「精品」高考数学二轮复习寒假作业一集合与常用逻辑用语注意解题的速度文

合集下载

(2021年整理)高三数学第二轮专题复习系列(1)--集合与简易逻辑.docx

(2021年整理)高三数学第二轮专题复习系列(1)--集合与简易逻辑.docx

(完整版)高三数学第二轮专题复习系列(1)--集合与简易逻辑.docx编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高三数学第二轮专题复习系列(1)--集合与简易逻辑.docx)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高三数学第二轮专题复习系列(1)--集合与简易逻辑.docx的全部内容。

(完整版)高三数学第二轮专题复习系列(1)—-集合与简易逻辑.docx 编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高三数学第二轮专题复习系列(1)—-集合与简易逻辑。

docx 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高三数学第二轮专题复习系列(1)—-集合与简易逻辑.docx> 这篇文档的全部内容。

高三数学第二轮专题复习系列(1)-—集合与简易逻辑一、【重点知识结构】二、【高考要求】1.理解集合、子集、交集、并集、补集的概念。

了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的述语和符号,能正确地表示一些较简单的集合。

2.理解|ax+b|〈c,|ax+b|〉c(c〉0)型不等式的概念,并掌握它们的解法。

了解二次函数、一元二次不等式及一元二次方程三者之间的关系,掌握一元二次不等式及简单分式不等式的解法。

统考版2021高考数学二轮专题复习课时作业1集合复数与常用逻辑用语文含解析

统考版2021高考数学二轮专题复习课时作业1集合复数与常用逻辑用语文含解析

课时作业1 集合、复数与常用逻辑用语一、选择题1.[2020·贵阳市第一学期监测考试]满足i 3·z =1-3i 的复数z 的共轭复数是( ) A .3-i B .-3-i C .3+i D .-3+i2.[2020·成都市诊断性检测]已知集合A ={-1,0,m },B ={1,2}.若A ∪B ={-1,0,1,2},则实数m 的值为( )A. -1或0 B .0或1 C .-1或2 D .1或23.[2020·湖北八校第一次联考]已知集合M ={x |x 2-5x -6≤0},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫16x ,x ≥-1,则( )A .M ⊆NB .N ⊆MC .M =ND .M ⊆(∁R N )4.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )A .若a 2+b 2≠0,则a ≠0且b ≠0B .若a 2+b 2≠0,则a ≠0或b ≠0C .若a =0且b =0,则a 2+b 2≠0D .若a ≠0或b ≠0,则a 2+b 2≠05.[2020·深圳市统一测试]若复数z =a +2i1-i 的实部为0,其中a 为实数,则|z |=( )A .2 B. 2C .1 D.226.[2020·南充市第一次适应性考试]“A =60°”是“cos A =12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.[2020·昆明市三诊一模]已知集合A ={x ∈N |x 2≤1},集合B ={x ∈Z |-1≤x ≤3},则图中阴影部分表示的集合是( )A .[1,3]B .(1,3]C .{-1,2,3}D .{-1,0,2,3}8.[2020·开封市第一次模拟考试]在复平面内,复数a +i1+i对应的点位于直线y =x 的左上方,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,1)C .(0,+∞) D.(1,+∞)9.[2020·江西五校联考]已知集合M ={x |x 2-3x +2≤0},N ={x |y =x -a },若M ∩N =M ,则实数a 的取值范围为( )A .(-∞,1]B .(-∞,1)C .(1,+∞) D.[1,+∞)10.[2019·全国卷Ⅰ]设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .x 2+(y +1)2=111.[2020·河北九校第二次联考]下面有四个命题:①“∀x ∈R ,e x>0”的否定是“∃x 0∈R ,e x 0≤0”;②命题“若θ=π6,则cos θ=32”的否命题是“若θ=π6,则cos θ≠32”;③“ln m <ln n ”是“e m <e n”的必要不充分条件;④若命题p 为真命题,q 为假命题,则p ∨q 为真命题. 其中所有正确命题的序号是( ) A .①②④ B.①③ C .①④ D.②④12.已知命题p :x ≥k ,命题q :3x +1<1.如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞) B.(2,+∞) C .[1,+∞) D.(-∞,1] 二、填空题13.已知(1+i)(1-a i)>0(i 为虚数单位),则实数a 等于________.14.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0};若(∁U A )∩B =∅,则m =________.15.已知下列命题:①∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,sin x 0+cos x 0≥2;②∀x ∈(3,+∞),x 2>2x +1;③∀x ∈R,2x+12x >2;④∃x 0∈⎝ ⎛⎭⎪⎫π2,π,tan x 0>sin x 0. 其中真命题为________(填所有真命题的序号).16.[2020·北京西城期末]已知集合A ={x |x 2-x -6≥0},B ={x |x >c },其中c ∈R .(1)集合∁R A =____________;(2)若∀x ∈R ,都有x ∈A 或x ∈B ,则c 的取值范围是____________.课时作业1 集合、复数与常用逻辑用语1.解析:由题意,得z =1-3i i 3=1-3i -i =1-3i i-i2=3+i ,所以z -=3-i ,故选A. 答案:A2.解析:因为A ={-1,0,m },B ={1,2},A ∪B ={-1,0,1,2},所以m ∈(A ∪B ),m 不能等于A 中的其他元素,所以m =1或m =2.答案:D3.解析:由x 2-5x -6≤0得-1≤x ≤6,即M =[-1,6];由y =⎝ ⎛⎭⎪⎫16x ,x ≥-1得0<y ≤6,即N =(0,6],所以N ⊆M ,故选B.答案:B4.解析:命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是“若a ≠0或b ≠0,则a 2+b 2≠0”,故选D.答案:D5.解析:因为a +2i 1-i =a +2i 1+i 1-i 1+i =a -2+a +2i 2,所以a -22=0,解得a=2,所以z =2i ,|z |=2,故选A.答案:A6.解析:A =60°⇒cos A =12,cos A =12⇒A =±60°+k ×360°,k ∈Z ,所以“A =60°”是“cos A =12”的充分不必要条件.答案:A7.解析:因为A ={x ∈N |x 2≤1}={x ∈N |-1≤x ≤1}={0,1},B ={x ∈Z |-1≤x ≤3}={-1,0,1,2,3},图中阴影部分表示的集合为(∁R A )∩B ,∁R A ={x |x ≠0且x ≠1},所以(∁R A )∩B ={-1,2,3},故选C.答案:C8.解析:因为a +i 1+i =a +i 1-i 1+i 1-i =a +1+1-a i 2,复数a +i1+i对应的点在直线y =x 的左上方,所以1-a >a +1,解得a <0.故实数a 的取值范围是(-∞,0),选A.答案:A9.解析:由题意,得M ={x |(x -1)(x -2)≤0}={x |1≤x ≤2},N ={x |x ≥a },由M ∩N =M 得,M ⊆N ,所以a ≤1,选A.答案:A10.解析:∵z 在复平面内对应的点为(x ,y ),∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1,∴x 2+(y -1)2=1.故选C. 答案:C11.解析:由全称命题的否定可知,命题①正确;否命题是对条件和结论都进行否定,故否命题应是“若θ≠π6,则cos θ≠32”,命题②错误;ln m <ln n ⇒0<m <n ⇒e m <e n ,e m <en⇒m <n ,当m ,n 均为负数时,ln m 和ln n 无意义,则推不出ln m <ln n ,因此“ln m <ln n ”是“e m <e n”的充分不必要条件.所以命题③错误;当p 为真命题或q 为真命题时,命题p ∨q 就为真命题,命题④正确.故选C.答案:C12.解析:由3x +1<1得,3x +1-1=2-xx +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q 的充分不必要条件知,k >2,故选B.答案:B。

