(完整word版)二次根式化简的方法与技巧

合集下载

【精品】二次根式化简常用技巧全

【精品】二次根式化简常用技巧全

【精品】二次根式化简常用技巧全二次根式化简常用技巧是指当求解多项式拆分时,给定根式的一般解析式,利用技巧来把多项式拆分成几个已知的较小多项式。

它也是信息化数学教学和科学技术蓝图中最重要的内容之一。

一、求根式的一般解析式当给定一个多项式的解析式时,可以利用公式求根的方法,将多项式化简成一元二次根式,从而得到一般解析式。

这个一般解析式包括这个多项式的二次项系数、一次项系数以及常数项。

二、用分数式和根式相减约去如果多项式化简成一元二次根式后,可以用分数式和根式相减,来将多组根式归简成更小的一元二次根式,从而达到化简的目的。

三、分母为负值的根式分解法有时根式的分母为负值,这时,可以用根式分解法,用负号“-”将原有的根式去处后,根式的分母变为正值,然后再去归简多项式,这往往比用原来的根式化简要简单得多。

四、利用因式分解实现多项式化简在数学方面,因式分解是指将某个多项式或函数分解成两个或多个乘积因子,即将一个多项式拆分成几个较小的多项式。

当给定一个多项式,可以用因式分解法,根据乘积因子的集合归简多项式,从而实现多项式化简的目的。

五、运用互异线性方程类分解法互异线性方程类分解法又称列式分解法,是指将一个多项式拆分成几个已知较小多项式的方法,即将多项式拆分成几个等式,再将等式结合成一个线性方程组,分解出其中的系数。

利用这一方法,系数的计算可以详尽在少量的清晰的计算步骤中进行。

六、根式化简法根式化简法是指采用合并类方法,将原有多项式化简成根式,再将根式化简成若干个较小的多项式,从而实现一个多项式的化简。

根式化简法中包括了矩阵分解法、两两合并法,多项式的分解化简,以及多项式的正负性整体判定等等,是一种常用的二次根式化简常用技巧。

总之,为了更加有效地去解决多项式拆分中遇到的问题,上述二次根式化简常用技巧可以作为有效的求解和化简多项式过程的关键。

二次根式的计算和化简

二次根式的计算和化简

二次根式的计算和化简二次根式是指包含平方根的表达式。

在数学中,我们经常需要进行二次根式的计算和化简。

本文将介绍如何进行二次根式的计算和化简,并提供一些相关的例子和方法。

一、二次根式的计算二次根式的计算主要包括加减乘除四则运算和指数运算。

下面将分别介绍这些运算的方法。

1. 加减运算对于两个二次根式的加减运算,首先要确定根号下的数(即被开方数)是否相同。

如果相同,则可以直接对根号下的数进行加减运算,并保持根号不变。

如果根号下的数不同,则需要进行化简,使根号下的数相同,再进行加减运算。

例如,计算√3+ √5。

由于根号下的数不同,我们可以进行化简。

将√3与√5相加,得到√3 + √5。

这就是最简形式的结果,无法再进行化简。

2. 乘法运算对于两个二次根式的乘法运算,可以直接将根号下的数相乘,并保持根号不变。

例如,计算√3 × √5。

将根号下的数相乘,得到√15。

这就是最简形式的结果。

3. 除法运算对于两个二次根式的除法运算,可以将被除数与除数的根号下的数相除,并保持根号不变。

例如,计算√15 ÷ √3。

将根号下的数相除,得到√5。

这就是最简形式的结果。

4. 指数运算对于二次根式的指数运算,可以将指数应用于根号下的数,并保持根号不变。

例如,计算(√2)²。

将指数应用于根号下的数2,得到2。

因此,(√2)² = 2。

二、二次根式的化简化简二次根式的目的是使根号下的数尽量小。

下面将介绍一些常用的化简方法。

1. 提取公因数如果根号下的数可以被某个数整除,可以将其提取出来,并保持根号不变。

这是一种常见的化简方法。

例如,化简√16。

16可以被4整除,所以可以将16写成4×4,即√(4×4)。

继续化简,得到2×√4。

最后,我们得到2×2 = 4。

因此,√16 = 4。

2. 合并同类项如果有多个二次根式相加或相乘,可以合并同类项,使根号下的数相加或相乘。

如何化简复杂的二次根式

如何化简复杂的二次根式

如何化简复杂的二次根式二次根式是指含有开根号的二次方程。

化简复杂的二次根式可以使其表达更简洁,并更方便计算。

本文将介绍几种常见的方法来化简复杂的二次根式。

方法一:合并同类项合并同类项是化简复杂二次根式的一种有效方法。

当二次根式中存在相同的根号内含有相同的项时,可以将它们相加或相减合并为一个项。

例如,考虑下面这个例子:√5 + 2√5 - √2 + 3√2我们可以将根号内含有相同项的进行合并:√5 + 2√5 - √2 + 3√2 = (1 + 2)√5 + (1 - 3)√2= 3√5 - 2√2通过合并同类项,我们将复杂的二次根式化简为了一个简单的二次根式。

