南京理工大学机械设计基础上——解析法设计凸轮的轮廓曲线

§4—4 用解析法设计凸轮的轮廓曲线

一、滚子从动件盘形凸轮

1.理论轮廓曲线方程

(1)直动从动件盘形凸轮机构

图示偏置直动滚子从动件盘形凸轮机构。求凸轮理论廓线的方程,反转法给整个机构一个绕凸轮轴心O 的公共角速度-ω,这时凸轮将固定不动,而从动件将沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为:

⎬⎫++=-+=ϕϕϕϕsin )(cos sin cos )(00s s e y e s s x (4-15) 220e r s a -=,r a 为理论廓线的基圆半径,对于对心从动件凸轮机构,因e=0,所以s 0=r a ⎭

⎬⎫+=+=ϕϕs i n )(c o s )(s r y s r x a a (4-16) (2)摆动从动件盘形凸轮机构

图所示为摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而从动件沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为:

⎬⎫-+-=-+-=)sin(sin )cos(cos 00ϕψψϕϕψψϕl a y l a x (4-17) ψ0为从动件的起始位置与轴心连线OA 0之间的夹角。

al

r r l a T 2)(arccos 2

0220+-+=ψ (4-18) 在设计凸轮廓线时,通常e 、r 0、r T 、a 、l 等是已知的尺寸,而s 和ψ是ϕ的函数,它们分别由已选定的位移方程s =s (ϕ)和角位移方程ψ=ψ(ϕ)确定。

2.实际廓线方程

滚子从动件盘形凸轮的实际廓线是圆心在理论廓线上的一族滚子圆的包络线。由微分几何可知,包络线的方程为:

⎪⎭

⎪⎬⎫=∂∂=0),,(0),,(1111ϕϕϕy x f y x f (4-20) 式中x 1、y 1为凸轮实际廓线上点的直角坐标。

对于滚子从动件凸轮,由于产生包络线(即实际廓线)的曲线族是一族滚子圆,其圆心在理论廓线上,圆心的坐标由式(4-15)~(4-17)确定,所以由(4-20)有:

0)()(),,(2212111=--+-=T r y y x x y x f ϕ

0)(2)(2),,(1111=----=∂∂ϕ

ϕϕϕd dy y y d dx x x y x f

式(a )和(b )联立求解x 1和y 1,即得滚子从动件盘形凸轮的实际廓线参数方程: ⎪⎪⎪⎪⎭

⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭

⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛±=221221//ϕϕϕ

ϕϕϕ

d dy d dx d dx r y y d dy d dx d dy r x x T T (4-21) 上面的一组加减号表示一根外包络廓线,下面的一组加减号表示另一根内包络廓线。

3、刀具中心轨迹方程

加工凸轮廓线时,采用直径和滚子相同的刀具。刀具中心轨迹方程就是理论廓线方程。如果采用直径大于滚子的铣刀、砂轮等加工凸轮轮廓曲线,或者在线切割机上用钼丝等加工凸轮廓线,这时刀具中心不在理论廓线上。刀具中心轨迹曲线(图中虚线所示)是一条与实际廓线处处相差刀具半径的等距曲线,在r c >r T 时(图4-23(a )),刀具中心轨迹将是以理论廓线上各点为圆心,以r c -r T 为半径的一族假想滚子圆的外包络线;在r c

⎪⎪⎪⎪⎭

⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭

⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-±=222222/||/||ϕϕϕ

ϕϕϕ

d dy d dx d dx r r y y d dy d dx d dy r r x x T c T c (4-22) 式中x 2、y 2为刀具中心轨迹的直角坐标,当r c >r T 时,取上面的一组加减号;r c

机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计

授课教案

No

任务3.1 凸轮机构的认识一、复习10分钟 复习上次课学习内容 二、教师导课与课程学习: (1)学习提示,教师介绍本任务的学习内容。15分钟 本项目以直动从动件的盘形凸轮机构为例,在从动件等速运动、等加速等减速运动、余弦加速度运动(简谐运动)规律条件下,分析了凸轮机构中存在的柔性冲击与刚性冲击。 教师介绍本任务的学习内容:凸轮机构的分类;常用术语;从动件的运动规律;凸轮机构的结构形式;常用材料及热处理 (2)分小组学习: 40分钟 3.1.1常用设备中的凸轮机构 1. 凸轮机构的组成 如图所示的凸轮机构是由凸轮、从动件和机架等三个基本构件组成的机构。 2.凸轮机构应用实例 自动钻床进给机构、冲床凸轮机构等。 3.1.2凸轮机构的分类 凸轮机构的类型很多,按凸轮和从动件的形状及其运动形式的不同,凸轮机构的分类方法有以下几种: 1.按凸轮形状分类 (1)盘形凸轮(2)移动凸轮。(3)圆柱凸轮 2.按从动件形式分类 (1)尖顶从动件(2)滚子从动件(3)平底从动件 从动件的结构形式 3.按从动件的运动形式分类学生发言汇报、记录学习笔记 学生发言汇报并记录学习笔记 阅读教材和PPT、分组讨论、撰写发言提纲、学生发言汇报,课,记录学习笔记 No