高三数学二轮复习 课时作业1 集合与常用逻辑用语 文

高三数学二轮复习 课时作业1 集合与常用逻辑用语 文

高三数学文二轮复习课时作业1 集合与常用逻辑用语时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.已知集合A ={-1,0,a },B ={x |0<x <1},若A ∩B ≠Ø,则实数a 的取值范围是( ) A .(-∞,0) B .(0,1) C .{1} D .(1,+∞) 解析:由题意可知,a ∈B ,即0<a <1. 答案:B2.设集合P ={3,log 2a },Q ={a ,b },若P ∩Q ={0},则P ∪Q 等于( ) A .{3,0} B .{3,0,1} C .{3,0,2} D .{3,0,1,2}解析:由log 2a =0,得a =1,从而b =0,P ∪Q ={3,0,1}. 答案:B3.设U =Z ,A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( )图1A .{1,3,5}B .{1,2,3,4,5}C .{7,9}D .{2,4}解析:图中阴影表示的集合是(∁U A )∩B ={2,4}. 答案:D4.关于x 的函数f (x )=sin(φx +φ)有以下命题: ①∀φ∈R,f (x +2π)=f (x );②∃φ∈R,f (x +1)=f (x );③∀φ∈R,f (x )都不是偶函数;④∃φ∈R,使f (x )是奇函数.其中假命题的序号是( ) A .①③ B.①④ C .②④ D.②③解析:对于命题①,取φ=π时,f (x +2π)≠f (x ),命题①错误;如取φ=2π,则f (x +1)=f (x ),命题②正确;对于命题③,φ=0时,f (x )=f (-x ),则命题③错误;如取φ=π,则f (x )=sin(πx +π)=-sin πx ,命题④正确.答案:A5.已知集合A ={x |a -2<x <a +2},B ={x |x ≤-2或x ≥4},则A ∩B =Ø的充要条件是( ) A .0≤a ≤2 B.-2<a <2 C .0<a ≤2 D .0<a <2解析:如果A ∩B =Ø,根据数轴有⎩⎪⎨⎪⎧a -2≥-2a +2≤4,解得0≤a ≤2.答案:A6.下列命题中,真命题的个数是( )①若“p 且q ”与“p 或q ”都是假命题,则“非p 且非q ”是真命题②x 2≠y 2⇔x ≠y 或x ≠-y③命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“若a +b 不是偶数,则a ,b 都不是偶数”④若关于x 的实系数不等式ax 2+bx +c ≤0的解集是Ø,则必有a >0且Δ≤0A .0个B .1个C .2个D .3个解析:①为真命题,∵“p 且q ”与“p 或q ”为假, ∴p 假,q 假,∴非p 与非q 为真, 故非p 且非q 为真,∴①为真命题.②为假命题,x 2≠y 2⇒x ≠y 或x ≠-y 虽然成立,但x ≠y 或x ≠-y ⇒/x 2≠y 2,所以此命题为假命题. ③为假命题,因为“a ,b 都是偶数”的否定是“a ,b 不都是偶数”,故“a ,b 都是偶数,则a +b 是偶数”的逆否命题应是“若a +b 不是偶数,则a ,b 不都是偶数”.④为假命题,如a =b =0,c >0时满足ax 2+bx +c ≤0的解集是Ø,但不满足a >0,且Δ≤0. 答案:B二、填空题(每小题8分,共计24分)7.已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为________. 解析:当B =Ø时,a =0; 当B ≠Ø时,有下面三种情况;①B ={1},则x =-1a=1,a =-1;②B ={-1},则x =-1a=-1,a =1;③B ={1,-1},则x =-1a,a 不存在.故a 的值为0,1,-1.答案:{-1,0,1}8.设p :log 2x <0,q :(12)x -1>1,则p 是q 的________条件.解析:由题可知p :log 2x <0,解得0<x <1;q :(12)x -1>1,解得x <1,所以p 是q 的充分不必要条件.答案:充分不必要 9.给出下列结论:①命题p :a >23时,函数y =(3a -1)x 在(-∞,+∞)上是增函数;命题q :n ∈N *时,函数y =x n在(-∞,+∞)上是增函数,则命题p ∧q 是真命题;②命题:“若lg x >lg y ,则x >y ”的逆命题是真命题;③已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,“若l 1⊥l 2,则a b=-3”是假命题;④设α、β是两个不同的平面,a 、b 是两条不同的直线.“若a ∥α,b ∥β,a ∥b ,则α∥β”是假命题.其中正确结论的序号是________.(把你认为正确结论的序号都填上).解析:对于①,由a >23,得3a -1>1,即命题p 正确;当n 取偶数时,函数y =x n在(-∞,+∞)上不是增函数,即命题q 不正确,命题p ∧q 是假命题.对于②,该命题的逆命题是“若x >y ,则lg x >lg y ”,显然是假命题.对于③,当a =b =0时,l 1⊥l 2,这与a b=-3相矛盾.④显然是假命题.故③④的判断是正确的. 答案:③④三、解答题(共计40分)10.(10分)已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |x 2-2mx +m 2-4≤0,x ∈R,m ∈R}. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3], ∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴⎩⎪⎨⎪⎧m =2,m ≥1.∴m =2.(2)∁R B ={x |x <m -2,或x >m +2}. ∵A ⊆∁R B ,∴m -2>3,或m +2<-1, ∴m 的取值范围是{m |m >5或m <-3}.11.(15分)已知命题p :曲线x 2a -2-y 26-a=1为双曲线;命题q :函数f (x )=(4-a )x在R 上是增函数;若命题“p 或q ”为真,命题“p 且q ”为假,求实数a 的取值范围.解:p 真时,(a -2)(6-a )>0,解得2<a <6. q 真时,4-a >1,解得a <3.由命题“p 或q ”为真,“p 且q ”为假,可知命题p ,q 中一真一假. 当p 真,q 假时,得3≤a <6. 当p 假,q 真时,得a ≤2.因此实数a 的取值范围是(-∞,2]∪[3,6).12.(15分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0,q :实数x 满足x 2-x -6≤0或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求实数a 的范围.解:由x 2-4ax +3a 2<0及a <0, 得3a <x <a ,即p :3a <x <a ;又由x 2-x -6≤0,得-2≤x ≤3,由x 2+2x -8>0,得x <-4或x >2. 那么q :x <-4或x ≥-2.由于,綈p 是綈q 的必要不充分条件,即綈q ⇒綈p ,于是,得⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0,得-23≤a <0或a ≤-4,故所求a 的范围为{a |-23≤a <0或a ≤-4}.。

高三数学二轮专题复习溯源回扣一 集合与常用逻辑用语

高三数学二轮专题复习溯源回扣一 集合与常用逻辑用语

专题研读解决“会而不对,对而不全”问题是决定高考成败的关键,高考数学考试中出现错误的原因很多,其中错解类型主要有:知识性错误,审题或忽视隐含条件错误,运算错误,数学思想、方法运用错误,逻辑性错误,忽视等价性变形错误等.下面我们分几个主要专题对易错的知识点和典型问题进行剖析,为你提个醒,力争做到“会而对,对而全”.溯源回扣一 集合与常用逻辑用语1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.[回扣问题1] (2018·日照模拟)已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 216+y 29=1,N =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪x 4+y 3=1,则M ∩N =( ) A . B .{(4,0),(3,0)} C .[-3,3]D .[-4,4][解析] 由曲线方程,知M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 216≤1=[-4,4], 又N =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪x 4+y 3=1=R ,∴M ∩N =[-4,4].[答案] D 2.遇到A ∩B =时,你是否注意到“极端”情况:A =或B =;同样在应用条件A ∪B =BA ∩B =AAB 时,不要忽略A =的情况.[回扣问题2] 设集合A ={x |x 2-5x +6=0},B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是____________.[解析] 由题意知集合A ={2,3},由A ∩B =B 知B A .①当B =时,即方程mx -1=0无解,此时m =0符合已知条件;②当B ≠时,即方程mx -1=0的解为2或3,代入得m =12或13.综上,满足条件的m 组成的集合为⎩⎨⎧⎭⎬⎫0,12,13.[答案]⎩⎨⎧⎭⎬⎫0,12,133.注重数形结合在集合问题中的应用,列举法常借助Venn 图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[回扣问题3] 已知全集I =R ,集合A ={x |y =1-x },集合B ={x |0≤x ≤2},则(∁I A )∪B 等于( ) A .[1,+∞) B .(1,+∞) C .[0,+∞)D .(0,+∞)[解析] A =(-∞,1],B =[0,2],∴∁I A =(1,+∞),则(∁I A )∪B =[0,+∞). [答案] C4.复合命题真假的判定,利用真值表.注意“否命题”是对原命题既否定其条件,又否定其结论;而綈p ,只是否定命题p 的结论. [回扣问题4] (2017·山东卷改编)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.有下列命题①p ∧q ;②p ∧綈q ;③綈p ∧q ;④綈p ∧綈q .其中为真命题的是________(填序号).[解析] 由于x >0,ln(x +1)>0,则p 为真命题. 又a >b⇏ a 2>b 2(如a =1,b =-2),知q 为假命题.∴綈q 为真,所以p ∧綈q 为真. [答案] ②5.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A . [回扣问题5] (2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.[答案] A6.含有量词的命题的否定,不仅是把结论否定,而且要改写量词,全称量词变为存在量词,存在量词变为全称量词. [回扣问题6] 命题p :x ∈R ,e x -x -1>0,则綈p 是________.[解析] “”变为“”,并将结论否定,∴綈p :x 0∈R ,e x 0-x 0-1≤0.[答案]x 0∈R ,e x 0-x 0-1≤07.存在性或恒成立问题求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[回扣问题7] 若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________.[解析] 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32p ≤-3或p ≥32. 取补集,得p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.[答案] ⎝ ⎛⎭⎪⎫-3,32。

