高中数学基础知识完全总结

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高中数学知识点大全总结

高中数学知识点大全总结

高中数学知识点大全总结高中数学是一门重要的学科,它是其他学科的基础,也是培养学生逻辑思维能力和解决问题能力的重要手段。

在高中数学中,有许多重要的知识点需要掌握,下面将对高中数学的重要知识点进行总结。

一、初等数论1. 自然数的性质及其运算法则2. 整数的性质及其运算法则3. 有理数的性质及其运算法则4. 整除与最大公因数5. 求解同余方程6. 等比数列的性质及公式二、代数学1. 多项式的运算与恒等式2. 二次函数与一般二次方程3. 四种基本函数及其性质(线性函数、二次函数、指数函数、对数函数)4. 高次方程的求解方法(韦达定理、有理根定理、根的分布情况)三、平面几何1. 直角三角形和斜角三角函数2. 圆的性质及其相关定理(切线定理、弦定理、正弦定理、余弦定理)3. 三角函数的图像与性质4. 平面向量的定义及其运算法则(向量的模、向量的共线性、向量的夹角、向量的垂直)5. 平面几何的证明方法(巴比内斯定理、相似三角形的证明、正弦定理的证明)四、立体几何1. 三角形与四边形的性质2. 球与球面的性质3. 正多面体的性质4. 空间直线的位置关系5. 空间几何中的立体角6. 空间向量的运用(平面与直线的交线与夹角、平面与平面的夹角)五、数列与数列极限1. 等差数列与等比数列的性质及其求和公式2. 数列的极限概念与性质3. 单调数列与有界数列的性质4. 黎曼和与定积分的关系5. 等差数列与等比数列的极限六、函数与导数1. 基本初等函数的性质与图像2. 极限与连续性3. 函数的求导法则(常用函数的导数、和差积商的求导法则)4. 函数的极值与最值5. 曲线的切线与法线6. 定积分与函数的面积七、微分学应用1. 可导函数的微分近似与应用(导数与函数的近似、函数的单调性、最值问题)2. 积分与定积分的性质及其应用(黎曼和与函数的面积、曲线长度和旋转体体积)3. 微分方程的基本概念及一阶微分方程的解法4. 概率统计与数理统计的基本概念与方法(随机事件、条件概率、正态分布)以上是高中数学的一些重要知识点总结,这些知识点是高中数学学习的基础,也是高考数学考试的重点。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)在高中数学学习中,掌握数学公式和知识点是至关重要的。

本文将为大家总结高中数学中常用的公式和知识点,旨在帮助同学们更好地学习和掌握数学知识,提高数学成绩。

一、基础知识点总结1. 直线与平面几何- 直线的方程:一般式、点斜式、两点式等- 直线与角的关系:平行线、垂直线等- 圆的性质:圆的方程、弧长、面积等2. 集合与不等关系- 集合的运算:并集、交集、差集等- 不等关系的性质:大于、小于、等于等3. 函数- 函数的性质:奇函数、偶函数、单调性等- 常用函数:一次函数、二次函数、指数函数等- 函数的图像及性质:拐点、极值点等二、常用公式总结1. 代数式与因式分解- (a+b)² = a²+2ab+b²- (a-b)² = a²-2ab+b²- a²-b² = (a+b)(a-b)2. 几何与三角函数- 三角函数基本关系:sin²θ+cos²θ=1- 角平分线定理:直角三角形中,垂直边上的高等于斜边上的高3. 二次函数与方程- 一元二次方程:ax²+bx+c=0- 二次函数顶点坐标:(-b/2a, -Δ/4a)三、高中数学实例应用1. 解析几何- 坐标系、直线、圆等的相关性质- 平面图形的运用:平行四边形、三角形、梯形等2. 统计与概率- 统计学基本概念:均值、方差、标准差等- 概率论基础知识:样本空间、事件的概率等通过本文的数学公式及知识点总结,希望能够帮助广大高中同学更深入地了解数学知识,提高学习成绩。

数学虽然有一定的难度,但只要勤奋学习、不断总结经验,相信大家一定能够在数学的道路上越走越远。

祝各位同学学习进步,取得优异成绩!。

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全高中数学是学生们进一步深入研究数学的重要阶段,既是基础知识的巩固与拓展,也是前沿数学思想的引领。

