七年级数学上册有理数测试卷

合集下载

上海 华东师范大学第一附属初级中学七年级数学上册第一单元《有理数》测试卷(含答案解析)

上海 华东师范大学第一附属初级中学七年级数学上册第一单元《有理数》测试卷(含答案解析)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 2.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定 3.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-24.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2 5.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 6.下列有理数的大小比较正确的是( )A .1123<B .1123->-C .1123->-D .1123-->-+ 7.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7| 8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多109.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 10.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个11.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 12.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.23(2)0x y -++=,则x y 为______.14.绝对值小于2018的所有整数之和为________.15.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____. 16.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)17.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.18.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________. 19.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 20.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 三、解答题21.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].23.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?24.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 26.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 4.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.6.B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A 、1123>,故本选项大小比较错误,不符合题意; B 、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意; C 、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意; D 、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B .【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.8.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .9.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.10.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.11.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.12.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题13.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 14.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.15.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.16.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.18.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.19.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.20.2【分析】利用相反数倒数的性质确定出a+bcd的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】 解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.22.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.24.(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 25.(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.26.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.。

深圳中学七年级数学上册第一单元《有理数》-选择题专项测试卷(含解析)

深圳中学七年级数学上册第一单元《有理数》-选择题专项测试卷(含解析)

一、选择题1.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|D 解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.2.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.3.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.4.6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B 解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数D 解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.7.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.8.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.9.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C.|a|+|b|=0 D.|a|+b=0A 解析:A【解析】a,b互为相反数0a b⇔+=,易选B.10.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-abD解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.13.下列正确的是()A.5465-<-B.()()2121--<+- C.1210823-->D.227733⎛⎫--=--⎪⎝⎭A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 14.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .16.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D根据a b 判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b < ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 17.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C 解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C . 18.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.19.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】901.5=9.015×102.故选:C .【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++ 7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 21.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17,∴这个数是17-或17. 故选C.【点睛】 熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.22.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.23.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.24.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C解析:C【分析】 先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 25.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.26.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.27.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab=故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.28.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.29.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 30.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A 解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.。

深圳中学七年级数学上册第一单元《有理数》-解答题专项测试卷(含解析)

深圳中学七年级数学上册第一单元《有理数》-解答题专项测试卷(含解析)

一、解答题1.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.3.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.4.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 5.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.6.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.7.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.8.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.9.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5-- 如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.10.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 11.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.12.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.13.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算. 14.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来; (3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案; (2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.15.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律. 【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0; (2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况, 经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键. 17.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M 所对应的数为24或-6. 【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9. 【详解】 设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9, ∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24, ∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9, ∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6, ∴点M 所对应的数为x-6-x=-6; 综上,点M 所对应的数为24或-6. 【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键. 19.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8. 【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可. 【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5, ∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0, 所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6, 所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8. 【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 20.计算: (1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5 【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23 =9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×1 9=﹣1+(﹣3)﹣1=﹣5.【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.21.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t ;1+2t ;5+5t ;②BC -AB 的值为2,不随着时间t 的变化而改变. 【分析】(1)先根据b 是最小的正整数,求出b ,再根据c 2+|a +b |=0,即可求出a 、c ; (2)由(1)得B 和C 的值,通过数轴可得出B 、C 的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A 、B 、C ; ②先求出BC =3t +4,AB =3t +2,从而得出BC -AB =2. 【详解】解:(1)∵b 是最小的正整数, ∴b =1.∵(c -5)2+|a +b |=0, ∴a =-1,c =5; 故答案为:-1;1;5;(2)由(1)知,b =1,c =5,b 、c 在数轴上所对应的点分别为B 、C , B 、C 两点间的距离为4;(3)①点A 以每秒1个单位长度的速度向左运动,运动了t 秒,此时A 表示的数为-1-t ; 点B 以每秒2个单位长度向右运动,运动了t 秒,此时B 表示的数为1+2t ; 点C 以5个单位长度的速度向右运动,运动了t 秒,此时C 表示的数为5+5t . ②BC -AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =5+5t –(1+2t )=3t +4,AB =1+2t –(-1-t )=3t +2, ∴BC -AB =(3t +4)-(3t +2)=2. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 23.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 25.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 26.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 28.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--() 2117 =÷-2117=-;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯⎪⎝⎭255104=-⨯+54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2 ++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.。

