B.2个 C.3个 D.4个 5.已知曲线323fxx在点1,1f处的切线的倾斜角为,则222sincos2sincoscos( )

A.12 B.2 C.25 D.38 6.函数coslnxyx的图象大致是( )

A. B. C. D. 7.若向量,abrr的夹角为3,且2ar,1br,则向量ar与向量2abrr的夹角为( ) A.6 B.3 C.23 D.56 8.定义在R上的奇函数fx满足:2fxfx,且当01x时,2xfx,则1

2

log2017f

的值为( )

A.10242017 B.20171024 C.12017 D.11024 9.丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方向留下了很多宝贵的成果,设函数fx在,ab上的导函数为fx,fx在,ab上的导函数为fx,若在,ab上0fx恒成立,则称函数fx在,ab上为“凸函数”,已知

衡水名师专题卷2018届高三数学理专项练习:专题十三圆

绝密★启用前2018衡水名师原创专题卷理数专题十三《圆锥曲线与方程》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1卡上第1卷一、选择题1、已知,是双曲线的左、右焦点,设双曲线的离心率为.若在双曲线的右支上存在点,满足,且,则该双曲线的离心率等于( )A.B.C.D.2、已知椭圆:的左、右顶点分别为、,且以线段为直径的圆与直线相切,则的离心率为( )A.B.C.D.3、若双曲线:的一条渐近线被圆所截得的弦长为,则的离心率为( )A.B.C.D.4、已知抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为( )A.16B.14C. 12D.105、已知双曲线上有一点到右焦点的距离为,则点到左焦点的距离是( )A.8B.28C.12D.8或286、椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是的正方形的顶点,则椭圆的标准方程为( )A.B.C.D.7、已知椭圆的两个焦点是,,是直线与椭圆的一个公共点,当取得最小值时椭圆的离心率为( )A.B.C.D.8、如图,,为椭圆长轴的左、右端点,为坐标原点,,,为椭圆上不同于,的三点,直线,,,围成一个平行四边形,则( )A.14B.12C.9D.79、已知椭圆的左焦点为,有一小球从处以速度开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到时,它所用的最长时间是最短时间的倍,则椭圆的离心率为( )A.B.C.D.10、设椭圆,双曲线,(其中)的离心率分别为,,则( )A.,B.,C.,D.,与大小不确定11、、分别是双曲线的左顶点和右焦点,、在双曲线的一条渐近线上的射影分别为、,为坐标原点,与的面积之比为,则该双曲线的离心率为 ( )A.B.C.D.12、已知过抛物线的焦点的直线与抛物线交于,两点,且,抛物线的准线与轴交于点,于点,若四边形的面积为,则准线的方程为( )A.B.C.D.二、填空题13、已知是抛物线的焦点,是上一点,的延长线交轴于点,若为的中点,则.14、已知双曲线的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2018年全国高三统一联合考试
理科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选
项中,只有一项是符合题目要求的.
1.已知全集1,2,3,4,5,6,7,8U,3,4,5A,1,3,6B,则集合2,7,8是( )
A.AB B.AB C.UCAB D.UCAB
2.已知复数z的实部不为0,且1z,设1zz,则在复平面上对应的点在( )
A.实轴上 B.虚轴上 C.第三象限 D.第四象限
3.将2nx的展开式按x的升幂排列,若倒数第三项的系数是40,则n的值是( )
A.4 B.5 C.6 D.7
4.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )

A.33 B.6 C.9 D.43
5.设1F,2F分别是双曲线2222:10,0xyCabab的左、右焦点,以1F为圆心、12FF为
半径的圆与双曲线左支的其中一个交点为A,若12120AFF∠°,则该双曲线的离心率是
( )
A.2 B.3 C.31 D.312
6.若函数2sin20fxax,a是不为零的常数)在R上的值域为2,2,且
在区间5,1212上是单调减函数,则a和的值是( )
A.1a,3 B.1a,3 C.1a,6 D.1a,6
7.已知函数