方法二:有理化分母有时候,二次根式的分母中含有根号时,可以使用有理化分母的方法将其化简为一个无根号的表达式。

考虑下面这个例子:1 / (3 - √2)我们可以利用乘以共轭的方法进行有理化分母:1 / (3 - √2) * (3 + √2) / (3 + √2)= (3 + √2) / (3^2 - (√2)^2)= (3 + √2) / (9 - 2)= (3 + √2) / 7通过有理化分母,我们将复杂的二次根式化简为了一个分子和分母都不含根号的式子。

方法三:完全平方公式完全平方公式是化简含有二次根式的一个常用方法。

当二次根式的形式为a√b ± c√b时,我们可以使用完全平方公式将其化简。

例如,考虑下面这个例子:√8 + √2我们可以将√8和√2看成两个根号内含有相同项的二次根式。

√8可以化简为√4 * √2,而√4可以化简为2。

同样,√2可以化简为√1 * √2,而√1可以化简为1。

因此,我们可以进行如下化简:√8 + √2 = 2√2 + √2= 3√2通过使用完全平方公式,我们将复杂的二次根式化简为了一个简单的二次根式。

综上所述,化简复杂的二次根式有几种方法可供选择,包括合并同类项、有理化分母和使用完全平方公式等。

根据具体的情况,选择合适的方法进行化简,可以使二次根式的表达更加简洁,并且更方便计算。

(完整word版)二次根式知识点复习,文档

(完整word版)二次根式知识点复习,文档

二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。

2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。

3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。

4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。

⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。

例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。

例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。

2.(08 ,安徽 ) 化简42=_________。

3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。

复合二次根式化简技巧

复合二次根式化简技巧

复合二次根式化简技巧复合二次根式指的是根式内部包含有根式的情况,这样的根式化简起来比较困难。

但是,我们可以运用一些技巧将复合二次根式进行简化,下面将介绍几种常用的技巧。

一、差平方公式差平方公式是化简复合二次根式时最常用的公式之一。

差平方公式是指两个数之差的平方等于这两个数的平方之和减去两倍的积。

具体公式如下:(a-b)²=a²-2ab+b²当根式内的两项具有差的形式时,我们可以尝试将其化为差平方的形式,即将其平方展开,然后运用差平方公式进行简化。

二、分子有理化有理化分母,也就是将分母中的根式去掉,这种化简方法比较容易理解。

但是如果分子中也含有根式,就需要运用分子有理化的方法,使分子中不含根式。

分子有理化的方法有很多,其中一种常用的方法是乘以分母的共轭。

共轭是指将分母中的加数减去,或将分母中的减数加上所得到的形式相同的分母。

这样做可以将分母的根式消去,同时保持等式的平衡,不改变等式的根式性质。

三、因式分解因式分解是一种将复合二次根式化简的常用方法。

在这种方法中,我们需要找出根式中的相同因子,然后将其提取出来,形成新的根式。

这种方法在化简含有根式的分式、多项式时非常有效。

四、换元法换元法是一种运用代数恒等式将复合二次根式化简的方法。

在运用换元法时,我们将复合二次根式内部的变量代入新的变量,使其转化为一元式,从而实现化简。

总结:复合二次根式化简方法虽然不同,但应用的基本数学知识是相同的,如因式分解、代数恒等式、高中数学公式及运算律等。

熟练掌握这些知识,结合实际应用,就能够快速准确地化简各种复杂的二次根式了。

二次根式解题的高效技巧与方法

二次根式解题的高效技巧与方法

二次根式解题的高效技巧与方法在数学学习过程中,我们常常会遇到解决二次根式的问题。

因此,了解二次根式解题的高效技巧和方法对于提高数学解题能力至关重要。

本文将重点介绍一些二次根式解题的实用技巧和方法,帮助你更高效地解决这类问题。

一、化简根式当我们遇到复杂的二次根式时,通常可以通过化简根式来简化问题,使其更易于处理。