(1)直动从动件 直动从动件指相对于机架作直线往复移动的从动件,如图3.1.1中所示。直动从动件又分为对心直动从动件和偏置直动从动件。 (2)摆动从动件:绕某一固定转动中心摆动的从动件。 4.按凸轮与从动件的锁合方式分类 (1)力锁合 利用从动件的重力、弹簧力或其他外力使从动件与凸轮轮廓保持接触, (2)形锁合 利用从动件和凸轮特殊的几何形状来维持接触,例如圆柱凸轮机构是利用滚子与凸轮凹槽两侧面的配合来实现形锁合。 3.1.3凸轮机构的常用术语如下: 1.凸轮基圆与基圆半径b r 2.凸轮的转角δ 凸轮相对于某一位置转过的角度,称为凸轮转角δ。具体包括推程运动角0δ、远停程运 动角S δ回程运动角0′δ和近停程运动角S δ'。 3从动件行程:从动件在推程和回程中移动的距离h 。 3.1.4从动件的运动规律 1.从动件的运动线图 在上图所示凸轮机构中,以从动件位移s 为纵坐标,对应的凸轮转角δ为横坐标,描述s 与δ之间关系的线图,称为从动件的位移线图。 从动件有等速运动、等加速等减速和余弦加速度运动规律(简谐运 动规律)等常用运动规律。 1.等速运动规律 No

第三章凸轮机构

第三章凸轮机构 §3-1凸轮机构的组成和类型 一、凸轮机构的组成 1、凸轮:具有曲线轮廓或沟槽的构件,当它运动时,通过其上的曲线轮 廓与从动件的高副接触,使从动件取得预期的运动。 2、凸轮机构的组成:由凸轮、从动件、机架这三个大体构件所组成的 一种高副机构。 二、凸轮机构的类型 1.依照凸轮的形状分: 空间凸轮机构: 盘形凸轮:凸轮呈盘状,而且具有转变的向径。它是凸轮最大体的形式,应用最广。 移动(楔形)凸轮:凸轮呈板状,它相关于机架作直线移动。盘形凸轮转轴位于无穷远处。 空间凸轮机构: 圆柱凸轮:凸轮的轮廓曲线做在圆柱体上。 2.依照从动件的形状分:

(1)尖端从动件 从动件尖端能与任意形状凸轮接触,使从动件实现任意运动规律。结构简单,但尖端易磨损,适于低速、传力不大场合。 (2)曲面从动件:从动件端部做成曲面,不易磨损,利用普遍。 (3)滚子从动件:滑动摩擦变成转动摩擦,传递较大动力。 (4)平底从动件 优势:平底与凸轮之间易形成油膜,润滑状态稳固。不计摩擦时,凸轮给从动件的力始终垂直于从动件的平底,受力平稳,传动效率高,经常使用于高速。 缺点:凸轮轮廓必需全数是外凸的。 3.依照从动件的运动形式分: 4.依照凸轮与从动件维持高副接触的方式分: (1)力封锁型凸轮机构: 利用重力、弹簧力或其它外力使从动件与凸轮轮廓始终维持接触。封锁方式简单,对从动件运动规律没有限制。

5、其它 反凸轮机构:摆杆为主动件,凸轮为从动件。 应用实例:自动铣槽机应用反凸轮实现料斗翻转 §3-2凸轮机构的特点和功能一.凸轮机构的特点 一、优势:(1)结构简单、紧凑,具有很少的活动构件,占据空间小。 (2)最大优势是关于任意要求的从动件运动规律都能够毫无困难 地设计出凸轮廓线来实现。 2、缺点:由于是高副接触,易磨损,因此多用于传力不大的场合。 二.功能

机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构 【思考题】 5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触? 5-2 凸轮机构分成哪几类?凸轮机构有什么特点? 5-3 为什么滚子从动件是最常用的从动件型式? 5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点? 5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理? 5-6 什么情况下要用解析法设计凸轮的轮廓? 5-7 设计凸轮应注意那些问题? 5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律? A级能力训练题 1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲 击,运动规律产生柔性冲击,运动规律则没有冲击。 2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于 中速,但不宜用于高速的情况,而可在高速下应用。 3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变 上应采取的措施是或。 4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采 用的措施是。若只降低升程的压力角,可采用方法。 5.凸轮的基圆半径是从到的最短距离。 6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现 变尖现象,此时应采用的措施是__________________________________________。 7.与其他机构相比,凸轮机构的最大优点是。 (1)便于润滑(2)可实现客种预期的运动规律 (3)从动件的行程可较大(4)制造方便,易获得较高的精度 8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。 (1)增大(2)减小(3)不变(4)增大或减小 9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。 (1)增大(2)减小(3)不变(4)增大或减小