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解训练文1(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=( )A.{1,3,5,6}B.{2,3,7}D.{2,5,7}C.{2,4,7} 解析:选C.由补集的定义,得∁UA={2,4,7}.故选C. 2.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BD.A∪B=BC.A∩B=B 解析:选 C.由题知A={y|y≥-1},因此A∩B={x|x≥2}=B,故选C.3.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]D.(-∞,1]C.[0,1) 解析:选A.M={x|x2=x}={0,1},N={x|lgx≤0}={x|0<x≤1},M∪N=[0,1],故选A.4.(2016·山东聊城模拟)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )B.1A.0D.4C.2解析:选D.因为A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},所以则a=4. 5.(2016·湖北八校模拟)已知a∈R,则“a>2”是“a2>2a”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2ai,a∈R},B={z∈C||z|=2},则A∩B等于( )B.{-i}A.{1+i,1-i}D.{1-i}C.{1+2i,1-2i} 解析:选A.问题等价于|1-2ai|=2,a∈R,解得a=±.故选A.7.已知命题p:对任意x>0,总有ex≥1,则綈p为( )A.存在x0≤0,使得ex0<1B.存在x0>0,使得ex0<1C.对任意x>0,总有ex<1D.对任意x≤0,总有ex<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x >0,总有ex≥1的否定綈p为:存在x0>0,使得ex0<1.故选B. 8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是( )A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=,有tan=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+logx2≥2,则x>1;③“若a>b>0且c<0,则>”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是( )B.①②④A.①②③D.②③④C.①③④ 解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+≥2,得x>1;③中由a>b>0,得<,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=( )B.[0,1)∪[2,+∞)A.[0,1]∪(2,+∞)D.[0,2]C.[0,1] 解析:选 A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=<1,即|b|<,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=<<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x0∈R,x+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.B.2A.1D.4C.3 解析:选 B.易知①正确;因为f(x)=cos 2ax,所以=π,即a=±1,因此②正确;因为x2+2x≥ax在x∈[1,2]上恒成立⇒a≤x+2在x∈[1,2]上恒成立⇒a≤(x+2)min,x∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b<0得向量夹角包含180°,因此“平面向量a与b的夹角是钝角”的充要条件是“a·b<0且a与b不反向”,故④不正确.二、填空题(把答案填在题中横线上) 13.若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是________.解析:由|x-m|<2得-2<x-m<2,即m-2<x<m+2.依题意有集合{x|2≤x≤3}是{x|m-2<x<m+2}的真子集,于是有,由此解得1<m<4,即实数m的取值范围是(1,4).答案:(1,4) 14.若命题“∃x0∈R,x-2x0+m≤0”是假命题,则m的取值范围是________.解析:由题意,命题“∀x∈R,x2-2x+m>0”是真命题,故Δ=(-2)2-4m<0,即m>1.答案:(1,+∞) 15.已知p:∃x0∈R,mx+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.解析:因为p∨q是假命题,所以p和q都是假命题.由p:∃x0∈R,mx+2≤0为假命题知,綈p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由q:∀x∈R,x2-2mx+1>0为假命题知,綈q:∃x0∈R,x-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.答案:[1,+∞) 16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;②命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”;③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;④函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点.解析:①若c=0,则不论a,b的大小关系如何,都有ac2=bc2,而若ac2>bc2,则有a>b,故“ac2>bc2”是“a>b”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”,故②为真命题;③命题“若p,则q”形式的命题的否命题是“若綈p,则綈q”,故命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”,故③为真命题;④由于f(1)f(2)==×<0,则函数f(x)=ln x+x-在区间(1,2)上存在零点,又函数f(x)=ln x+x-在区间(1,2)上为增函数,所以函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。