本文将对高中数学的各个知识点进行详细介绍,并列出相关公式,以帮助学生更好地掌握数学知识。

一、函数与方程1. 函数函数是数学中最基本的概念之一。

函数是一种映射关系,它将一个自变量的取值通过某种规则映射到一个因变量的值上。

常见函数类型:(1) 一次函数:y = kx + b (k为斜率,b为截距)(2) 二次函数:y = ax^2 + bx + c (a、b、c为常数)(3) 指数函数:y = a^x (a>0且a≠1)(4) 对数函数:y = loga(x) (a>0且a≠1)(5) 幂函数:y = x^a (a为实数且a≠0,1)2. 方程方程是数学中一个重要的概念,它表示等式两边的表达式相等。

常见方程类型:(1) 一元一次方程:ax + b = 0 (a、b为常数)(2) 一元二次方程:ax^2 + bx + c = 0(a、b、c为常数)(3) 一元高次方程:P(x) = 0(P(x)为多项式函数)(4) 二元一次方程组:{ax + by = c; dx + ey = f} (a、b、c、d、e、f为常数)(5) 二元二次方程组:{ax^2 + by^2 = c; dx + ey = f} (a、b、c、d、e、f为常数)二、数列与数学归纳法1. 数列数列是按照一定规律排列的一系列数。

常见数列类型:(1) 等差数列:an = a1 + (n-1)d (a1为首项,d为公差,n为项数)(2) 等比数列:an = a1 * q^(n-1) (a1为首项,q为公比,n为项数)(3) 斐波那契数列:an = an-1 + an-2 (a1 = 1, a2 = 1, n ≥ 3)2. 数学归纳法数学归纳法是数学中一种证明方法,通过证明当某个命题对于第一个自然数成立,并假设对于任意正整数n成立时,能够证明对于n+1也成立。

高中数学知识点总结全(最新)

高中数学知识点总结全(最新)

高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。

元素与集合的关系:属于(∈)、不属于(∉)。

集合的表示方法:列举法、描述法、图示法。

2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。

交集(∩):由两个集合的共同元素组成的集合。

补集(C):全集中不属于某集合的元素组成的集合。

差集():由一个集合中不属于另一个集合的元素组成的集合。

3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、对应关系、值域。

4. 函数的性质单调性:增函数、减函数。

奇偶性:奇函数、偶函数。

周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。

最值:最大值、最小值。

二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。

图像:一条直线。

性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。

2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。

图像:一条开口向上或向下的抛物线。

性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。

3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。

图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。

性质:无界性、单调性、特殊点。

4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。

图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。

性质:定义域(x>0)、单调性、特殊点。

5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。

高中数学知识点全总结(精选10篇)

高中数学知识点全总结(精选10篇)第一篇:代数与函数代数与函数是高中数学的重要基础内容,包括多项式、因式分解、分式方程等知识点。

代数与函数的学习对于理解和应用其他数学知识具有重要的作用。

第二篇:几何几何是高中数学不可或缺的一部分,包括平面几何、立体几何、三角形及其性质、相似三角形等知识点。

几何的学习能够培养学生的空间想象力和推理能力。

第三篇:概率与统计概率与统计是高中数学的实用内容,包括事件的概率、统计图表的分析与应用等知识点。

概率与统计的学习对于培养学生的数据分析能力具有重要的意义。

第四篇:数列与数学归纳法数列与数学归纳法是高中数学中的重要知识点,包括等差数列、等比数列、递推公式的求解等内容。

数列与数学归纳法的学习对于培养学生的逻辑思维和数学推理能力具有重要作用。

第五篇:函数与导数函数与导数是高中数学中的重要内容,包括函数的性质、导数的定义与求解等知识点。

函数与导数的学习对于培养学生的数学建模能力和问题解决能力具有重要作用。

第六篇:三角函数三角函数是高中数学中常见且重要的内容,包括三角函数的定义、性质、图像与应用等知识点。

三角函数的学习对于理解三角关系、解决相关问题具有重要意义。

第七篇:立体几何立体几何是高中数学中的重要内容,包括立体的表面积与体积的计算、空间几何体的相交与相切等知识点。

立体几何的学习对于培养学生的空间想象力和几何思维具有重要作用。

第八篇:平面向量平面向量是高中数学中的一项重要内容,包括向量的定义、运算、共线与垂直等知识点。

平面向量的学习对于培养学生的几何直观和向量运算能力具有重要作用。

第九篇:三角变换三角变换是高中数学中常见的内容,包括三角函数的基础知识、三角函数的图像变换等。

三角变换的学习对于理解函数的图像与性质具有重要的帮助。

第十篇:数学推理与证明数学推理与证明是高中数学中的重要内容,包括逻辑推理、数学证明的方法与技巧等知识点。

数学推理与证明的学习对于培养学生的严密思维和推理能力具有重要作用。

2024年高中数学知识点全总结范文(6篇)