以下是一些常用的化简根式的方法:1. 提取公因数:当根式内的各个项存在公因数时,可以通过提取公因数来化简根式。

例如,√8可以化简为2√2,因为8可以分解为2的平方乘以2。

2. 有理化分母:当根式的分母为根式时,可以通过有理化分母的方法来化简根式。

例如,将分母为√3的根式有理化分母,可以乘以√3/√3得到分母为3的根式。

3. 分解因式:对于一些含有多个项的根式,可以尝试将其分解为更简单的因式相乘形式。

通过分解因式,可以简化根式并更方便地进行计算。

二、使用二次根式的性质二次根式具有一些特殊的性质,灵活运用这些性质能够简化解题过程。

以下是一些常用的二次根式性质:1. 平方定理:(a+b)²=a²+2ab+b²。

当解题中遇到根式的平方形式时,可以利用平方定理将其展开,从而简化计算。

2. 合并同类项:类似于代数中合并同类项的做法,二次根式也能够进行合并同类项的操作。

比如,√2+√3和2√2-3√3就是合并同类项的例子。

3. 乘法公式:二次根式的乘法公式为√a * √b = √(ab)。

在解题过程中,可以利用乘法公式将不同的二次根式相乘,从而简化问题。

三、配方法解二次根式方程解二次根式方程是二次根式解题的常见形式之一。

使用配方法是解二次根式方程的常用技巧。

以下是配方法的基本步骤:1. 将二次根式方程变形为(a + b)的平方的形式,其中a和b为一次根式。

2. 利用平方定理展开得到二次根式方程的标准形式,即a² + b² +2ab = 原方程的右侧。

3. 通过比较系数,推导出a和b的值。

二次根式的化简与运算方法

二次根式的化简与运算方法二次根式是指含有根号的算式,可以看作是根数和字母的组合。

化简二次根式是对根式进行简化,使得根号下的数变得更简洁。

而运算二次根式则是对含有二次根式的算式进行加减乘除等数学运算。

一、二次根式的化简方法二次根式的化简涉及到有理化的概念,有理化即通过变形将根式转换成有理数的操作。

下面将分别介绍三种常见的二次根式的化简方法。

1. 同底同指并简化当二次根式的根号下的数相同,指数相同时,可以进行合并并简化。

例如:√8 + √8 = 2√22√3 + 3√3 = 5√32. 有理化分母对于分母含有根号的二次根式,可以通过有理化的方法将其转化为有理数。

例如:1/√2 = √2/21/√3 = √3/33. 用有理数乘以二次根式可以使用有理数乘以二次根式进行化简。

例如:2√5 × 3√5 = 6√25 = 30二、二次根式的运算方法二次根式的运算涉及到加减乘除等数学运算,下面将分别介绍这几种运算方法。

1. 加减运算二次根式的加减运算需要先找到根号下的数相同的根式,然后根据正负号进行合并。

例如:√5 + √8 = √5 + 2√2 (不能合并)2√3 + 3√3 = 5√32. 乘法运算二次根式的乘法运算可以直接相乘。

例如:√5 × √2 = √103√3 × 2√3 = 6√9 = 6×3 = 183. 除法运算二次根式的除法运算可以通过有理化的方法转化为乘法。

例如:(√10) / (√5) = (√10) / (√5) × (√5) / (√5) = (√50) / 5 = 10/5 = 24. 指数运算对于含有二次根式的指数运算,可以将根式拆解成两个因数相同的根式。

例如:(√2) ^ 3 = (√2) × (√2) × (√2) = (√8) = 2√2结论二次根式的化简与运算方法在数学的学习中经常会用到,掌握了这些方法能够帮助我们更好地解决问题。

专题——二次根式化简方法与技巧

解:原式= + = + =2 -2
二、适当配方法。
例2.计算:
分析:本题主要应该从已知式子入手发现特点,∵分母含有1+ 其分子必有含1+ 的因式,于是可以发现3+2 = ,且 ,通过因式分解,分子所含的1+ 的因式就出来了。
解:原式= = 1+
三、正确设元化简法。
例3:化简
分析:本例主要说明让数字根式转化成字母的代替数字化简法,通过化简替代,使其变为简单的运算,再运用有理数四则运算法则的化简分式的方法化简,例如: , , ,正好与分子吻合。对于分子,我们发现 所以 ,于是在分子上可加 ,因此可能能使分子也有望化为含有 因式的积,这样便于约分化简。
22x-7(2+ )-7=2 -3,所以原式= =42+
练习:
(一)构造完全平方
1.化简 ,所得的结果为_____________.
(拓展)计算 .
2.化简: .
3.化简 .
4.化简: .
5.化简:
6.化简:
7.化简:
(二)分母有理化
1.计算: 的值.
化简:
解原式
2.分母有理化: .
3.计算பைடு நூலகம் .
(三)因式分解(约分)
解:∵