32
fxxaxbxc
(a,b,c均为常数)的图象关于点1,0对称,则bc的
2

值是( )
A.4 B.4 C.2 D.2
8.已知“xaxb”,且“xaxc”,则“xc”是“xb”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设
李某智商较高,他独自一人解决项目M的概率为10.3P;同时,有n个水平相同的人也在
研究项目M,他们各自独立地解决项目M的概率都是0.1.现在李某单独研究项目M,且这n个
人组成的团队也同时研究项目M,设这个n人团队解决项目M的概率为2P,若21PP,则
n

的最小值是( )
A.3 B.4 C.5 D.6
10.已知向量cos,sinAB,cos,sinBC,cos,sinCA,其中
02
,则ABBC的值是( )
A.12 B.12 C.32 D.32
11.设函数fx定义如下表:
x
1 2 3 4 5


fx

1 4 2 5 3

执行如图所示的程序框图,则输出的x的值是( )

A.4 B.5 C.2 D.3
12.已知异面直线a,b所成的角为90°,直线AB与a,b均垂直,且垂足分别为A,B,
若动点P在直线a上运动,动点Q在直线b上运动,4PAQB,则线段PQ的中点M的
3

轨迹所围成的平面区域的面积是( )
A.2 B.4 C.8 D.12
二、填空题(每题5分,满分20分,将答案填在答题纸上)

13.抛物线24yx的焦点到它的准线的距离是____________.

14.若实数x,y满足100xyxy,则2zxy取得最大值时对应的最优解是____________.
15.已知在ABC△中,角,,ABC的对边分别是,,abc,5cos5A,10cos10B,2c,
则a____________.
16.已知函数xxfxe,关于x的方程220fxfxc有以下四个结论:
①当0c时,方程有3个实根;②当221cce时,方程有3个实根;③当2211ece时,
方程有2个实根;④当221ece时,方程有4个实根.
以上结论中正确的有____________(填序号).
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演
算步骤.)
17.已知正项等比数列na满足*14nnnaanN.
(1)求数列na的通项公式;
(2)设2211loglognnnbaa,求数列nb的前n项和nS.
18.如图,在三棱柱111ABCABC中,1ACBCABAA,过1AA的平面分别交BC,
11
BC

于点D,1D.

(1)求证:四边形11ADDA为平行四边形;
4

(2)若1AA平面ABC,D为BC中点,E为1DD中点,求二面角1ACEC的余弦值.
19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”
的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频
被转发的天数x与点赞的人数y进行了统计,数据见下表:
x
1 2 3 4 5 6 7

y
6 11 21 34 66 114 210

根据所给数据,xy,画出了散点图以后,发现演讲视频被转发的天数x与点赞的人数y的

关系可以近似地表示为xyab(,ab均为正常数).
(题中所有数据的最后计算结果都精确到0.01)
(1) 建立y关于x的回归方程;
(2) 试预测,至少经过多少天,点赞的人数超过12000?
附:①对于一组数据11,xy,22,xy,…,,nnxy,其回归直线yxa的斜率和截距

的最小二乘估计分别为121niiiniixxyyxx,ayx.
②参考数据:
lg2 lg3 lg6 lg11 lg21 lg34 lg66 lg114 lg210
0.30 0.48 0.78 1.04 1.32 1.53 1.82 2.06 2.32
20.已知椭圆2222:10xyEabab的左、右焦点分别为1F、2F,椭圆E上一点A在x轴
上的射影恰好为1F,且直线2AF的斜率为312.
(1)求椭圆E的离心率;
(2)当2a时,过点0,2Q的射线与椭圆E交于不同的两点M,N,若点P在射线QM上,

且满足2QMQNQP,求点P的横坐标0x的取值范围.
21.已知函数lnfxx.
(1)设'Fxfkxkfk(其中0k),求证:fxFx.
(2)若曲线yfx与抛物线22yaxax有两个公共点,求实数a的取值范围.
5

22.已知圆C的极坐标方程为222sin104,直角坐标系xOy的坐标原点O与
极点重合,x轴的正半轴与极轴重合.
(1)求圆C的标准方程和它的一个参数方程;
(2)设,Pxy是圆C上的任意一点,求xy的最大值.
23.已知函数1fxxx.
(1)解不等式3fx;
(2)若2fxfy,求xy的取值范围.

相关文档
最新文档