2024年高中数学知识点全总结范文____年高中数学知识点全总结一、数与数量关系1. 数的读法与写法:整数、小数、分数、百分数、科学记数法等表示方法。

2. 数的比较:正数、负数、绝对值及其大小比较。

3. 数的运算:四则运算、混合运算、加减法与乘除法的顺序、括号法则等。

4. 数的应用:单位换算、图表分析、综合应用等。

二、代数与函数1. 代数式与方程式:变量、系数、项、次、多项式、因式分解、方程的解等。

2. 线性方程组:二元一次方程、三元一次方程、解方程的加减消元法等。

3. 一次函数与二次函数:函数的概念、定义域、值域、图像、性质、解析式、最值、函数的应用等。

4. 不等式与绝对值:一元一次不等式、一元一次绝对值不等式、一元二次不等式、二元一次不等式等。

5. 幂与指数:零次幂、整数幂、分数指数、指数运算规则、指数函数等。

6. 对数与指数方程:对数的概念、性质、换底公式、指数方程、对数方程的解法等。

三、几何与空间1. 平面几何:点、线、面的概念、性质与判定、相交关系、平行关系、相似关系等。

2. 空间几何:立体图形的概念、性质与判定、平行关系、相似关系、投影、截面等。

3. 解析几何:点、坐标系、坐标、直线的解析式、方程、性质、与平面图形的关系等。

4. 三角学:角的概念、度量、三角函数、三角恒等式、解三角形、航海问题、三角函数的应用等。

5. 向量与坐标变换:向量的概念、运算、线性组合、向量三角形、点、线、面的坐标变换等。

四、函数与导数1. 函数的定义域和值域:函数的基本概念、函数图像、函数表达式、定义域、值域等。

2. 图像与性质:奇偶性、增减性、最值、对称点、与坐标轴的交点、图像的平移、伸缩和翻转等。

3. 极限与连续:函数的极限、极限的性质、连续函数、间断点、分段函数等。

4. 导数与微分:导数的定义、导数的计算、导数的意义、导数的应用、微分的概念等。

5. 函数的应用:函数的增长性、凹凸性、最值、优化问题、导数在几何中的应用等。

高中数学知识点总结完整版

高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。

在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。

高中数学知识点公式全部总结

高中数学知识点公式全部总结一、代数1. 集合与函数- 集合的表示与运算:列举法、描述法,交集、并集、补集。

- 函数的概念:定义域、值域、单调性、奇偶性。

- 函数的运算:加法、减法、乘法、除法、复合函数。

2. 代数式- 整式与分式:单项式、多项式、因式分解、分式的加减乘除。

- 二次根式:开方、根式的乘除、有理化因式。

3. 一元一次方程与不等式- 方程的解法:移项、合并同类项、系数化为1。

- 不等式的解法:移项、合并同类项、分数的交叉相乘。

4. 一元二次方程- 标准形式、配方法、公式法、因式分解法。

- 根的判别式:Δ = b² - 4ac。

5. 多项式函数- 多项式的图像:零点、极值点、对称轴。

- 多项式的因式分解:提公因式、分组分解、十字相乘。

二、几何1. 平面几何- 点、线、面的基本性质。

- 三角形:边角关系、内角和定理、海伦公式。

- 四边形:平行四边形、矩形、菱形、正方形的性质。

- 圆的性质:圆心角、弦、切线、割线、圆周角。

2. 立体几何- 空间图形的表面积与体积计算。

- 棱柱、棱锥、圆柱、圆锥、球的性质与计算。

3. 解析几何- 坐标系:直角坐标系、极坐标系。

- 直线与圆的方程:点斜式、两点式、一般式、圆的标准式。

- 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。

三、概率与统计1. 概率- 随机事件的概率:古典概型、几何概型。

- 条件概率与独立事件。

- 贝叶斯定理。

2. 统计- 数据的收集与整理:频数分布、直方图。

- 统计量:平均数、中位数、众数、方差、标准差。

- 线性回归与相关系数。

四、数学归纳法- 证明方法:直接证明、间接证明。

- 数学归纳法的步骤:基础情况、归纳步骤。

五、数列1. 等差数列与等比数列- 通项公式、求和公式。

- 等差数列与等比数列的性质。

2. 级数- 等差级数与等比级数的求和。

- 无穷级数的概念:收敛与发散。

六、微积分初步1. 极限- 极限的概念:数列极限、函数极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学(文科)基础知识整合第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;φ是任何集合的子集,是任何非空集合的真子集。

3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况; (3))()()();()()(B C A C B A C B C A C B A C I I I I I I ==。