七年级上册数学有理数试题

七年级上册数学有理数试题

七年级上册数学有理数试题一、有理数的基本概念1. (1)如果收入100元记作 + 100元,那么支出50元记作()解析:用正负数来表示具有相反意义的量,收入记为正,那么支出就记为负,所以支出50元记作 50元。

2. (2)在 2,0,(1)/(2),2这四个数中,最小的数是()解析:正数大于0,0大于负数,对于负数,绝对值大的反而小。

| 2|=2,所以2是这四个数中最小的数。

3. (3)-(3)/(4)的相反数是()解析:互为相反数的两个数绝对值相等,符号相反。

所以-(3)/(4)的相反数是(3)/(4)。

4. (4)| 5|等于()解析:绝对值是指一个数在数轴上所对应点到原点的距离,所以| 5| = 5。

二、有理数的运算1. (1)计算:(-2)+3解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|3|>| 2|,所以(-2)+3 = 1。

2. (2)计算:-3 (-5)解析:减去一个数等于加上这个数的相反数,所以-3-(-5)=-3 + 5 = 2。

3. (3)计算:(-2)×(-3)解析:两数相乘,同号得正,异号得负,并把绝对值相乘,所以(-2)×(-3)=6。

4. (4)计算:(-4)÷2解析:两数相除,异号得负,并把绝对值相除,所以(-4)÷2=-2。

三、有理数的混合运算1. 计算:2×(-3)+(-1)^2解析:先算乘方,(-1)^2 = 1。

再算乘法,2×(-3)=-6。

最后算加法,-6 + 1=-5。

2. 计算:(-2)^3÷(-4)-(-1)^2023解析:先算乘方,(-2)^3=-8,(-1)^2023=-1。

再算除法,-8÷(-4) = 2。

最后算减法,2-(-1)=2 + 1=3。

四、有理数的应用1. 某冷库的温度是零下10^∘C,下降-3^∘C后又下降5^∘C,求两次变化后的冷库温度。

第一章有理数(单元测试卷)人教版七年级数学上册收藏

第一章有理数(单元测试卷)人教版七年级数学上册收藏

第一章有理数(单元测试卷)人教版七年级数学上册收藏今天要一起来挑战一份特别的试卷,就是这个人教版七年级数学上册第一章有理数的单元测试卷。

有理数可有意思,它就像我们生活中的小魔法数字,无处不在。

比如说,你去商店买文具,一支铅笔2元钱,你给了售货员阿姨5元,阿姨找给你3元。

这里面的2元、5元、3元,这些就是有理数。

有理数能帮我们算清楚买东西要花多少钱,还能找回多少钱,是不是很厉害?
再比如说,温度计上的温度也是有理数。

冬天的时候,温度计可能会显示零下5摄氏度,这个“零下5”就是一个有理数。

夏天的时候,温度可能会达到30摄氏度,这“30”也是有理数。

有理数能告诉我们天气是冷还是热。

那这份单元测试卷,就是想看看你对有理数这个小魔法数字了解得怎么样。

试卷里可能会有一些题目,让你比较两个有理数的大小。

就像比较谁的糖果多,谁的糖果少一样。

比如说,3和5比,很明显5更大,因为5颗糖果比3颗糖果多嘛。

还有可能会让你做有理数的加减法。

想象一下,你本来有5颗糖,妈妈又给了你3颗,那你现在就有5 + 3 = 8颗糖,这就是简单的有理数加法。

在做这份测试卷的时候,要仔细看清楚每一道题。

如果遇到不会的,别着急,就像走在路上不小心摔了一跤,站起来再想想办法就好。

可以再回头看看课本上关于有理数的知识,说不定一下子就有灵感。

做完之后,别忘了检查一遍。

就像你出门前要检查一下有没有带钥匙一样重要。

看看有没有粗心大意写错的地方,这样才能拿到一个好成绩。

好,现在就勇敢地去挑战这份有理数单元测试卷,相信你一定能做得很棒的!。

沪科版七年级数学上册《第1章有理数》单元测试题含答案

沪科版七年级数学上册《第1章有理数》单元测试题含答案

第1章 有理数一、选择题(每小题4分,共32分)1.如果盈利5%记作+5%,那么-3%表示( )A .亏损3%B .亏损8%C .盈利2%D .少赚3%2.下列运算正确的是( )A .-(-2)2=-4B .(-3)2=6C .-|-3|=3D .(-3)2=-23.0.2的相反数的倒数是( )A. B .- C .-5 D .515154.下列说法中正确的是( )A .0不是有理数B .有理数不是整数就是分数C .在有理数中有最小的数D .若a 是有理数,则-a 一定是负数5.有理数a ,b 在数轴上的对应点如图1所示,则下面式子中正确的是()①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .图1A .①②B .①④C .②③D .③④6.已知一个数a 的近似值为1.50,那么a 的准确值的范围是( )A .1.495<a <1.505B .1.495≤a <1.505C .1.45≤a <1.55D .1.45<a <1.557.某时刻北京、上海、重庆、宁夏的气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃,则此时这四个城市中气温最低的是( )A .北京B .上海C .重庆D .宁夏8.观察下面各正方形内的数,推测m 的值是( )图2A .38B .52C .66D .74二、填空题(每小题4分,共24分)9.若一种大米的包装袋上标有“(10±0.5)千克”的字样,则两袋这种大米的质量最多相差________千克.10.若一个数的平方等于这个数的立方,则这个数是________.11.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是________,最小的积是________.12.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为________吨.13.将长方形的纸片对折一次,有1条折痕;再沿相同方向对折一次,有3条折痕;再沿相同方向对折一次,就有7条折痕;若再对折一次,有________条折痕.14.现规定一种运算:a ⊗b =ab -(a -b ),其中a ,b 为有理数,则3⊗(-)的值是1216________.三、解答题(共44分)15.(16分)计算:(1)-12+11-8+39;(2)(-2.5)÷×;(-54)(-32)(3)(+-)×(-12);141612(4)-12+3×(-2)3-(-6)÷(-)2.1316.(6分)小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演.在会演前,主持人让她们自己确定出场顺序,可她们俩争着先出场.最后主持人想了一个主意,如图3所示. -|-4|-0.2的倒数0的相反数(-1)5比-2大52的数图317.(6分)我们把“如果a=b,那么b=a”称为等式的对称性.(1)根据等式的对称性,由分配律m(a+b+c)=am+bm+cm可得到等式:____________________;(2)利用(1)中的结论,求-8.57×3.14+1.81×3.14-3.24×3.14的值.18.(8分)已知每袋小麦的标准质量为90千克.10袋小麦的称重记录(单位:千克)如图4所示:图4与标准质量比较,10袋小麦总计超过多少千克?10袋小麦的总质量是多少?小明是这样做的:先计算10袋小麦的总质量:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=________(千克);再计算总计超过多少千克:________-90×10=________(千克).(1)请你把小明的解答过程补充完整;(2)你还有其他的方法吗?请写出解答过程.19.(8分)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1.仿照以上推理计算1+3+32+33+…+32018的值.1.A 2.A3.C 4.B 5.B 6.B7.D8.D 9.1 10.0或1 12.8×1010 13.15 14.-2 11215.解:(1)原式=(-12-8)+(11+39)=-20+50=30.(2)原式=-××=-3.524532(3)原式=×(-12)+×(-12)-×(-12)=-3-2+6=1.141612(4)原式=-1+3×(-8)-(-6)×9=-1-24+54=29.16.解:因为-|-4|=-4,-0.2的倒数为-5,0的相反数是0,(-1)5=-1,比-2大的数是-2+=0.5,在数轴上表示略.5252-5<-4<-1<0<0.5.17.解:(1)am +bm +cm =m (a +b +c )(2)原式=3.14×(-8.57+1.81-3.24)=3.14×(-10)=-31.4.18.解:(1)905.4 905.4 5.4(2)有.如将超出标准质量的千克数记为正,不足标准质量的千克数记为负,再计算,具体过程略.19.解:设M =1+3+32+33+…+32018①,①式两边都乘3,得3M =3+32+33+34+…+32019②.②-①,得2M =32019-1,两边都除以2,得M =.即1+3+32+3332019-12+…+32018=.32019-12。