巧借Excel在AutoCAD中设计凸轮轮廓曲线

巧借Excel在AutoCAD中设计凸轮轮廓 曲线 摘要:本文介绍一种借用EXCEL应用程序来计算并保存数据,并与CAD精确绘图巧妙地结合,设计凸轮轮廓曲线的方法,该方法也可用于其它二 维或三维曲线的绘制中。论文毕业论文关键词:凸轮轮廓曲 线 AutoCAD 图解法1.问题的提出本文以设计二维凸轮轮廓曲线为例, 介绍一种一般操作者就能方便做到的,借用EXCEL应用程序来计算并保存数据,并与AutoCAD精确绘图巧妙地结合,绘制二维或三维非规则曲线的方法,以供大家参考。2.概述在凸轮机构中,最常用的就是平面凸轮机构,要设计平面凸轮的轮廓曲线。设计方法通常有图解法和解析法两种。作图法简便易行、直观,作图误差较大,精度较低,适用于低速对从动件运动规律要求不高的一般精度凸轮设计;对于精度要求高的高速凸轮、靠模凸轮等,必须用解析法列出凸轮的轮廓曲线方程,用计算机辅助设计精确地设计凸轮机构。我们沿用原有的图解法思路,使用CAD作为工具,两者的联合运用,能产生意想不到的更简单、直接、方便的处理方法。在这种基于AutoCAD的图解法基础上,利用AutoCAD与其它文档交换信息和数据的功能,对于一些计算量较大输入点较多的图形,与EXCEL应用程序相结合,使作图更加简便快捷。如设计下面的偏置滚子从动件盘形凸轮轮廓曲线,已知偏距e=10㎜,基圆半径r0=40㎜,行程h=25㎜,滚子半径rT=10㎜。凸轮以角速度ω顺时针转动,从动件的运动规 律为:运动阶段1,推程Φ=180°、凸轮转角φ(°)为0~180,运动形式:等加速-等减速运动,运动方程方程:s=(2h/Φ2)φ2=(2*25/1802)φ (0≤φ≤90)或s=h-2h(Φ-φ)2/Φ2=25-2*25*(180- φ)2/1802(90≤φ≤180)运动阶段2,远休止ΦS=30°、凸轮转角φ(°)为180~210,运动形式:静止不动,运动方程方程: s=h=25 (180≤φ≤210)运动阶段3,回程Φ=90°、凸轮转角φ(°)为210~300,运动形式:等加速-等减速运动,运动方程方程: s= h-(2h/Φ’2)/φ’2=25-(2*25/180)2/(φ-210)2(180≤φ≤210)或s=2h(Φ’- φ’)2/Φ’2=2*25*(90-(φ-210))2/902(180≤φ≤210)运动阶段4,远休 止ΦS=60°、凸轮转角φ(°)为300~360,运动形式:静止不动,运动方程 方程: s=0(300≤φ≤360)3、解题思路要使基于CAD技术的图解法充分发挥软件精确、高效绘图的作用,就要首先改进原来的作图方法。图解法和解析法其本质完全相同,只是求解手段、求解过程不同,这里我们不用作图法确定曲线上点的方法,而是直接利用解析法里凸轮轮廓曲线的极坐标方程,求出凸轮轮廓曲线上若干个点(越多曲线越准确)的极坐标值(ρ,θ),再用spline (绘制样条曲线)命令,输入各点坐标值,作出凸轮的轮廓曲线。如果是滚子从动件,得到理论轮廓线后,直接用offset(偏移)命令,输入滚子半径即可得到凸轮的实际轮廓曲线。这里有两个问题需要解决。首先是计算,为了得到更为准确的曲线,取点要尽量多,求这些点的极坐标值是一个很大的计算量,如何计算,计算后数据保存在哪里?其次是绘制曲线时点的坐标的输入,如果一个个