同理可得:

将 ,3,…,10代入上式,相加得:
又∵
∴ ,即
15、设a、b是实数,且 ,试猜想a、b之间有怎样的关系?并加以推导。
解:两边同时乘以 ,得 ①
两边同时乘以 ,得: ②
①+②得:

课堂小结
所谓转化:解数学题的常用策略。常言道:“兵无常势,水无常形。”我们在解千变万化的数学题时,常常思维受阻,怎么办?运用转化策略,换个角度思考,往往可以打破僵局,迅速找到解题的途径。二次根式也不例外,约分、合并是化简二次根式的两个重要手段,因此我们在化简二次根式时应想办法把题目转化为可以约分和可以合并的同类根式。

二次根式的化简求值(含答案)

第八讲 二次根式的化简求值用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式.有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形.例题求解 【例l 】已知21=+xx ,那么191322++-++x x x x x x 的值等于 .(2001年河北省初中数学创新与知识应用竞赛题)思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用xx 1+的代数式表示.【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( )A .1B .2C . 3D . 4 (2003年全国初中数学联赛题)思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导.(第20后俄罗斯数学臭林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.【例4】 已知:aa x 1+= (0<a<1),求代数式42422362222----+---+÷-+x x xx x x x x x x x 的值. (2002半四川省中考题)思路点拨 视x x x 4,22--为整体,把aa x 1+=平方,移项用含a 代数式表示x x x 4,22--,注意0<a1的制约.【例5】 (1)设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积;(第12届“五羊杯”竞赛题)(2)已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.(2003年北京市竞赛题)思路点拨 (1)显然不能用面积公式求三角形面积(为什么?),22c a +的几何意义是以a 、c 为直角边的直角三角形的斜边,从构造图形人手,将复杂的根式计算转化为几何问题加以解决;(2)用代数的方法求U 的最小值较繁,运用对称分析,借助图形求U 的最小值.学历训练1.已知2323-+=x ,2323+-=y ,那么代数式22)()(y x xy y x xy +-++值为 .2.若41=+a a (0<a<1),则aa 1-= . 3.已知123123++=++x x ,则)225(423---÷--x x x x 的值.(2001年武汉市中考题)4.已知a 是34-的小数部分,那么代数式)4()2442(222a a a a aa a a a -⋅++++-+的值为 . (2003年黄石市中考题)5.若13+=x ,则53)321()32(23+-+++-x x x 的值是( ) A .2 B .4 C .6 D .8 (2003年河南省竞赛题) 6.已知实数a 满足a a a =-+-20012000,那么22000-a 的值是( ) A .1999 B .2000 C .2001 D .20027.设9971003+=a ,9991001+=a ,10002=c ,则a 、b 、c 之间的大小关系是( ) A .a<b<c B .c<b<a C . c<a<b D .a<c<b8.设a a x -=1,则24x x +的值为( )A .a a 1-B .a a -1C .aa 1+ D .不能确定 9.若a>0,b>0, 且)5(3)(b a b b a a +=+,求abb a ab b a +-++32的值.10.已知x x =--2)1(1,化简x x x x +++-+414122.11.已知31+=x ,那么2141212---++x x x = . (2003年“信利杯”全国初中数学竞赛题) 12.已知514=-++a a ,则a 26-= .13.已知9)12(42+-++x a 的最小值为= .(“希望杯”邀请赛试题)14.已知2002)2002)(2002(22=++++y y x x ,则58664322+----y x y xy x = .(第17届江苏省竞赛题) 15.1+a2如果22002+=+b a ,22002-=-b a ,3333c b c b -=+,那么a 3b 3-c 3的值为( ) (2003年武汉市选拔赛试题)A .20022002B .2001C .1D .016.已知12-=a ,622-=b ,26-=c ,那么a 、b 、c 的大小关系是( ) A .a<b<c B .b<a<c C .c<b<a c<a<b (2002年全国初中数学联赛题)17.当220021+=x 时,代数式20033)200120054(--x x 的值是( ) A . 0 B .一1 C . 1 D .- 22003 (2002年绍兴市竞赛题)18.设a 、b 、c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( ) A .1999 B . 2000 C . 2001 D .不能确定 (2001年全国初中数学联赛试题)19.某船在点O 处测得一小岛上的电视塔A 在北偏西60°的方向,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问再向西航行多少海里,船离电视塔最近?20.已知实数 a 、b 满足条件1<=-a b b a ,化简代数式2)1()11(--⋅-b a ba ,将结果表示成不含b 的形式.21.已知a a x 21+=(a>0),化简:2222-++--+x x x x .22.已知自然数x 、y 、z 满足等式062=+--z y x ,求x+y+z 的值. (加拿大“奥林匹克”竞赛题)答案:。