新高考数学(理)二轮复习专题能力训练1 集合与常用逻辑用语 Word版含解析

新高考数学(理)二轮复习专题能力训练1 集合与常用逻辑用语 Word版含解析

专题整合集训专题能力训练1集合与常用逻辑用语专题能力训练第10页一、能力突破训练1.若命题p:∀x∈R,cos x≤1,则p为()A.∃x0∈R,cos x0>1B.∀x∈R,cos x>1C.∃x0∈R,cos x0≥1D.∀x∈R,cos x≥1答案:A解析:由全称命题的否定,得p:∃x0∈R,cos x0>1,故选A.2.(2020全国Ⅰ,理2)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4B.-2C.2D.4答案:B}.解析:由已知得A={x|-2≤x≤2},B={x|x≤-a2=1,解得a=-2.因为A∩B={x|-2≤x≤1},所以有-a23.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数答案:B4.已知A={第一象限角},B={锐角},C={小于90°的角},则A,B,C的关系是()A.B=A∩CB.B∪C=CC.A⫋CD.A=B=C答案:B解析:由题意,得B⊆A,B∪C={小于90°的角}=C,即B⊆C,但B不一定等于A∩C,A不一定是C的真子集,集合A,B,C不一定相等.故选B.5.设集合U=R,集合A={x|x2-1>0},B={x|0<x≤2},则集合(∁U A)∩B=()A.(-1,1)B.[-1,1]C.(0,1]D.[-1,2]答案:C解析:由题意,得集合A={x|x<-1,或x>1},所以∁U A={x|-1≤x≤1},所以(∁U A)∩B={x|0<x≤1}.6.(2019天津,理3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:由x2-5x<0,得0<x<5.由|x-1|<1,得0<x<2.故“x2-5x<0”是“|x-1|<1”的必要不充分条件.>0成立的充分不必要条件是()7.不等式1-1xA.x>1B.x>-1C.x<-1或0<x<1D.-1<x<0或x>0答案:A>0,解得x>1或x<0,对照各选项知A满足要求.解析:由1-1x8.设m∈R,命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆否命题是()A.若关于x的方程x2+x-m=0有实根,则m>0B.若关于x的方程x2+x-m=0有实根,则m≤0C.若关于x的方程x2+x-m=0没有实根,则m>0D.若关于x的方程x2+x-m=0没有实根,则m≤0答案:D解析:原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若关于x的方程x2+x-m=0没有实根,则m≤0”.9.已知p:∀x∈R,x2-2ax+1>0,q:∃x∈R,ax2+2≤0.若p∨q为假命题,则实数a的取值范围是()A.[1,+∞)B.(-∞,-1]C.(-∞,-2]D.[-1,1]答案:A解析:∵p∨q为假命题,∴p,q均为假命题.若p为假命题,则Δ≥0,即4a2-4≥0,解得a≤-1或a≥1;若q为假命题,则a≥0.∴实数a的取值范围是a≥1.10.已知条件p:|x+1|>2,条件q:x>a,且 p是 q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥-1D.a≤-3答案:A解析:因为条件p:x>1或x<-3,所以p:-3≤x≤1.因为条件q:x>a,所以q:x≤a.因为p是q的充分不必要条件,所以a≥1,故选A.11.下列有关命题的说法错误的是()A.若命题p:∃x0∈R,e x0<1,则命题p:∀x∈R,e x≥1B.“sin x=√32”的一个必要不充分条件是“x=π3”C.命题“若a<b,则am2<bm2”的逆命题是真命题D.若p∨q为假命题,则p与q均为假命题答案:B解析:对于A,命题p:∃x0∈R,e x0<1,则命题p:∀x∈R,e x≥1,A正确;对于B,当x=π3时,sin x=√32成立,所以“x=π3”是“sin x=√32”的充分条件,B错误;对于C,命题“若a<b,则am2<bm2”的逆命题是“若am2<bm2,则a<b”,它是真命题,此时m2>0,C正确;对于D,根据复合命题的真假性知,当p∨q为假命题时,p与q均为假命题,D正确.12.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题答案:C解析:因为命题p:∃x0∈R,x0-2>lg x0是真命题,而命题q:∀x∈R,e x>1是假命题,所以由命题的真值表可知命题p∧(q)是真命题,故选C.13.设有下面三个条件:甲:相交直线l,m都在平面α内,并且都不在平面β内;乙:直线l,m 中至少有一条与平面β相交;丙:平面α与平面β相交.当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C.乙是丙的充要条件D.乙既不是丙的充分条件又不是丙的必要条件答案:C解析:当甲成立,即“相交直线l,m都在平面α内,并且都不在平面β内”时,若l,m中至少有一条与平面β相交,则“平面α与平面β相交”成立;若平面α与平面β相交,则“l,m中至少有一条与平面β相交”也成立.14.已知集合M={2,log3a},N={a,b}.若M∩N={1},则M∪N=.答案:{1,2,3}解析:∵M∩N={1},∴1∈N,且1∈M,∴log3a=1,即a=3.又1∈N,∴b=1.∴M={1,2},N={1,3},∴M∪N={1,2,3}.<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围15.设p:xx-2是.答案:(2,+∞)<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2.解析:由xx-216.已知集合A={(x,y)|y=x3},B={(x,y)|y=x},则A∩B的真子集个数是.答案:7解析:易知函数y=x3与y=x的图象有三个不同的交点,即A∩B有3个元素,所以A∩B的真子集个数为23-1=7.17.(2020全国Ⅱ,理16)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①p1∧p4②p1∧p2③p2∨p3④p3∨p4答案:①③④解析:∵p1,p4为真命题,p2,p3为假命题,∴p2,p3为真命题,∴p1∧p4为真命题,p1∧p2为假命题,p2∨p3为真命题,p3∨p4为真命题.故填①③④.18.已知集合A={(x,y)|y=√49-x2},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.答案:[-7,7√2]解析:集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7√2].二、思维提升训练;乙:α≠120°,则甲是乙的()19.已知甲:sin α≠√32A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞) 答案:B解析:∵Q={x ∈R |x 2≥4}={x ∈R |x ≤-2,或x ≥2}, ∴∁R Q={x ∈R |-2<x<2}.∴P ∪(∁R Q )={x ∈R |-2<x ≤3}=(-2,3].故选B .21.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n<x 2 B .∀x ∈R ,∀n ∈N *,使得n<x 2 C .∃x ∈R ,∃n ∈N *,使得n<x 2 D .∃x ∈R ,∀n ∈N *,使得n<x 2答案:D解析:由含量词命题的否定格式,可知首先改写量词,而n ≥x 2的否定为n<x 2. 故选D .22.已知p :函数f (x )=|x+a|在区间(-∞,-1)内是单调函数,q :函数g (x )=log a (x+1)(a>0,且a ≠1)在区间(-1,+∞)内是增函数,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:由p 成立,得a ≤1,由q 成立,得a>1,所以p 成立时a>1,p 是q 的充要条件.故选C.23.设全集U=R ,集合M={x|y=√3-2x },N={y|y=3-2x },则图中阴影部分表示的集合是( )A .{x |32<x ≤3} B .{x |32<x <3} C .{x |32≤x <2} D .{x |32<x <2} 答案:B解析:M={x |x ≤32},N={y|y<3},故阴影部分N ∩(∁U M )={x|x<3}∩{x |x >32}={x |32<x <3}.24.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m∥n,m与n还可能异面.故选A.25.已知命题p:“对任意的x≥1,ln x≥0”的否定是“存在x0≥1,ln x0<0”,命题q:“0<k<1”是“方程x2+y2+√3x+ky+k2=0表示圆”的充要条件,则下列命题为真命题的是()A.p∨qB.p∧qC.(p)∨qD.(p)∧q答案:A解析:易得命题p是真命题;若方程x2+y2+√3x+ky+k2=0表示圆,则k2+(√3)2-4k2>0,解得-1<k<1,所以命题q是假命题.所以命题p∨q为真命题,命题p∧q,(p)∨q,(p)∧q均为假命题.26.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,使得x02+x0+1<0”的否定是“∀x∈R,均有x2+x+1<0”答案:C解析:否命题应同时否定条件与结论,选项A错;若x=-1,则x2-5x-6=0成立,反之不成立,选项B错;因为原命题为真命题,所以其逆否命题为真命题,选项C正确;特称命题的否定为全称命题,同时否定结论,选项D错,故选C.27.下列命题中的真命题是()A.∃x0∈R,使得e x0≤0≥3(x≠kπ,k∈Z)B.sin2x+2sinxC.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件答案:D=-1,B错误;f(x)=2x-x2有解析:对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+2sinx三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.]∪(1,+∞)答案:(0,12解析:M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=(12,+∞),M∪N=(0,+∞),M∩N=(12,1],所以M N=(0,12]∪(1,+∞).29.下列命题正确的是.(填序号)①若f(3x)=4x log23+2,则f(2)+f(4)+…+f(28)=180;②函数f(x)=tan 2x图象的对称中心是(kπ2,0)(k∈Z);③“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,x03−x02+1>0”;④设常数a使方程sin x+√3cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=7π3.答案:③④解析:因为f(3x)=4x log23+2,令3x=t,即x=log3t,则f(t)=4log3t·log23+2=4log2t+2,所以f(2)+f(4)+…+f(28)=4(log22+log222+…+log228)+16=4×(1+2+…+8)+16=4×36+16=160,故①错;函数f(x)=tan2x图象的对称中心是(kπ4,0)(k∈Z),故②错;由全称命题的否定是特称命题知③正确;f(x)=sin x+√3cos x=2sin(x+π3),要使sin x+√3cos x=a在闭区间[0,2π]上恰有三个解,则a=√3,x1=0,x2=π3,x3=2π,故④正确.30.设p:关于x的不等式a x>1的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R,若p ∨q为真命题,p∧q为假命题,则a的取值范围是.答案:(0,12]∪[1,+∞)解析:当p真时,0<a<1;当q真时,ax2-x+a>0对x∈R恒成立,则{a>0,Δ=1-4a2<0,即a>12.若p∨q为真,p∧q为假,则p,q应一真一假.①当p真q假时,{0<a<1,a≤12⇒0<a≤12;②当p假q真时,{a≤0或a≥1,a>12⇒a≥1.综上,a∈(0,12]∪[1,+∞).。

2021年高考数学二轮复习 专题1 第1讲 集合与常用逻辑用语素能训练(文、理)