机械设计基础第4章

第四章凸轮机构 在各种机器中,尤其是自动化机器中,为实现各种复杂的运动要求,常采用凸轮机构,其设计比较简便。只要将凸轮的轮廓曲线按照从动件的运规律设计出来,从动件就能较准确的实现预定的运动规律。本章将着重研究盘状凸轮轮廓曲线绘制的基本方法和凸轮设计中的相关问题。 §4—1 凸轮机构的应用与分类 一、凸轮机构的应用 凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸 轮通常作等速转动,但也有作往复摆动或移动的。 从动件是被凸轮直接推动的构件。凸轮机构就是 由凸轮、从动件和机架三个主要构件所组成的高 副机构。 图4-1所示为内燃机配气凸轮机构。当具有一定曲线轮廓的凸轮1以等角速度回转时,它的轮廓迫使从动作2(阀杆)按内燃机工作循环的要求启闭阀门。 图4-2为自动机床上控制刀架运动的凸 轮机构。当圆柱凸轮1回转时,凸轮凹槽侧 面迫使杆2运动,以驱动刀架运动。凹槽的 形状将决定刀架的运动规律。 内燃机,配气机构 凸轮一般作连续等速转动,从动件可作 连续或间歇的往复运动或摆动。凸轮机构广泛用于自动化和半自动化机械中作为控制机构。但凸轮轮廓与从动件间为点、线接触而易磨损,所以不宜承受重载或冲击载荷。 凸轮机构的特点 1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,且机构简单紧凑。

2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 凸轮机构的类型很多,通常按凸轮和从动件的形状、运动形式分类。 ⒈按凸轮的形状分类 (1)盘形凸轮 它是凸轮的最基本型式。这种凸轮是一个绕固定轴转动并且具有变化半径的盘形零件,如图4-1。 (2)移动凸轮 当盘形凸轮的回转中心趋于无穷远时,凸轮相对机架作直线运动,这种凸轮称为移动凸轮。 在以上两种凸轮机构中,凸轮与从动件之间的相对运动均为平面运动,故又统称为平面凸轮机构。 (3)圆柱凸轮 (圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。)如图4-2 ⒉按从动件形状分类 (1)尖顶从动件 尖顶能与任意复杂的凸轮轮廓保持接触,因而能实现任意预期的运动规律。但因为尖顶磨损快,所以只宜用于受力不大的低速凸轮机构中。受力小,低速,运动精确场合,仪器仪表中。 (2)滚子从动件 在从动件的尖顶处安装一个滚子从动件,可以克服尖顶从动件易磨损的缺点。滚子从动件为滑动摩擦,耐磨损,可以承受较大载荷,是最常用的一种从动件型式。 (3)平底从动件 这种从动件与凸轮轮廓表面接触的端面为一平面,所以它不能与凹槽的凸轮轮廓相接触。这种从动件的优点是:当不考虑摩擦是,凸轮与从动件之间的作用力始终与从动件的平底相垂直,受力平稳,传动效率较高,且接触面易于形成油膜,利于润滑,故常用于高速凸轮机构。 ⒊按从动件运动形式 可分为直动从动件(对心直动从动件和偏置直动从动件)和摆动从动件两种。

机械设计基础典型试题及答案

机械设计基础典型试题1 一、填空题:(每题2分,共20分) 1、设计时凸轮的轮廓曲线取决于_______________________________________。 2、渐开线齿廓形状取决于________大小。 3、普通螺纹的牙型为_______________形。 4、刚性联轴器无补偿__________的能力。 5、当滚子链的链节数为奇数时,接头要用_____________________。 6、阿基米德蜗杆在轴面的齿廓为______________________________。 7、槽轮轮机构常由___________________________________等组成。 8、滚动轴承72211AC中“11”表示___________________ 9、斜齿轮的____________参数为标准参数,____________参数为计算参数。 10、所谓高副就是指两构件的直接接触为_______________________。 二、判断题:(每题5分,共25分) 1.()根据曲柄存在的条件已判定铰接四杆机构中存在曲柄,则此机构是不会成为双摇杆机构的。 2.()普通平键联接是依靠键的上下两面的摩擦力来传递扭距的。 3.()三角形螺纹具有较好的自锁性能。螺纹之间的摩擦力及支承面之间的摩擦力都能阻止螺母的松脱。所以就是在振动及交变载荷作用下,也不需要防松。 4.()m,d,ha*c*都是标准值的齿轮是标准齿轮。 5.()渐开线标准直齿圆柱齿轮传动,由于安装不准确,产生了中心距误差,但其传动比的大小仍保持不变。 三、简答题:(20分) 1、简述滚动轴承的3类、6类、7类的类型名称及应用特点。 2、分析比较带传动的弹性滑动和打滑现象。