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。

(人教版)哈尔滨七年级数学上册第一单元《有理数》测试卷(答案解析)

一、选择题1.下列各组运算中,其值最小的是( ) A .2(32)--- B .(3)(2)-⨯- C .22(3)(2)-+- D .2(3)(2)-⨯-2.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定 3.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-14.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位 D .2.708×104精确到千分位5.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .26.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .758.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B9.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个10.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23| 11.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .412.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米13.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >014.下列分数不能化成有限小数的是( ) A .625B .324C .412D .11615.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题16.23(2)0x y -++=,则x y 为______.17.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)18.若两个不相等的数互为相反数,则两数之商为____. 19.把35.89543精确到百分位所得到的近似数为________. 20.计算:3122--=__________;︱-9︱-5=______. 21.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.22.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 23.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.24.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.25.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 26.绝对值小于4.5的所有负整数的积为______.三、解答题27.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点 A B C D 终点 上车人数 16 15 12 7 8 0下车人数-3-4-10-11(1)到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 28.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?29.计算:(1)45(30)(13)+---; (2)32128(2)4-÷-⨯-. 30.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-.。

七年级上册数学第一章《有理数》测试题(含答案)

七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分)1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 5、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或0 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( )14、观察下列各数,按规律在横线上填上适当的数。

人教版七年级数学上册第1章有理数单元测试卷【含答案】

人教版七年级数学上册第1章有理数单元测试卷一.选择题〔共10小题〕A. -14℃B. -8℃C. -2℃2.计算1-11-3,结果正确的选项是〔〕A. -4B. -3C. -23.计算:〔-3〕x〔-;〕=〔〕A. —3B. 3C. 14.计算〔-6〕 + 〔-1〕的结果是〔〕3A. 一18B. 2C. 185. 〔-2>的值等于〔〕A. -6B. 6C. 86.以下各组数中,相等的一组是〔〕A. 一〔一1〕与一ITIB. -3?与〔一3尸C. 〔-4〕3 与7.假设lx + 2l+〔y-3〕2=0,那么x-y的值为〔〕D. 2°CD. -1D--1D. -2D. 一8D.三与命3 3A. -5B. 5C. 18.以下运算错误的选项是〔〕A.-3-〔-3 +,〕 = -3 + 3-1 994 4B.5X[〔-7〕+〔-?]=5X〔-7〕+5X〔-二〕JJc・电〔一3»〔7〕=〔一泵电〔一4〕14 3 3 4D. —7 + 2x〔—;〕 = —7+[2x〔3D. -19.某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费〔〕A. 17 元B. 19 元C. 21 元D. 23 元10.