第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤g(x)≤b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数)(u f y =的定义域是内函数)(x g u =的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔1)()(0)()()()(-=-⇔=+-⇔-=-x f x f x f x f x f x f ;⑶)(x f 是偶函数1)()(0)()()()(=-⇔=--⇔=-⇔x f x f x f x f x f x f ;⑷奇函数)(x f 在原点有定义,则0)0(=f ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性⑴单调性的定义:)(x f 在区间M 上是增(减)函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f )0(0)]()()[(2121<>--⇔x f x f x x )0(0)()(2121<>--⇔x x x f x f ;⑵单调性的判定定义法:注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。

如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ;④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ;⑶函数周期的判定:①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论:①)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2;②)(x f y =的图象关于点)0,(),0,(b a 中心对称⇒)(x f 周期2b a -;③)(x f y =的图象关于直线b x a x ==,轴对称⇒)(x f 周期为2b a -;④)(x f y =的图象关于点)0,(a 中心对称,直线b x =轴对称⇒)(x f 周期4b a -; 8.基本初等函数的图像与性质⑴幂函数:αx y = ()R ∈α ;⑵指数函数:)1,0(≠>=a a a y x; ⑶对数函数:)1,0(log ≠>=a a x y a ;⑷正弦函数:x y sin =;⑸余弦函数:x y cos = ;(6)正切函数:x y tan =;⑺一元二次函数:02=++c bx ax ;⑻其它常用函数:①正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x k y ;特别的xy 1=,函数)0(>+=a xax y ; 9.二次函数:⑴解析式:①一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点;③零点式:))(()(21x x x x a x f --= 。

⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象⑴图象作法 :①描点法(注意三角函数的五点作图)②图象变换法③导数法 ⑵图象变换:① 平移变换:ⅰ)()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ)0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; ② 伸缩变换:ⅰ)()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标伸长为原来的ω1倍;ⅱ)()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标伸长为原来的A 倍;③ 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=; ⅲ )(x f y =−→−=0x )(x f y -=; ⅳ)(x f y =−−→−=xy )(1x f y -=;④ 翻转变换:ⅰ|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象); 11.函数图象(曲线)对称性的证明(1)证明函数)(x f y =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明函数)(x f y =与)(x g y =图象的对称性,即证明)(x f y =图象上任意点关于对称中心(对称轴)的对称点在)(x g y =的图象上,反之亦然;注:①曲线C 1:f(x,y)=0关于点(a,b )的对称曲线C 2方程为:f(2a -x,2b -y)=0;②曲线C 1:f(x,y)=0关于直线x=a 的对称曲线C 2方程为:f(2a -x, y)=0; ③曲线C 1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C 2的方程为f(y -a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x ∈R )−→−y=f(x)图像关于直线x=2ba +对称; 特别地:f(a+x)=f(a -x) (x ∈R )−→−y=f(x)图像关于直线x=a 对称; ⑤函数y=f(x -a)与y=f(b -x)的图像关于直线x=2ba +对称; 12.函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法. 13.导数 ⑴导数定义:f(x)在点x 0处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;⑵常见函数的导数公式: ①'C 0=;②1')(-=n n nx x ;③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(;⑦ax x a ln 1)(log '=; ⑧x x 1)(ln '=。

⑶导数的四则运算法则:;)(;)(;)(2vv u v u v u v u v u uv v u v u '-'=''+'=''±'='± ⑸导数的应用:①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ )(0)(x f x f ⇒>'是增函数; ⅱ )(0)(x f x f ⇒<'为减函数;ⅲ )(0)(x f x f ⇒≡'为常数;③利用导数求极值:ⅰ求导数)(x f ';ⅱ求方程0)(='x f 的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化:π弧度180=,1801π= 弧度,1弧度 )180(π='1857 ≈ ⑵弧长公式:R l θ=;扇形面积公式:Rl R S 21212==θ。

2.三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin rxr y ==ααx y =αtan3.三角函数符号规律:一全正,二正弦,三两切,四余弦;4.诱导公式记忆规律:“函数名不(改)变,符号看象限”; 5.⑴)sin(ϕω+=x A y 对称轴:ωϕππ-+=2k x ;对称中心:))(0,(Z k k ∈-ωϕπ; ⑵)cos(ϕω+=x A y 对称轴:ωϕπ-=k x ;对称中心:))(0,2(Z k k ∈-+ωϕππ;6.同角三角函数的基本关系:x xxx x tan cos sin ;1cos sin 22==+; 7.两角和与差的正弦、余弦、正切公式:①;sin cos cos sin )sin(βαβαβα±=±②;sin sin cos cos )cos(βαβαβα =±③βαβαβαtan tan 1tan tan )tan(±=± 。

相关文档
最新文档