机械原理教案12凸轮机构轮廓曲线的设计

二、用图解法设计凸轮轮廓曲线 下面以偏置尖顶直动从动件盘形凸轮机 构为例,讲解凸轮廓线的设计过程。 例6-1 对心直动尖顶从动件盘形凸轮机构 设已确定基圆半径mm 150=r ,凸轮顺时针方向匀速转动,从动件行程mm 18=h 。从动件运动规律如下表所示: 推程 远休止 回程 近休止 运动角 1120δ= 260δ= 903=δ 490δ= 从动件运动规律 等速运动 正弦加速度运动 设计步骤: 1、建立推程段的位移方程:18120s δ =,回程段的位移方程: 12π181sin 902π90s δδ⎡⎤ ⎛⎫=-+ ⎪⎢⎥⎝⎭⎣ ⎦,将推程运动角、回程运动角按某一分度值等分成若干份, 并求得对应点的位移。 2、画基圆和从动件的导路位置 3、画反转过程中从动件的各导路位置 4、画从动件尖顶在复合运动中的各个位置点 5、分别将推程段和回程段尖顶的各位置点连成光滑曲线,再画出远休止段和近休止段的圆弧,即完成了尖顶从动件盘形凸轮轮廓曲线的设计,如图6-18。 需要注意:同一个图上作图比例尺必须一致。如各分点的位移与基圆应按相同比例尺量取。 2.偏置直动尖顶从动件盘形凸轮机构 凸轮转动中心O 到从动件导路的垂直距离e 称为偏距。以O 为圆心,e 为半径所作的圆称为偏距圆。显然,从动件导路与偏距圆相切(图中K 为从动件初始位置与基圆的切点)。在反转过程中,从动件导路必是偏距圆的切线。 如图6-19。 r0 a A0 A1 O B0B1

内 容 3.直动滚子从动件盘形凸轮机构 例题:已知:r r -滚子半径,0r -基圆半径,从动件运动规律。设计该机构。 设计思路:把滚子中心看作尖顶从动件的尖顶,按前述方法先画出滚子中心所在的廓线——凸轮的理论廓线。再以理论廓线上各点为圆心,以滚子半径r r 为半径画一系列的圆,这些圆的内包络线 即为凸轮的实际廓线(或称为工作廓线)。如图6-16 注意:滚子从动件盘形凸轮的基圆半径是指其理论廓线的最小向径 4.对心直动平底从动件盘形凸轮机构 思路:把平底与导路的交点A看作尖顶从动件的尖点,依次作出交点的位置,通过这些位置点画出从动件平底的各个位置线,然后作这些平底的包络线,即为凸轮的工作廓线,如图6-17 图6-16 图6-17 图6-18 图6-19

南京理工大学机械设计基础上——解析法设计凸轮的轮廓曲线

§4—4 用解析法设计凸轮的轮廓曲线 一、滚子从动件盘形凸轮 1.理论轮廓曲线方程 (1)直动从动件盘形凸轮机构 图示偏置直动滚子从动件盘形凸轮机构。求凸轮理论廓线的方程,反转法给整个机构一个绕凸轮轴心O 的公共角速度-ω,这时凸轮将固定不动,而从动件将沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为: ⎭ ⎬⎫++=-+=ϕϕϕϕsin )(cos sin cos )(00s s e y e s s x (4-15) 220e r s a -=,r a 为理论廓线的基圆半径,对于对心从动件凸轮机构,因e=0,所以s 0=r a ⎭ ⎬⎫+=+=ϕϕs i n )(c o s )(s r y s r x a a (4-16) (2)摆动从动件盘形凸轮机构 图所示为摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而从动件沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为: ⎭ ⎬⎫-+-=-+-=)sin(sin )cos(cos 00ϕψψϕϕψψϕl a y l a x (4-17) ψ0为从动件的起始位置与轴心连线OA 0之间的夹角。 al r r l a T 2)(arccos 2 0220+-+=ψ (4-18) 在设计凸轮廓线时,通常e 、r 0、r T 、a 、l 等是已知的尺寸,而s 和ψ是ϕ的函数,它们分别由已选定的位移方程s =s (ϕ)和角位移方程ψ=ψ(ϕ)确定。 2.实际廓线方程 滚子从动件盘形凸轮的实际廓线是圆心在理论廓线上的一族滚子圆的包络线。由微分几何可知,包络线的方程为: ⎪⎭ ⎪⎬⎫=∂∂=0),,(0),,(1111ϕϕϕy x f y x f (4-20) 式中x 1、y 1为凸轮实际廓线上点的直角坐标。 对于滚子从动件凸轮,由于产生包络线(即实际廓线)的曲线族是一族滚子圆,其圆心在理论廓线上,圆心的坐标由式(4-15)~(4-17)确定,所以由(4-20)有: 0)()(),,(2212111=--+-=T r y y x x y x f ϕ 0)(2)(2),,(1111=----=∂∂ϕ ϕϕϕd dy y y d dx x x y x f