2021年高考数学二轮复习 专题1 第1讲 集合与常用逻辑用语素能训练(文、理)一、选择题1.已知集合A ={x ||x -2|>1},B ={x |y =x -1+3-x },那么有( ) A .A ∩B =∅ B .A ⊆B C .B ⊆A D .A =B[答案] A[解析] 由|x -2|>1得x -2<-1,或x -2>1,即x <1,或x >3;由⎩⎨⎧x -1≥03-x ≥0得1≤x ≤3,因此A ={x |x <1,或x >3},B ={x |1≤x ≤3},所以A ∩B =∅,故选A.2.(xx·浙江文,2)设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 菱形的对角线互相垂直,对角线互相垂直的四边形不一定是菱形.故选A. 3.(xx·银川市一中二模)已知全集U =R ,集合A ={x |x -1x<0},B ={x |x ≥1},则集合{x |x ≤0}等于( )A .A ∩B B .A ∪BC .∁U (A ∩B )D .∁U (A ∪B )[答案] D[解析] A ={x |0<x <1},B ={x |x ≥1},则A ∪B ={x |x >0},∴∁U (A ∪B )={x |x ≤0},4.(xx·天津理,4)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆x2+y2=12相切.其中真命题的序号是( )A.①②③B.①②C.①③D.②③[答案] C[解析] 统计知识与直线和圆的位置关系的判断.对于①,设球半径为R,则V=43πR3,r=12R,∴V1=43π×(12R)3=πR36=18V,故①正确;对于②,两组数据的平均数相等,标准差一般不相等;对于③,圆心(0,0),半径为22,圆心(0,0)到直线的距离d=22,故直线和圆相切,故①、③正确.5.(文)(xx·天津文,3)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为( )A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1[答案] B[解析] 由命题的否定只否定命题的结论及全称命题的否定为特称(存在性)命题,“>”的否定为“<”知选B.(理)已知命题p:“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;命题q:在△ABC中,“A>B”是“sin A>sin B”的充分条件,则下列命题是真命题的是( ) A.p且q B.p或¬qC.¬p且¬q D.p或q[答案] D[解析] p为假命题,q为真命题,∴p且q为假命题,p或¬q为假命题,¬p且¬q为假命题,p或q为真命题.6.(文)若集合A={x|2<x<3},B={x|(x+2)(x-a)<0},则“a=1”是“A∩B=∅”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] 当a=1时,B={x|-2<x<1},∴A∩B=∅,则“a=1”是“A∩B=∅”的充分条件;当A∩B=∅时,得a≤2,则“a=1”不是“A∩B=∅”的必要条件,故“a=1”是“A∩B =∅”的充分不必要条件.(理)(xx·沈阳模拟)已知条件p:|x+1|>2,条件q:x>a,且¬p是¬q的充分不必要条件,则a的取值范围是( )A.a≥1B.a≤1C.a≥-1 D.a≤-3[答案] A[解析] 条件p:x>1或x<-3,所以¬p:-3≤x≤1;条件q:x>a,所以¬q:x≤a,由于¬p是¬q的充分不必要条件,所以a≥1,故选A.7.已知集合A={1,2,3,4},B={2,4,6,8},定义集合A×B={(x,y)|x∈A,y∈B},则集合A×B中属于集合{(x,y)|log x y∈N}的元素个数是( )A.3 B.4C.8 D.9[答案] B[解析] 用列举法求解.由给出的定义得A×B={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log22=1,log24=2,log28=3,log44=1,因此,一共有4个元素,故选B.8.(文)(xx·湖南理,5)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是( )A.①③B.①④C.②③D.②④[答案] C[解析] 当x>y时,两边乘以-1可得-x<-y,所以命题p为真命题,当x=1,y=-2时,因为x2<y2,所以命题q为假命题,所以②③为真命题,故选C.(理)(xx·重庆理,6)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧q B.¬p∧¬qC.¬p∧q D.p∧¬q[答案] D[解析] 命题p是真命题,命题q是假命题,所以选项D正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.9.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数[分析] 根据四种命题的关系判定.[答案] B[解析] “若p则q”的否命题为“若¬p则¬q”,故选B.10.(xx·陕西理,8)原命题为“若z1、z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假D.假,假,假[答案] B[解析] 若z1=a+b i,则z2=a-b i.∴|z1|=|z2|,故原命题正确、逆否命题正确.其逆命题为:若|z1|=|z2|,则z1、z2互为共轭复数,若z1=a+b i,z2=-a+b i,则|z1|=|z2|,而z1、z2不为共轭复数.∴逆命题为假,否命题也为假.二、填空题11.设p:xx-2<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是________.[答案] (2,+∞)[解析] 由xx-2<0得0<x<2,∵p是q成立的充分不必要条件,∴(0,2)(0,m),∴m>2.12.设集合A={5,log2(a+3)},B={a,b},若A∩B={2},则A∪B=________.[答案] {1,2,5}[解析] ∵A∩B={2},∴2∈A,∴log2(a+3)=2,∴a=1,∴b=2,∴A∪B={1,2,5}.一、选择题13.(xx·哈三中一模)集合A={1,2},B={1,2,3},P={x|x=ab,a∈A,b∈B},则集合P的元素个数为( )A.3 B.4C.5 D.6[答案] C[解析] 由题意知P={1,2,4,3,6},∴选C.14.(文)已知集合A={(x,y)|y=2x,x∈R},B={(x,y)|y=2x,x∈R},则A∩B的元素数目为( )A.0 B.1C.2 D.无穷多[答案] C[解析] 函数y=2x与y=2x的图象的交点有2个,故选C.(理)设全集U=R,集合M={x|y=3-2x},N={y|y=3-2x},则图中阴影部分表示的集合是( )A.{x|32<x≤3}B.{x|32<x<3}C.{x|32≤x<2} D.{x|32<x<2}[答案] B[解析] M={x|x≤32},N={x|x<3},∴阴影部分N∩(∁U M)={x|x<3}∩{x|x>32}={x|32<x<3}.15.(xx·重庆理,2)命题“对任意x∈R,都有x2≥0”的否定为( )A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x0∈R,使得x20≥0D.存在x0∈R,使得x20<0[答案] D[解析] 根据全称命题的否定是特称命题,应选D.16.(文)(xx·西城区模拟)已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A .充分不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] c <0时,f (0)=c <0;当⎩⎪⎨⎪⎧Δ>0c >0,即b 2>4c >0时,存在x 0∈R ,使f (x 0)<0,例如取b =3,c =1,此时,f (x )=x 2+3x +1=(x +32)2-54,其最小值-54<0.故选A.(理)(xx·新课标Ⅰ理,9)不等式组⎩⎪⎨⎪⎧x +y ≥1x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2, p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1.其中真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3[答案] C [解析] 不等式组⎩⎪⎨⎪⎧x +y ≥1x -2y ≤4表示的平面区域如图所示.由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1),∵目标函数u =x +2y 的斜率k =-12,∴当直线x +2y =u 过A 时,u 取最小值0. 故选项p 1,p 2正确,所以选C.17.(xx·辽宁理,5)设a 、b 、c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(¬p )∧(¬q )D .p ∨(¬q )[答案] A[解析] 取a =c =(1,0),b =(0,1)知,a ·b =0,b ·c =0,但a ·c ≠0,∴命题p 为假命题;∵a∥b,b∥c,∴∃λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是( ) A.(0,1) B.(0,2)C.(2,3) D.(2,4)[答案] A[解析] 由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.19.设x、y∈R,则“|x|≤4且|y|≤3”是“x216+y29≤1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] B[解析] “|x|≤4且|y|≤3”表示的平面区域M为矩形区域,“x216+y29≤1”表示的平面区域N为椭圆x216+y29=1及其内部,显然N M,故选B.20.(文)在R上定义运算⊗:x⊗y=x2-y,若关于x的不等式(x-a)⊗(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,则实数a的取值范围是( ) A.-2≤a≤2B.-1≤a≤1C.-2≤a≤1D.1≤a≤2[答案] C[解析] 因为(x-a)⊗(x+1-a)>0,所以x-a1+a-x>0,即a<x<a+1,则a≥-2且a+1≤2,即-2≤a≤1.(理)(xx·中原名校联考)下列命题正确的个数是( )①“在三角形ABC中,若sin A>sin B,则A>B”的逆命题是真命题;②命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件;③“∀x∈R,x3-x2+1≤0”的否定是“∀x∈R,x3-x2+1>0”;④若随机变量x~B(n,p),则DX=np.⑤回归分析中,回归方程可以是非线性方程.A.1 B.2C.3 D.4[答案] C[解析] 在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 为△ABC 外接圆半径).∴①为真命题;∵x =2且y =3时,x +y =5成立,x +y =5时,x =2且y =3不成立,∴“x +y =5”是“x =2且y =3”的必要不充分条件,从而“x ≠2或y ≠3”是“x +y ≠5”的必要不充分条件,∴②为真命题;∵全称命题的否定是特称命题, ∴③为假命题;由二项分布的方差知④为假命题. ⑤显然为真命题,故选C. 二、填空题21.设p :关于x 的不等式a x >1的解集为{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,若p 或q 为真命题,p 且q 为假命题,则a 的取值范围是________.[答案] (0,12]∪[1,+∞)[解析] p 真时,0<a <1;q 真时,ax2-x +a >0对x ∈R 恒成立,则⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,即a >12.若p ∨q 为真,p ∧q 为假,则p 、q 应一真一假:①当p 真q 假时,⎩⎪⎨⎪⎧0<a <1,a ≤12⇒0<a ≤12;②当p 假q 真时,⎩⎪⎨⎪⎧a ≤0或a ≥1,a >12⇒a ≥1.综上,a ∈(0,12]∪[1,+∞).22.给出下列命题:①已知线性回归方程y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位; ②在进制计算中,100(2)=11(3);③若ξ~N (3,σ2),且P (0≤ξ≤3)=0.4,则P (ξ<6)=0.1;④“a =⎠⎛011-x 2dx”是“函数y =cos 2(ax)-sin 2(ax)的最小正周期为4”的充要条件;⑤设函数f(x)=2014x +1+20132014x+1+xx sin x(x∈[-π2,π2])的最大值为M ,最小值为m ,则M +m =4027,其中正确命题的个数是________个.[答案] 4[解析] ①显然正确;100(2)=1×22+0×21+0×20=4,11(3)=1×31+1×30=4,∴②正确;∵ξ<N(3,σ2),∴P(ξ>6)=12(1-2P(0≤ξ≤3))=0.1,∴③错误;由数形结合法,依据定积分的几何意义得a =⎠⎛011-x 2dx =π4,y =cos 2ax -sin 2ax =cos 2ax =cosπx2,最小正周期T =2ππ2=4,∴④正确.设a =xx ,则f(x)=ax +1+a -1a x+1+a sin x =a +a sin x -1a x+1, 易知f(x)在[-π2,π2]上单调递增,∴M+N =f(π2)+f(-π2)=2a -1a π2+1-1a -π2+1=2a -1aπ2+1-a π21+aπ2=2a -1=4027,∴⑤正确.Q21248 5300 匀38131 94F3 铳38215 9547 镇W+22588 583C 堼29285 7265 牥32411 7E9B 纛24289 5EE1 廡y20355 4F83 侃N23034 59FA 姺33304 8218舘。