对于有理数4、b,定义一种新运算“※〞,规定:4※人=1“1-1川-14-〃1,那么2※〔-3〕等于〔〕1.气温由6c下降了8°C ,下降后的气温是〔A.-2B.-6C.0D. 2二.填空题(共6小题)11.计算:2 + (—3)的结果为.12.假设x与-3的差为1,那么x的值是.13.计算:—(―2)4 =.14.假设1“-31与3 + 6)2互为相反数,那么代数式一2H『的值为15. 一家商店将某种服装按本钱价每件160元提升50%标价,又以8折优惠卖出,那么这种服装每件的售价是一元.16.现定义新运算“※〞,对任意有理数a、b ,规定a※4=时+.一8,例如:IX2 = lx2 + l-2 = l,那么计算3X(—5)=.三,解做题(共7小题)17.计算:(-15) +(+7)-(-3)18.计算:3 5 1(1)(-24)x(-- — + 1)8 12 4(2)-严.乂(二1)+1-313 419.计算:(1)18 — 351—(—I ---- ) + (——:2 6 12 6(2)(-1)5X(3-5)2-1X[1-(-3)3].20.阅读下面的解题过程:计算(一15) + (:)x6解:原式=(T5) + (-1)x6 (第一步)6=(-15)-(-1)(第二步)= -15 (第三步)答复:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.21.有一个填写运算符号的游戏:在“1口3口6口9〞中的每个口内,填入+, -,x, 一中的某一个〔可重复使用〕,然后计算结果.〔1〕计算:1 + 3-6-9:〔2〕假设1+3X6CI9=—7,请推算□内的符号:〔3〕在“1口3口6-9〞的□内填入符号后,使计算所得数最小,直接写出这个最小数.22.如图,现有5张写着不同数字的卡片,请按要求完成以下问题:H H H〔1〕假设从中取出2张卡片,使这2张卡片上数字的乘积最大,那么乘积的最大值是—. 〔2〕假设从中取出2张卡片,使这2张卡片上数字相除的商最小,那么商的最小值是—. 〔3〕假设从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.23.小虫从某点4出发在一直线上往返爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:〔单位:厘米〕+5, -3, +10, -8, -6, +12, -10.〔1〕小虫最后是否回到出发点A ?〔2〕小虫离开原点最远是多少厘米?〔3〕在爬行过程中,如果每爬行1厘米奖励一粒芝麻,那么小虫一共得到多少粒芝麻?一.选择题〔共10小题〕1 .气温由6c 下降了8℃,下降后的气温是〔 〕A. -14℃B. -8℃解:6 — 8 = -2〔'C 〕, 应选:C.2 .计算1-11-3,结果正确的选项是〔 〕 A. -4B. -3解:原式=1-3 = —2. 应选:C.3 .计算:〔-3〕 x 〔-;〕 = 〔 〕A. -3B. 3解:原式= 3x1 = 1 , 3 应选:C.4 .计算〔-6〕 + 〔-;〕的结果是〔 〕 A. -18B. 2解:〔-6〕 + 〔一:〕= 〔一6〕乂〔-3〕 = 18. 应选:C.5 . 〔-2〕3的值等于〔 〕 A. -6B. 6解:〔-2〕3 = -8 , 应选:D.6 .以下各组数中,相等的一组是〔 〕A. 一〔一1〕与一I —IIB. -3?与〔一3户答案C. -2℃D. 2℃C. -2D. -1C. 1D. -1C. 18D. -2C. 8D. -8C. 〔YU 与D..与?尸解:A 、一 -(-1) = 1 , 一(一1)工一1一11,故本选项错误:B 、(一3尸=9, -3?=-9, 9工一9,故本选项错误;.、(-4)3 =-64, -4、=-64, (-4)3=-4.,故本选项正确; .、二=士,(3)2=士, 士=士,故本选项错误. 3 3 3 9 3 9应选:C.7 .假设lx + 2l+(y-3)2=0,那么x-y 的值为( )A. -5B. 5C. 1 D--1解:•••lx + 2l+(y - 3)2=0,, x + 2 = 0, 丫-3 二 0,解得:x = -2 f y = 3 , 故 x - y = -2 - 3 = -5 ・ 应选:A .4 4B. 5X [(-7) + (-?] = 5X (-7) + 5X (7 J J 1 7 7 1C. [-X (--)]X (-4) = (--)X [7X (-4)] 4 3 3 4D. —7 + 2x(—;) = —7 引2x(—J)]解:v _3-(-3 + 1) = _3 + 3-1,应选项 A 正确:v 5 x[(-7) + (-1)] = 5x (-7) + 5x(-1),应选项 8 正确: 5 5 •・・ HX(-()]X(-4) = (-3x[lx(-4)],应选项C 正确: 4 3 3 4•.•-7 + 2x(—;) = —7引2 + (-;)],应选项.错误;应选:D.9.己知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部 分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( ) 解:根据题意得:13 + (8-5)x2 = 13 + 6 = 19 (元).那么需要付费19元. 应选:B.10.对于有理数4、b,定义一种新运算“※〞,规定:aXbTal-lbl-la-bl,那么2※(一3) 等于()A. 17 元B. 19 元C. 21 元D. 23 元8.以下运算错误的选项是( )A. -2B. -6C. 0D. 2 解:•/ a※/? Tai -1〃1 -la-bl,/. 2 X (-3)=121-1-31-12-(-3)1= 2-3-12 + 31=2-3-5 =-6 , 应选:B.二.填空题(共6小题)11.计算:2 + (—3)的结果为_T_.解:2 + (-3) = "1.故答案为:-1.12.假设x与一3的差为1,那么x的值是_-2_.解:根据题意知x-(-3) = 1,那么x = l + (-3)= - 2,故答案为:-2.13.