(完整word)第十六章二次根式知识点归纳,推荐文档

第十六章二次根式知识点归纳一、形如▼(:工:)的式子叫做二次根式。

注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是•二为二次根式的前提条件,二次根式成立应满足两个条件:第一,有二次根号“J ”;第二,被开方数是正数或0.三、二次根式「■'(二兰「)的双重非负性:1被开方数卫⑺非负2、,a的值非负。

四、二次根式的化简。

1化简a2时,一定要弄明白被开方数的底数a是正数还是负数或0.\ a2= I a I①若a是正数,贝UI a I等于a本身;②若a是负数,贝UI a I等于a的相反数-a,③若a是0,贝UI a I等于0.2、V a =a (a > 0).3、被开方数是乘积用• ab = a• '、b(a》0,b>0)化,4、被开方数是商的形式用£ =芈(a》0,b>0)或i医=丄JabVb v b b5、最简二次根式应满足的条件:(五)二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

(六)二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化(七)分母有理化分母有理化:利用分式的基本性质,分子与分母同时乘以分母根号本身注意:1.根式中不能含有分母 2.分母中不能含有根式第十七章勾股定理知识总结1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+ b2=c2。

或者:直角三角形的两条直角的平方和等于斜边的平方勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC中,C 90,则c . a2 b2, b C_a2,a ..c2~b2)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+ b2=c2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 - 二次根式化简的方法与技巧 二次根式是初中数学教学的难点内容,读者在掌握二次根式有关的概念与性质后,进行二次根式的化简与运算时,一般遵循以下做法: ①先将式中的二次根式适当化简 ②二次根式的乘法可以参照多项式乘法进行,运算中要运用公式

abba 0,0ba

③对于二次根式的除法,通常是先写成分式的形式,然后通过分母有理化进行运算. ④二次根式的加减法与多项式的加减法类似,即在化简的基础上去括号与合并同类项. ⑤运算结果一般要化成最简二次根式.

化简二次根式的常用技巧与方法 所谓转化:解数学题的常用策略。常言道:“兵无常势,水无常形。”我们在解千变万化的数学题时,常常思维受阻,怎么办?运用转化策略,换个角度思考,往往可以打破僵局,迅速找到解题的途径。 二次根式的化简是二次根式教学的一个重要内容,对于二次根式的化简,除了掌握基本概念和运算法则外,还要掌握一些特殊的方法和技巧,会收到事半功倍的效果,约分、合并是化简二次根式的两个重要手段,因此我们在化简二次根式时应想办法把题目转化为可以约分和和可以合并的同类根式。现举例说明一些常见二次根式的转化策略。

一、巧用公式法 例1.计算 bababababa2 - 2 -

分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a与b成立,且分式也成立,故有,0,0ba)0(ba而同时公式:

),)((,222222babababababa可以帮助我们将

baba2 和 ba 变形,所以我们应掌握好公式可以使一些问题从复杂到简单。

解:原式 

babababababababa22)()())((2

二、适当配方法。 例2.计算:32163223 分析:本题主要应该从已知式子入手发现特点,∵分母含有321其分子必有含321的因式,于是可以发现221223,且21363,通过因式分解,分子所含的321的因式就出来了。 - 3 -

解:原式 

21321)21(3)21(321632232



三、正确设元化简法。 例3:化简53262 分析:本例主要说明让数字根式转化成字母的代替数字化简法,通过化简替代,使其变为简单的运算,再运用有理数四则运算法则的化简分式的方法化简,例如:a2,,6,3,5abbc正好与分子吻合。对于分子,我们发现222cba所以

0222cba,于是在分子上可加0222cba,因此可能能使分子也有望化为含

有cba因式的积,这样便于约分化简。

解:设,5,3,2cba 则,622ab 且0222cba - 4 -

所以: 