高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1集合与常用逻

1.1 集合与常用逻辑用语【课时作业】1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={}x |-1≤x ≤2. 故选B. 答案: B2.(2018·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2018·安徽皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B. 答案: B6.(2018·洛阳市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},则A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).故选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},则图中阴影部分所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影部分所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .命题“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.答案: C9.(2018·陕西省质量检测(一))已知命题p :对任意的x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·辽宁省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.答案: D11.(2018·山东泰安3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :____________________. 解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 017+b2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。

2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用练习文苏教

(江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用练习文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用练习文苏教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第5讲导数及其应用练习文苏教版的全部内容。

第5讲导数及其应用1.(2019·宁波模拟)曲线y=错误!在点(1,-1)处的切线方程为________.[解析]由题意可得:y′=错误!,所以在点(1,-1)处的切线斜率为-2,所以在点(1,-1)处的切线方程为y=-2x+1.[答案] y=-2x+12.(2019·江苏省高考名校联考信息卷(一))若函数f(x)=x3-3x2的单调递减区间为[a,b],则a+b=______.[解析]因为f(x)=x3-3x2,所以f′(x)=3x2-6x.令f′(x)≤0,得0≤x≤2,所以函数f(x)的单调递减区间为[0,2],所以a=0,b=2所以a+b=2.[答案] 23.(2019·江苏省名校高三入学摸底卷)已知f(x)是定义在R上的函数,f′(x)为其导函数,f(x)+f(x+2)=4,当x∈[0,2]时,f(x)=x2,则f′(2 019)=______.[解析] 因为f(x)+f(x+2)=4,所以f(x+2)+f(x+4)=4,所以f(x+4)=f(x),所以f(x)的周期为4.当x∈[2,4]时,x-2∈[0,2],f(x-2)=(x-2)2,因为f(x)+f(x+2)=4,所以f(x-2)+f(x)=4,所以f(x)=4-f(x-2)=4-(x-2)2=4x-x2,所以f′(x)=-2x+4,根据周期性知,f′(2 019)=f′(3)=-2.[答案] -24.已知函数f(x)=-x2+2ln x,g(x)=x+ax,若函数f(x)与g(x)有相同的极值点,则实数a的值为________.[解析] 因为f(x)=-x2+2ln x,所以f′(x)=-2x+错误!=-错误!(x〉0),令f′(x)=0,得x=1或x=-1(舍去),又当0〈x<1时,f′(x)〉0;当x〉1时,f′(x)<0,所以x =1是函数f(x)的极值点.因为g(x)=x+错误!,所以g′(x)=1-错误!.又函数f(x)与g(x)=x+错误!有相同极值点,所以x=1也是函数g(x)的极值点,所以g′(1)=1-a=0,解得a=1.经检验,当a=1时,函数g(x)取到极小值.[答案] 15.(2019·高三第一次调研测试)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y =a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为______.[解析]由题意可得t=1,b=1,y′=a cos x-b sin x,则a cos 0-b sin 0=3,a=3,所以(a+b)t=4.[答案] 46.(2018·高考江苏卷)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.[解析]f′(x)=6x2-2ax=2x(3x-a)(a∈R),当a≤0时,f′(x)〉0在(0,+∞)上恒成立,则f(x)在(0,+∞)上单调递增,又f(0)=1,所以此时f(x)在(0,+∞)内无零点,不满足题意.当a>0时,由f′(x)>0得x>错误!,由f′(x)〈0得0〈x〈错误!,则f(x)在错误!上单调递减,在错误!上单调递增,又f(x)在(0,+∞)内有且只有一个零点,所以f错误!=-错误!+1=0,得a=3,所以f(x)=2x3-3x2+1,则f′(x)=6x(x-1),当x∈(-1,0)时,f′(x)〉0,f(x)单调递增,当x∈(0,1)时,f′(x)〈0,f(x)单调递减,则f(x)=f(0)=1,f(-1)=-4,f(1)=0,则f(x)min=-4,所以f(x)在[-1,1]上的最max大值与最小值的和为-3.[答案]-37.(2019·江苏省高考名校联考信息卷(八))已知函数f(x)=x ln x+错误!x2-3x在区间错误!内有极值,则整数n的值为______.[解析]由题意知,f′(x)=ln x+1+x-3=ln x+x-2,令g(x)=ln x+x-2,因为g(错误!)=ln 错误!+错误!-2=ln 错误!-错误!<ln错误!-错误!=0,g(2)=ln 2〉0,所以函数g(x)=ln x+x-2在(错误!,2)内有零点.又g′(x)=错误!+1〉0恒成立,所以函数g(x)=ln x+x-2在(0,+∞)上单调递增,所以函数g(x)=ln x+x-2有唯一的零点x∈(错误!,2),则当x∈(0,x0)时,f′(x)〈0,当x∈(x0,+∞)时,f′(x)>0,则x0是函数f(x)唯一的极值点,且x∈(错误!,2),结合题意可知n=2.[答案] 28.(2019·高三第二学期四校联考)函数f(x)=a·e x-e-x的图象在x=0处的切线与直线y=2x-3平行,则不等式f(x2-1)+f(1-x)<0的解集为______.[解析]f′(x)=a e x+e-x,由题易知f′(0)=a+1=2,所以a=1,所以f(x)=e x-e-x.易知f(x)=e x-e-x为奇函数且f′(x)=e x+e-x〉0,所以f(x)在R上单调递增.不等式f(x2-1)+f(1-x)〈0可化为f(x2-1)〈f(x-1),由f(x)单调递增可得x2-1〈x-1,解得0〈x〈1,所以不等式的解集为{x|0〈x<1}.[答案]{x|0〈x〈1}9.(2019·南京四校第一学期联考)已知函数f(x)=x2-4x的图象上有两点A(x1,y1),B(x,y2),x1<x2,若曲线y=f(x)在点A,B处的切线互相垂直,则3x1-2x2的最大值是________.2[解析] 由题意得f′(x)=2x-4,因为曲线y=f(x)在点A,B处的切线互相垂直,所以x1≠2,x2≠2,(2x1-4)·(2x2-4)=-1.又x1<x2,所以2x1-4<0,2x2-4>0,x1=错误!+2,则3x1-2x2=3×错误!-2x2=-2x2-错误!+6=-错误!+2≤-2错误!+2=2-错误!,当且仅当错误!(4x2-8)=错误!时,上式取等号,因此3x1-2x2的最大值为2-错误!.[答案] 2-错误!10.