机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构 1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度 2.动力特性:刚性冲击,柔性冲击 3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件 4.基本参数:基圆半径,滚子半径,平底尺寸 【思考题】 5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触? 5-2 凸轮机构分成哪几类?凸轮机构有什么特点? 5-3 为什么滚子从动件是最常用的从动件型式? 5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点? 5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理? 5-6 什么情况下要用解析法设计凸轮的轮廓? 5-7 设计凸轮应注意那些问题? 5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律? A级能力训练题 1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲 击,运动规律产生柔性冲击,运动规律则没有冲击。 2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于 中速,但不宜用于高速的情况,而可在高速下应用。 3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变 上应采取的措施是或。 4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采 用的措施是。若只降低升程的压力角,可采用方法。 5.凸轮的基圆半径是从到的最短距离。 6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现 变尖现象,此时应采用的措施是__________________________________________。 7.与其他机构相比,凸轮机构的最大优点是。 (1)便于润滑(2)可实现客种预期的运动规律 (3)从动件的行程可较大(4)制造方便,易获得较高的精度 8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。 (1)增大(2)减小(3)不变(4)增大或减小 9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。 (1)增大(2)减小(3)不变(4)增大或减小

凸轮设计步骤

所属标签:产品外观设计 根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。下面时间财富网的小编分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。

1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC 开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运 动角(1900)、近休止角(600),在基圆上得C 4、C 5 、C 9 诸点。将推程运动角和回程 运动角分成与从动件位移线图对应的等分,得C 1、C 2 、C 3 和C 6 、C 7 、C 8 诸点。 4) 过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。 5) 沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位置B1、B2、...。 6) 将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和B0之间均为以O 为圆心的圆弧),便得到所求的凸轮轮廓曲线。

02 机械设计基础 拓展阅读:图解法设计凸轮机构轮廓曲线

图解法设计凸轮机构轮廓曲线 从动件的运动规律与凸轮的轮廓曲线是密切相关的。那如何通过预期的从动件运动规律来设计凸轮的轮廓曲线呢? 凸轮轮廓曲线的设计方法有图解法和解析法。图解法的特点是简便易行且直观,但精确度有限,一般适用于低速或对从动件运动规律要求不太严格的凸轮机构的设计。解析法精确度高,一般应用于高速凸轮或精度要求较高的凸轮。接下来从作图原理、作图方法、凸轮机构设计中的常见问题三个方面来认识图解法。 一、作图原理。绘制凸轮轮廓曲线采用的是“反转法”原理,如图1所示。根据相对运动原理,给整个凸轮机构加一个与凸轮角速度ω1大小相等、方向相反的角速度-ω1,于是凸轮处于相对静止状态,而从动件一方面随机架以角速度-ω1绕凸轮轴心转动,另一方面又按已知的运动规律相对机架做直线运动,此时机构中各构件之间的相对运动并未改变。由于从动件的尖顶始终与凸轮轮廓相接触,所以反转过程中从动件尖顶的运动轨迹就是凸轮轮廓。 图1 反转法原理 二、作图方法。以对心直动尖顶从动件盘形凸轮轮廓曲线的绘制为例,如图2所示,其绘制步骤有四步。(1)确定凸轮的起始位置。按照从动件位移曲线一 为半径画基圆,在基圆上任取一点A作为从动件的初始位样的长度比例尺,r min 置。(2)等分位移曲线,得各分点位移量。即将推程运动角δt分成若干等分,得1、2、3、4、5、6、7、8.由各等分点作垂线,与位移线相交,得与凸轮各转角相应的从动件的位移量11’到88’。用相同的方法将回程运动角δh等分成若干份,并得出相应的从动件的位移量。(3)作从动件尖顶运动轨迹。在基圆上,

自初始位置A开始,沿-ω 方向,依次取角度,按位移线图中相同等分,对推程 1 运动角δt、回程运动角δh分别作等分,在基圆上得分点1、2、3到14。连接基圆中心点到这些分点,则就是反转后从动件导路的位置。在这位置线上截取位移曲线11’等于凸轮位置线上11’,用同样的方法取后面的点。则1’、2’、3’一直到14’就是从动件的运动轨迹。(4)绘制凸轮轮廓。将凸轮上1’、2’、3’至14’用光滑曲线连接起来则得到了凸轮轮廓曲线。 图2 对心直动尖顶从动件盘形凸轮机构的绘制 对心直动滚子从动件盘形凸轮轮廓曲线的绘制与刚才介绍的对心直动尖顶从动件的凸轮轮廓曲线绘制类似,如图3所示。首先将滚子的中心看作顶尖从动件的顶尖,按刚才介绍凸轮轮廓曲线的绘制的方法,作出尖顶从动件的理论轮廓曲线,再以理论轮廓曲线上各点为圆心,滚子半径为半径作一系列滚子圆,最后作这些圆的包络线,则得到对心直动滚子从动件凸轮的实际轮廓。 图3 对心直动滚子从动件盘形凸轮机构的绘制