计算:-(-2)4=_-16_.解:一(一2)4=-16.故答案为:-16.14.假设I" —31与("+32互为相反数,那么代数式一2“从的值为_一54_解:RTI与(〃 +〃尸互为相反数,/.I.-31+3 + 万尸=0, 二.一3 = 0, a + Z? = 0,解得.=3, b = —3, :.-lab1 =-2x3x(一3尸二-6x9 = -54 .故答案为:-54.15. 一家商店将某种服装按本钱价每件160元提升50%标价,又以8折优惠卖出,那么这种服装每件的售价是一192元.解:160x(l + 50%)x80% = 192 (元),故答案为:192.16.现定义新运算“※) 对任意有理数b ,规定4派〃="+.-〃,例如:IX 2 = lx2 + l-2 = l,那么计算3※(-5)=_-7_.解:3※(-5)=3 x (—5) + 3 - (—5)= -15 + 3 + 5=-7故答案为:-7.三.解做题(共7小题)17.计算:(-15) + (+7)-(-3)解:原式=一15 + 7 + 318.计算:3 5 1(1)(-24)x( 一—+ ―)8 12 4(2)一3二(-1 严乂(2-一)+1-313 S 解:(1) (-24)x(-- — + 1) = (-9) + 10 +(-6)8 12 4-9-1X — + 31219.计算:(1)18-351-(1 + --—)-(-1)2; 2 6 12 6(2)(-1)5X(3-5)2-1X[1-(-3)3].解:(1) 18-351-(! + :-二)+ (一;)2 2 6 12 6=27 - (― + - ——) x 362 6 12= 27-18-30 + 21 =0:(2) (-1)5X(3-5)2-1X[1-(-3)3]=(-1)X(-2)2-1X(1+27)= -1x4 —— x 28720 .阅读下面的解题过程:计算〔—15〕+?一:>6 J Xr解:原式=〔-15〕+〔」〕X6〔第一步〕6=〔-15〕 + 〔-1〕〔第二步〕= -15 (第三步) 答复:〔1〕上面解题过程中有两处错误,第一处是第二步,错误的原因是•第二处是第步,错误的原因是〔2〕把正确的解题过程写出来.解:〔1〕上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.= (-15)-(--)x6 6=(-15) x (-6)x6= 90x6= 540 .故答案为:二、运算顺序错误;三、得数错误.21.有一个填写运算符号的游戏:在“1口3口6口9〞中的每个口内,填入+, x, 七中的某一个(可重复使用),然后计算结果.(1)计算:1 + 3-6-9;(2)假设1 + 3'6口9 = 一7,请推算口内的符号:(3)在“1口3口6-9〞的口内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1) 1+3-6-9=4-6-9= -2-9-II:(2)・.・1 + 3*6口9 = -7,/.lxlx6C9 = -7, 3•♦.2口9 = -7,•・・2-9 = -7 ,二口内的符号为“-〞;(3)这个最小数是-26,理由:•.・在“1口3口6-9〞的口内填入符号后,使计算所得数最小,,1口3口6的结果是负数即可,•/1 口3口6 的最小值是1 — 3x6 = -17 t/.I O3Q6-9 的最小值时-17-9 =-26 ,二这个最小数是-26.22.如图,现有5张写着不同数字的卡片,请按要求完成以下问题:E H □ O H(1)假设从中取出2张卡片,使这2张卡片上数字的乘积最大,那么乘积的最大值是21(2)假设从中取出2张卡片,使这2张卡片上数字相除的商最小,那么商的最小值是—.(3)假设从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.解:(1)假设从中取出2张卡片,使这2张卡片上数字的乘积最大,那么乘积的最大值是:(-7)x(-3) = 21,故答案为:21:(2)从中取出2张卡片•,使这2张卡片上数字相除的商最小,那么商的最小值是:(-7)-^1 = -7, 故答案为:-7 ;(3)由题意可得,如果抽取的数字是-7, -3, 1, 2,那么(-7)x(-3) + l + 2 = 24, (-7 + 1-2)x(-3) = 24 ;如果抽取的数字是-3, 1, 2, 5,那么(1 —5)X(—3)X2=24 , [5-(-3)]x(l + 2) = 24.23.小虫从某点A出发在一直线上往返爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5, -3, +10, -8, -6, +12, -10.(1)小虫最后是否回到出发点A ?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,那么小虫一共得到多少粒芝麻?解:(1) +5-3 + 10-8-6 + 12-10 = 27-27=0,所以小虫最后回到出发点A ;(2)第一次爬行距离原点是5(7〃,第二次爬行距离原点是5-3 = 2(0〃),第三次爬行距离原点是2 + 10 = 12(.〃),第四次爬行距离原点是12-8 = 4(4方), 第五次爬行距离原点是14-6H-219〃),第六次爬行距离原点是-2 +12 = 10(5?),第七次爬行距离原点是10-10 = 0(.〃),从上而可以看出小虫离开原点最远是;〔3〕小虫爬行的总路程为:1+51+ 1-31+ 1+101+ 1-81+ 1-61+ 1+121+ 1-101= 5 + 3 + 10 + 8 + 6 + 12 + 10=54〔.〃〕.所以小虫一共得到54粒芝麻.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册测试卷
班级 ___________ 姓名 ______________ 学号 ___________ 得分 ___________
一、精心选一选:(
将你认为正确的选项序号填在下面答题卡上,
每题2分)