(2018·江苏名校高三入学摸底)已知函数f(x)=x2-a ln x的图象在x=2处的切线与直线x+3y=0垂直,g(x)=错误!,若存在正实数m,n,使得f(m)≤f(x),g(n)≤g(x)对任意的x∈(0,+∞)恒成立,则函数h(x)=mf(x)+ng(x)的零点个数是________.[解析] 由题意可得函数f(x)=x2-a ln x的图象在x=2处的切线斜率为3,f′(x)=2x-错误!,f′(2)=4-错误!=3,a=2,f′(x)=2x-错误!=错误!,当0<x<1时,f′(x)〈0,f(x)单调递减,当x〉1时,f′(x)〉0,f(x)单调递增,所以f(m)=f(1),m=1.g(x)=x-2错误!(x〉0),g′(x)=1-错误!=错误!,当0〈x〈1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(n)=g(1),n=1.则h(x)=f(x)+g(x)=x2-2ln x+x-2错误!,易知当0〈x<1时,h(x)单调递减,当x>1时,h(x)单调递增,且h(1)=0,所以函数h(x)有1个零点.[答案] 111.(2019·江苏省名校高三入学摸底卷)已知函数f(x)=x2ln x-a(x2-x)(a<0),g(x)=错误!.(1)若函数g(x)的图象在x=2处的切线在y轴上的截距为4ln 2,求a的值;(2)判断函数g(x)在x∈(0,1)上的单调性,并说明理由;(3)若方程f(x)=m有两个不相等的实数根x1,x2,求证:x1+x2>1.[解] (1)g(x)=错误!=错误!-a(a<0),则g′(x)=错误!=错误!.g(2)=2ln 2-a,g′(2)=1-ln 2,函数g(x)的图象在x=2处的切线方程为y-(2ln2-a)=(1-ln 2)(x-2),将点(0,4ln 2)代入,解得a=-2.(2)令h(x)=x-ln x-1,则h′(x)=1-错误!=错误!,当x∈(0,1)时,h′(x)<0,h(x)单调递减,h(x)>h(1)=0,则当x∈(0,1)时,g′(x)>0,所以函数g(x)在x∈(0,1)上单调递增.(3)证明:f′(x)=2x ln x+x-a(2x-1),令φ(x)=2x ln x+x-a(2x-1)(a<0),则φ′(x)=2ln x+3-2a,易知φ′(x)在x∈(0,+∞)上单调递增,又φ′(e a-2)=-1<0,φ′(1)=3-2a>0,则存在x0∈(0,1),使得φ′(x0)=0,即2ln x0+3-2a=0,则f′(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,又f′(x0)=2x0ln x0+x0-2ax0+a=a-2x0<0,f′(1)=1-a>0,又当0<x<x0时,函数f′(x)的图象均在y轴下方,所以可设f′(x3)=0,则x3∈(x0,1),所以f(x)在(0,x3)上单调递减,在(x3,+∞)上单调递增,又f(1)=0,不妨设x1<x2,则数形结合可知0<x1<x3<x2<1.由(2)知,g(x1)<g(x3)<g(x2),即错误!则g(x3)(x22-x2)>f(x2)=f(x1)>g(x3)(x错误!-x1),所以(x错误!-x2)-(x错误!-x1)=(x2-x1)(x2+x1-1)>0,故x1+x2>1.12.(2019·江苏名校高三入学摸底)已知函数f(x)=错误!-1.(1)求函数f(x)的单调区间;(2)设m〉0,求函数f(x)在区间[m,2m]上的最大值.[解] (1)因为函数f(x)的定义域为(0,+∞),且f′(x)=错误!,由错误!得0<x<e;由错误!得x〉e.所以函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)①当错误!,即0〈m≤错误!时,[m,2m]⊆(0,e),函数f(x)在区间[m,2m]上单调递增,所以f(x)max=f(2m)=错误!-1;②当m〈e<2m,即错误!<m〈e时,(m,e)⊆(0,e),(e,2m)⊆(e,+∞),函数f(x)在区间(m,e)上单调递增,在(e,2m)上单调递减,所以f(x)max=f(e)=错误!-1=错误!-1;③当m≥e时,(m,2m)⊆(e,+∞),函数f(x)在区间[m,2m]上单调递减,所以f(x)max =f(m)=错误!-1.综上所述,当0<m≤错误!时,f(x)max=错误!-1;当错误!〈m<e时,f(x)max=错误!-1;当m≥e时,f(x)max=错误!-1.13.(2019·高三第二次调研测试)已知函数f(x)=2ln x+错误!x2-ax,a∈R.(1)当a=3时,求函数f(x)的极值.(2)设函数f(x)的图象在x=x0处的切线方程为y=g(x),若函数y=f(x)-g(x)是(0,+∞)上的增函数,求x0的值.(3)是否存在一条直线与函数f(x)的图象相切于两个不同的点?并说明理由.[解] (1)当a=3时,f(x)=2ln x+错误!x2-3x(x〉0),f′(x)=错误!+x-3=错误!,令f′(x)=0得,x=1或x=2.当x变化时,f′(x),f(x)的变化情况如下表所示.错误!(2)依题意,知切线方程为y=f′(x0)(x-x0)+f(x0)(x0〉0),从而g(x)=f′(x0)(x-x0)+f(x0)(x0>0),记p(x)=f(x)-g(x),则p(x)=f(x)-f(x0)-f′(x0)(x-x0)在(0,+∞)上为增函数,所以p′(x)=f′(x)-f′(x0)≥0在(0,+∞)上恒成立,即p′(x)=错误!-错误!+x-x0≥0在(0,+∞)上恒成立,即x+错误!≥x0+错误!在(0,+∞)上恒成立,因为x+错误!≥2错误!=2错误!(当且仅当x=错误!时,等号成立),所以2错误!≥x0+错误!,从而(x0-错误!)2≤0,所以x0=错误!.(3)假设存在一条直线与函数f(x)的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨设0<x1〈x2,则函数f(x)的图象在点T1处的切线l1的方程为y-f(x1)=f′(x1)(x-x1),在点T2处的切线l2的方程为y-f(x2)=f′(x2)(x-x2).因为l1,l2为同一条直线,所以f′(x1)=f′(x2),f(x1)-x1f′(x1)=f(x2)-x2f′(x2),即错误!+x1-a=错误!+x2-a,2ln x1+错误!x错误!-ax1-x1错误!=2ln x2+错误!x错误!-ax2-x2错误!,整理得2ln错误!+错误!-错误!=0.①令t =x 2,12,由0<x 1〈x 2与x 1x 2=2,得t ∈(0,1).记p (t )=2ln t +错误!-t ,则p ′(t )=错误!-错误!-1=-错误!<0,所以p (t )在(0,1)上为减函数,所以p (t )>p (1)=0.从而①式不可能成立,所以假设不成立,即不存在一条直线与函数f (x )的图象相切于两个不同的点.14.已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪(1,错误!)∪(错误!,+∞),求c 的值.[解] (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-错误!.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈(-∞,-错误!)∪(0,+∞)时,f ′(x )>0,x ∈(-错误!,0)时,f ′(x )〈0,所以函数f (x )在(-∞,-错误!),(0,+∞)上单调递增,在(-错误!,0)上单调递减; 当a <0时,x ∈(-∞,0)∪(-错误!,+∞)时,f ′(x )〉0,x ∈(0,-错误!)时,f ′(x )<0,所以函数f (x )在(-∞,0),(-错误!,+∞)上单调递增,在(0,-错误!)上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b , f (-错误!)=错误!a 3+b ,则函数f (x )有三个零点等价于f (0)·f (-错误!)=b (错误!a 3+b )〈0,从而错误!或错误!又b =c -a ,所以当a 〉0时,错误!a 3-a +c 〉0或当a <0时,错误!a 3-a +c 〈0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪(1,32)∪(错误!,+∞),则在(-∞,-3)上g(a)<0,且在(1,错误!)∪(错误!,+∞)上g(a)>0均恒成立,从而g(-3)=c-1≤0,且g(错误!)=c-1≥0,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],因为函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,解得a∈(-∞,-3)∪(1,错误!)∪(错误!,+∞).综上c=1.。