机械设计基础-凸轮机构要点

第四章 凸轮机构 凸轮机构在机械工程领域中有着广泛的应用,特别在印刷机、包装机械、纺织机以及各种自动机中应用更加普遍。 凸轮机构具有传动、导向和控制等功能。当它作为传动机构时可以产生复杂的运动规律;当它作为导向机构时,则可以使执行机构的动作端产生复杂的运动轨迹;当它作为控制机构时,可以控制执行机构的工作循环。凸轮机构还具有如下优点:高速时平稳性好,重复精度高,运动特性良好,机构的构件少,结构紧凑体积小,刚性大,周期控制简单,可靠性好,寿命长。 随着工业自动化程度的不断提高,凸轮机构的应用也日益广泛。本章从讨论凸轮机构的特点和应用入手,介绍凸轮机构的分类,从动件常用的运动规律,凸轮轮廓设计及凸轮机构设计的几个基本问题。 4.1 凸轮机构的应用及分类 凸轮是一种具有曲线轮廓或凹槽的构件,它与从动件通过高副接触,使从动件获得连续或不连续的任意预期运动。 4.1.1 凸轮机构的应用与构成 在自动机械中,广泛应用着各种凸轮机构,它的作用主要是将凸轮(主动件)的连续转动转化为从动件的往复移动或摆动。例如: (1)图4-1所示的为单张纸胶印机中用于输送纸张的分纸吸嘴机构,当凸轮连续转动时,从动件(吸嘴)上下往复移动。当吸嘴下降到接近纸堆表面时,旋转气阀控制吸嘴吸气从而吸住纸堆最上面的一张纸,当凸轮继续转动时,吸嘴带纸上升并将纸交给递纸吸嘴,如此反复,完成纸张的逐张分离。 (2)图4-2所示的为一自动车床的进刀机构。当圆柱凸轮1回转时,经滚子4带动从动件2绕A 点作往复摆动,通过扇形齿轮和齿条的啮合使刀架3进刀或退刀。进刀和退刀的运动规律取决于凹槽曲线的形状。 从以上实例可以看出,凸轮机构主要由凸轮、从动件和机架构成,通常凸轮作匀速转动。当凸轮作匀速转动时,从动件的运动规律(指位移、速度、加速度与凸轮转角(或时间)之间的函数关系) 1 2 3 4 图4-1 胶印机分纸吸嘴机构 1—凸轮;2—从动摆臂;3—分纸吸嘴;4—弹簧 3 1 2 A 4 图4-2 进刀机构 1—圆柱凸轮;2—从动件;3—刀架;4—滚子

机械设计基础教案——第5章 凸轮机构

第5章凸轮机构 (一)教学要求 1.了解凸轮机构的工作原理 2.掌握常用从动件运动规律及特性 3.掌握盘形凸轮轮廓的设计 4.了解凸轮机构的尺寸的确定 (二)教学的重点与难点 1.凸轮的工作原理 2.用反转法设计凸轮轮廓 3.凸轮的尺寸对其机构的影响 (三)教学内容 5.1概述 5.1.1 概念 1.凸轮机构的组成:凸轮是由从动件、机架、凸轮三部分组成的高幅机构。2.凸轮:是一种具有曲线轮廓或凹糟的构件,它通过与从动什的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。 3.特点:结构相当简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。 4.凸轮机构的应用 例:内燃机配气机构(如下图所示) 靠模车削机构(如下图所示) 自动送料机构(如下图所示) 分度转位机构(如下图所示)

5.1.2 凸轮机构的分类 1、按照凸轮的形状分为: (1)盘形凸轮 凸轮中最基本的形式。凸轮是绕固定铂转动且向径变化的盘形零件,凸轮与从动件互作平面运动,是平面凸轮机构。 (2)移动凸轮 可看作是回转半径无限大的盘形凸轮,凸轮作往复移动,是平面凸轮机构。 (3)圆柱凸轮 可看作是移动凸轮绕在圆柱体上演化而成的,从动件与凸轮之间的相对运动为空间运动,是一种空间凸轮机构。 (4)曲面凸轮 当圆柱表面用圆弧面代替时,就演化成曲面凸轮,它也是一空间凸轮机构。 2、按锁合方式的不同凸轮可分为: (1)力锁合凸轮,如靠重力、弹簧力锁合的凸轮等; (2)几何锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。