1 •校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边 20米,书 店
在家北边100米,张明同学从家里出发,向北走了 50米,接着又向北走了一 70 米,
此时张明的位置在
A.在家 B.在学校 C.在书店 D.不在上述地方
2.下列交换加数的位置的变形中,正确的是( )

(A)两个加数都是正数; (B)两个加数有一个是正数;
(C) 一个加数正数,另一个加数为零; (D)两个加数不能同为负数
6、 计算:(—2)1°°+(— 2)101 的是( )
" J00 f r J00
A . 2 B. —1 C . — 2 D . — 2

7、 比一7.1大,而比1小的整数的个数是( )
A. 6 B. 7 C. 8 D. 9
&下列各对数中,互为相反数的是
()

A. +(-5.2 )与—5.2 B. +(+5.2 )与 _5.2 C.-卜5.2 )与 5.2 D. 5.2与+( +5.2)
9、如果一个数的平方等于这个数本身,那么这个数只能是( )
A. 0 B . — 1 C. 1 D. 0 或 1

二.填空题:(将正确答案填在试卷上.每题3分)
11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,

记为0,规定向上为正,那么习惯上将 2楼记为 ;地下第一层记
作 ___________ ; 数—2 的实际意义为 _____________ ,数+ 9 的实际意义
为 ______________ 。
12、 如果数轴上的点A对应的数为-1.5,那么与A点相距3个单位长度的点所对
应的有理数为 ____________ 。
13、 南京市国际会展中心的建筑面积为 122100m ,用科学记数法记为 ____________
m2(保留三位有效数字