2021-2022年高考数学二轮复习寒假作业一集合与常用逻辑用语注意解题的速度文

2021年高考数学二轮复习寒假作业一集合与常用逻辑用语注意解题的速度文一、选择题1.设集合A ={x |log 2x <0},B ={m |m 2-2m <0},则A ∪B =( ) A .(-∞,2) B .(0,1) C .(0,2)D .(1,2)解析:选C 由题意可得A =(0,1),B =(0,2),所以A ∪B =(0,2).2.(xx·沈阳一检)命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x ≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x >12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x >12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12解析:选D 命题p 的否定是把“∀”改成“∃”,再把“⎝ ⎛⎭⎪⎫12x ≤12”改为“⎝ ⎛⎭⎪⎫12x 0>12”即可.3.(xx·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 4.若集合M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0,N 为自然数集,则下列选项中正确的是( )A .M ⊆{x |x ≥1}B .M ⊆{x |x >-2}C .M ∩N ={0}D .M ∪N =N解析:选C ∵M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0={x |-2≤x <1},N 为自然数集,∴M ⊆{x |x ≥1}错误,M ⊆{x |x >-2}错误,M ∩N ={0}正确,M ∪N =N 错误.5.(xx 届高三·洛阳五校联考)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示的阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D 由Venn 图知阴影部分表示的集合为(∁R A )∩B ,依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},故(∁R A )∩B ={x |-1≤x ≤2}.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1解析:选D 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.7.已知集合A ={x ||x |≤2},B ={x |x 2-3x ≤0,x ∈N},则A ∩B =( ) A .{0,4} B .{-2,-1,0} C .{-1,0,1}D .{0,1,2}解析:选D ∵A ={x ||x |≤2}={x |-2≤x ≤2},B ={x |x 2-3x ≤0,x ∈N}={0,1,2,3},∴A ∩B ={0,1,2}.8.(xx·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 9.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m 0>0,直线x +m 0y -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”为真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个D .4个解析:选B 因为当a =0时,方程ax +4=0无解,所以命题p 为假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 为真命题,綈q 为假命题,所以①错误,②错误,③正确,④正确.故正确的命题有2个.10.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D 当f (0)=0时,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕:A i ⊕A j =A k ,k 为i +j 除以4的余数(i ,j =0,1,2,3),则满足关系式(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为( )A .4B .3C .2D .1解析:选C 因为x ∈S ={A 0,A 1,A 2,A 3},故x 的取值有四种情况.若x =A 0,根据定义得,(x ⊕x )⊕A 2=A 0⊕A 2=A 2,不符合题意,同理可以验证x =A 1,x =A 2,x =A 3三种情况,其中x =A 1,x =A 3符合题意,故选C.12.若f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .(-∞,-1]B .(-1,+∞)C .[3,+∞)D .(3,+∞)解析:选D P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)},因为函数f (x )是R 上的增函数,所以P ={x |x +t <2}={x |x <2-t },Q ={x |x <-1},要使“x ∈P ”是“x ∈Q ”的充分不必要条件,则有2-t <-1,即t >3.二、填空题13.已知全集为R ,集合A ={x |x -1≥0},B ={x |-x 2+5x -6≤0},则A ∪∁R B =________. 解析:因为A ={x |x -1≥0}=[1,+∞),B ={x |-x 2+5x -6≤0}={x |x 2-5x +6≥0}={x |x ≤2或x ≥3},∁R B =(2,3),所以A ∪∁R B =[1,+∞).答案:[1,+∞)14.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π3,m ≥2tan x ”是真命题,则实数m 的最小值为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π3时,2tan x 的最大值为2tan π3=23,∴m ≥23,实数m 的最小值为2 3.答案:2 315.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16,B =[a ,b ],若A ⊆B ,则a -b 的取值范围是________.解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16={x |22≤2x -2≤24}={x |4≤x ≤6}=[4,6],∵A ⊆B ,∴a ≤4,b ≥6,∴a -b ≤4-6=-2,即a -b 的取值范围是(-∞,-2].答案:(-∞,-2]16.设全集U ={(x ,y )|x ,y ∈R},集合A ={(x ,y )|x 2+y 2≤2x },B ={(x ,y )|x 2+y 2≤4x },给出以下命题:①A ∩B =A ,②A ∪B =B ,③A ∩(∁U B )=∅,④B ∩(∁U A )=U ,其中正确命题的序号是________.解析:集合A 表示的是以(1,0)为圆心,1为半径的圆及其内部的点构成的集合,集合B 表示的是以(2,0)为圆心,2为半径的圆及其内部的点构成的集合,易知A ⊆B ,利用Venn 图可知,①②③正确,④错误.答案:①②③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寒假作业(一) 集合与常用逻辑用语(注意解题的速度)一、选择题1.设集合A ={x |log 2x <0},B ={m |m 2-2m <0},则A ∪B =( ) A .(-∞,2) B .(0,1) C .(0,2)D .(1,2)解析:选C 由题意可得A =(0,1),B =(0,2),所以A ∪B =(0,2).2.(2017·沈阳一检)命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x ≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x >12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x >12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12解析:选D 命题p 的否定是把“∀”改成“∃”,再把“⎝ ⎛⎭⎪⎫12x ≤12”改为“⎝ ⎛⎭⎪⎫12x 0>12”即可.3.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}.4.若集合M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0,N 为自然数集,则下列选项中正确的是( ) A .M ⊆{x |x ≥1} B .M ⊆{x |x >-2} C .M ∩N ={0}D .M ∪N =N解析:选C ∵M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0={x |-2≤x <1},N 为自然数集,∴M ⊆{x |x ≥1}错误,M ⊆{x |x >-2}错误,M ∩N ={0}正确,M ∪N =N 错误.5.(2018届高三·洛阳五校联考)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示的阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D 由Venn 图知阴影部分表示的集合为(∁R A )∩B ,依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},故(∁R A )∩B ={x |-1≤x ≤2}.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1解析:选D 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.7.已知集合A ={x ||x |≤2},B ={x |x 2-3x ≤0,x ∈N},则A ∩B =( ) A .{0,4} B .{-2,-1,0} C .{-1,0,1}D .{0,1,2}解析:选D ∵A ={x ||x |≤2}={x |-2≤x ≤2},B ={x |x 2-3x ≤0,x ∈N}={0,1,2,3},∴A ∩B ={0,1,2}.8.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sinθ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.9.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m 0>0,直线x +m 0y -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”为真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个D .4个解析:选B 因为当a =0时,方程ax +4=0无解,所以命题p 为假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 为真命题,綈q 为假命题,所以①错误,②错误,③正确,④正确.故正确的命题有2个.10.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D 当f (0)=0时,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕:A i ⊕A j =A k ,k 为i +j 除以4的余数(i ,j =0,1,2,3),则满足关系式(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为( )A .4B .3C .2D .1解析:选C 因为x ∈S ={A 0,A 1,A 2,A 3},故x 的取值有四种情况.若x =A 0,根据定义得,(x ⊕x )⊕A 2=A 0⊕A 2=A 2,不符合题意,同理可以验证x =A 1,x =A 2,x =A 3三种情况,其中x =A 1,x =A 3符合题意,故选C.12.若f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .(-∞,-1]B .(-1,+∞)C .[3,+∞)D .(3,+∞)解析:选D P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)},因为函数f (x )是R 上的增函数,所以P ={x |x +t <2}={x |x <2-t },Q ={x |x <-1},要使“x ∈P ”是“x ∈Q ”的充分不必要条件,则有2-t <-1,即t >3.二、填空题13.已知全集为R ,集合A ={x |x -1≥0},B ={x |-x 2+5x -6≤0},则A ∪∁R B =________. 解析:因为A ={x |x -1≥0}=[1,+∞),B ={x |-x 2+5x -6≤0}={x |x 2-5x +6≥0}={x |x ≤2或x ≥3},∁R B =(2,3),所以A ∪∁R B =[1,+∞).答案:[1,+∞)14.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π3,m ≥2tan x ”是真命题,则实数m 的最小值为________. 解析:当x ∈⎣⎢⎡⎦⎥⎤0,π3时,2tan x 的最大值为2tan π3=23,∴m ≥23,实数m 的最小值为2 3. 答案:2 315.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16,B =[a ,b ],若A ⊆B ,则a -b 的取值范围是________.解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16={x |22≤2x -2≤24}={x |4≤x ≤6}=[4,6],∵A ⊆B ,∴a ≤4,b ≥6,∴a -b ≤4-6=-2,即a -b 的取值范围是(-∞,-2].答案:(-∞,-2]16.设全集U ={(x ,y )|x ,y ∈R},集合A ={(x ,y )|x 2+y 2≤2x },B ={(x ,y )|x 2+y 2≤4x },给出以下命题:①A ∩B =A ,②A ∪B =B ,③A ∩(∁U B )=∅,④B ∩(∁U A )=U ,其中正确命题的序号是________.解析:集合A 表示的是以(1,0)为圆心,1为半径的圆及其内部的点构成的集合,集合B 表示的是以(2,0)为圆心,2为半径的圆及其内部的点构成的集合,易知A ⊆B ,利用Venn 图可知,①②③正确,④错误.答案:①②③。

相关文档
最新文档