机械设计基础练习题集及参考答案

机械设计基础B(1)模拟练习题及参考答案2016-02 试卷A试题类型: ✌是非题(10个,共10分) ✌选择题(10个,共10分) ✌简答题和作图题(4个题,共25分) ✌计算题(5个题,共55分) 一、是非题(对的写“√”,错的写“×”,每题1分,答错了不倒扣分) 1. 构件和零件的主要区别是:构件是运动单元,而零件是制造单元。(√) 2. 构件可以由多个零件组成,也可以由一个零件组成。(√) 3. 习惯上用“机械”一词作为机器和机构的总称,因此,二者的功能是完全一样的。(×) 4. 机械设计基础课程的研究内容是:机械中常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法。(√) 5.两构件通过面接触组成的运动副称为低副,分为转动副和移动副。(√) 6.K个构件汇交而成的复合铰链具有K-1个转动副。(√) 7.虚约束是重复约束或对机构运动不起限制作用的约束,计算自由度时应去除。(√)8.在计算滚子从动件凸轮机构的自由度时,滚子的自转为局部自由度,应设想将滚子与安装滚子的构件焊成一体,视为一个构件。(√)9. 高副是两构件以点或线接触而构成的运动副,例如一对齿轮的接触处就组成高副。(√)10.普通平键分为圆头(A型)、方头(B型)、单圆头(C型),其中A、C型可以承受轴向力,B型不能承受轴向力。(×) 11. 平键连接可以实现轴与轮毂的轴向固定和周向固定。(×) 12. 楔键在安装时要楔紧,故其同心性能不好。(√) 13. 平面机构中通常都有主动件、从动件和机架等构件。(√) 14. 平面连杆机构具有确定运动的充要条件是其自由度大于等于1。(×) 15. 根据整转副存在条件,已判定某铰链四杆机构中存在整转副,则此机构是不会成为双摇杆机构的。(×) 16.在平面连杆机构设计中,曲柄的极位夹角θ越大,机构的急回特性就越显著。(√) 17.在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。(×)18.在平面连杆机构中,连杆与曲柄是同时存在的,即有连杆就有曲柄。(×)

机械设计基础习题解

如图所示为一简易冲床设计方案,试绘制其运动简图,分析其是否具有确定的运动。如不具有确定的运动,请给出使其有确定相对运动的改进方案。 解:该设计方案的机构运动简图如图所示。由于其自由度 32332410 L H F n P P =--=⨯-⨯-=,该设计方案不具有确定的运动。为使机构的自 由度增加,可改一个低副为高副,也可引入一个构件和一个低副。图~5为几种改进方案(修改之处可移至他处出现,从而获得新的改进方案)。 图 图 图 图 图 友情提示:折线表示的弹簧起到保证构件3与凸轮接触的作用,不涉及运动副。 请绘制图示平面机构的运动简图,并计算自由度,确定主动件。 图(a) 图(b) (a )3233241L H F n P P =--=⨯-⨯=,主动件为1 (b )3235271L H F n P P =--=⨯-⨯=,主动件为1 (c )3233241L H F n P P =--=⨯-⨯=,主动件为1 (d ) 3233241 L H F n P P =--=⨯-⨯=,主动件为2

图(c) 图(d) 请计算图示各机构的自由度。 友情提示:(a)存在局部自由度;(b)存在一高副、中间杆非虚约束;(c)注意焊接符号;(d)存在齿轮高副。 请计算图示各机构的自由度。 友情提示:(a)存在局部自由度和两个高副;(b)注意焊接符号和复合铰链;(c)曲柄滑块机构+杆组、虚约束较多;(d)(e)(f)存在复合铰链。 请计算图示各机构的自由度。 友情提示:(a)A处存在复合铰链;(b)B、C、D处存在复合铰链。 根据杆长条件和机架判断铰链四杆机构的类型,分别为双曲柄、双摇杆、双摇杆、不符合机架条件的双摇杆机构。 液压泵机构。左为曲柄摇块机构,右为曲柄滑块机构。 图 压力机的机构属于曲柄滑块机构。

《机械设计基础》答案

《机械设计基础》作业答案 第一章平面机构的自由度和速度分析1-1 1-2 1-3 1-4 1-5

自由度为: 1 1 19 21 1 )0 1 9 2( 7 3 ' )' 2( 3 = -- = - - + ⨯ - ⨯ = - - + - =F P P P n F H L 或: 1 1 8 2 6 3 2 3 = - ⨯ - ⨯ = - - = H L P P n F 1-6 自由度为 1 1 )0 1 12 2( 9 3 ' )' 2( 3 = - - + ⨯ - ⨯ = - - + - =F P P P n F H L 或: 1 1 22 24 1 11 2 8 3 2 3 = -- = - ⨯ - ⨯ = - - = H L P P n F 1-10

自由度为: 1 128301)221142(103')'2(3=--=--⨯+⨯-⨯=--+-=F P P P n F H L 或: 1 22427211229323=--=⨯-⨯-⨯=--=H L P P n F 1-11 2 2424323=-⨯-⨯=--=H L P P n F 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1334313141P P P P ⨯=⨯ωω

1 1314133431==P P ω 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 s mm P P v v P /20002001013141133=⨯===ω 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 1224212141P P P P ⨯=⨯ωω

相关主题
相关文档
最新文档