14、 要比较两个数a,b的大小,有时可以通过比较a - b与0的大小来解决.
(1)如果 a - b> 0,则 a___b;(2)如果 a - b=0,则 a___b;(3)如果 a - bv 0,则 a___b.
1 1
15、 比较数的大小: -3 ____ -4 ;-(+—) —+ | ;
2 2
16、 _____________________________________________________________ 根据语句列

式计算:⑴—6加上—3与2的积 ____________ 」
⑵一2与3的和除以一3 ____________________ ;
17、 _____________________________________________________________________ 如
果a、b互为倒数,c、d互为相反数 且m= -1,则代数式2ab-(c+d) +m
2
= ______

(直接写出答案

19、观察下列算式发现规律:31=3, 32=9, 33=27, 34=81, 35=243, 36=729,
37=2187, 38=6561,……

用你所发现的规律写出32004的末位数字是 ________ .
20. 计算|3.14 -n卜n的结果是 _________
三、计算题:(解答每一题时应写出过程和必要的文字说明,卷面要保持整洁!)
21、 计算:(本题共有4个小题,每小题5分,共20分)
(1) 15+ (— *) —15— (— 0.25) (2) (—
1)
3

— (1—2)^ 3X [2 —

(—3)2]

A、1 -4 5-4 =1 -4 4 -5 B、
13 1 1 13 1 1
34644436
C . 1-2 3-4=2-1 4-3 D、 4.5 -1.7 - 2.5 1.8 = 4.5 - 2.5 1.8-1.7

3、在一 5, 一 丄,—3.5, — 0.01, —2,- -212各数中,最大的数是( )
10
A. —12 B.—丄 C .- -0.01 D. — 5

10
4、下列各图中,符合数轴定义的是
()

A. B.
■ 七

-1 0 1 1
C 1 1 D
1 1 1 4

-1 0 1 -1 0 1

18、规定图形「表示运算a - b + c,

(3) (— 92)宁2* + 9 宁(一3)2
5.若两个有理数的和是正数,那么一定有结论(
表示运算x • z - y - w.
(4) 25X 弓—(—25)X1 + 25X (—已)
23.(请你帮忙算一算)在“十•一”黄金周期间,淮北市风景区在 7天假期中每

天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的
人数):
日期 1日 2日 3日 4日 5日 6日 7日
人数变化单
位:万人
1.6 0.8 0.4 -0.4 -0.8 0.2 -1.2

(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万
人?
(2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人? 8

25、有若干个数,第一个数记为a1,第二个数记为臣,…,第n个数记为为。若 a1=-
-,从第二个数起,每个数都等于“ 1与它前面那个数的差的倒数”。试计算:
2
a2= ____ ,a3= ___ ,a4= ____ , a5= ___ 。这排数有什么规律吗?由你发现的

规律,请计算a2004是多少? 8分

四、学以致用(数学来源于生活,数学服务于生活,希望数学使我们的生活更美
好!). 22.淮海商场经理对今年上半年每月的利润作了如下记录: 1、2、5、6月盈
利分别
是33万元、32万元、52.5万元、28万元,3、4月亏损分别是17.7万元和17.8 万
元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。 7分

五■自主学习与探究
(看看你的自学与应用数学说明问题的能力!)
24.观察下列各等式,并回答问题:(7分

1 , 1 1 1 1 1 1 1 1 1 1
1 = :——7
1 一

7 — —

1 2 2
2 3 2 3 3 4 3 4 4 5 4 5

⑴填
空:
1

(
n
是正整数)

n(n +1)

⑵计
算:
1

1 + 1 + 1
+ +•

1

…+ -
1 2 2 3 3 4 4 5 2004 2005
⑶计算

1
1 1 1 1
+ + -4-
1 3 3 5 5 7 7 9 19 21

相关文档
最新文档