5322222222cbacbacbacba

cba

cbacbacbaabcbaab

四、拆项变形法 例4,计算76655627 分析:本例通过分析仍然要想到,把分子化成与分母含有相同因式的分式。通过约分化简,如转化成:baabba11再化简,便可知其答案。 解:原式 

76657676656576657665



 - 5 -

576756761651 五、整体倒数法。 例5、计算13251335 分析:本例主要运用了变倒数后,再运用有关公式:baabba11,化简但还要通过折项变形,使其具有公因式。

解:设13251335A 

21523521335113113351335133513251





A则

215152A所以

借用整数“1”处理法。 - 6 -

例6、计算63232231 分析:本例运用很多方面的知识如: ba.23231和×22baba

,然后再运用乘法分配率,使分子与分母有相同因式,再约分化简。

解:原式 

632236232363232232323



23623)623)(23(

六.恒等变形整体代入结合法 例7:已知 )57(21x , )57(21y,求下列各式的值。 (1)22yxyx; (2)xyyx 分析:本例运用整体代入把x+y与xy的值分别求出来,再运用整体代入法将x+y与xy代入例题中,但一定要把所求多项式进行恒等变形使题中含有x+y与xy的因式, 如xyyxyxyx3)(222,然后再约分化简。 解:因为: )57(21x,)57(21y, 所以:21,7xyyx。 - 7 -

211213)7(3)(2222

xyyxyxyx

1221212)7(22222

xyxyyxxyyxxyyx

七、降次收幂法: 例8、已知32x,求725232xxx的值。 分析:本例运用了使题中2次幂项转化成1次方的项再化简。如例题中把多项式142xx转化为4x-1,这样进行低次幂运算就容易了。

解:由32x,得32x。3)2(2x 整理得:2x= 4x-1。 - 8 -

所以: 310222)32(1052)14(35232xxxx

3327)32(272x 所以原式

33744233231022



二次根式的化简与计算的策略与方法 1.公式法 【例1】计算①; ② 【解】①原式 ②原式 【解后评注】以上解法运用了“完全平方公式”和“平方差公式”,从而使计算较为简便. 2.观察特征法 - 9 -

【例2】计算: 【方法导引】若直接运用根式的性质去计算,须要进行两次分母有理化,计算相当

麻烦,观察原式中的分子与分母,可以发现,分母中的各项都乘以,即得分子,于是可以简解如下:

【解】原式. 【例3】 把下列各式的分母有理化.

(1);(2)() 【方法导引】①式分母中有两个因式,将它有理化要乘以两个有理化因式那样分子将有三个因式相等,计算将很繁,观察分母中的两个因式如果相加即得分子,这就启示我们可以用如下解法:

【解】①原式

【方法导引】②式可以直接有理化分母,再化简.但是,不难发现②式分子中的系数若为“1”,那么原式的值就等于“1”了!因此,②可以解答如下:

【解】②原式 - 10 -

3.运用配方法 【例4】化简 【解】原式

【解后评注】注意这时是算术根,开方后必须是非负数,显然不能等于“” 4.平方法

【例5】化简

【解】∵

∴. 【解后评注】对于这类共轭根式与的有关问题,一般用平方法都可以进行化简 5.恒等变形公式法

【例6】化简 【方法导引】若直接展开,计算较繁,如利用公式,则使运算简化.

【解】原式 - 11 -

6.常值换元法 【例7】化简 【解】令,则: 原式

7.裂项法 【例8】化简 【解】原式各项分母有理化得

原式

【例9】化简

【方法导引】这个分数如果直接有理化分母将十分繁锁,但我们不难发现每一个分数的分子等于分母的两个因数之和,于是则有如下简解:

【解】原式 - 12 -

8.构造对偶式法 【例10】化简 【解】构造对偶式,于是没

, 则,,

原式 9.由里向外,逐层化简

【解】∵ 而 ∴原式 【解后评注】对多重根式的化简问题,应采用由里向外,由局部到整体,逐层化简 - 13 -

的方法处理. 10.由右到左,逐项化简 【例11】化简

【方法导引】原式从右到左是层层递进的关系,因此从右向左进行化简. 【解】原式

. 【解后评注】平方差公式和整体思想是解答本题的关键,由平方差公式将多重根号逐层脱去,逐项化简,其环节紧凑,一环扣一环,如果不具有熟练的技能是难以达到化简之目的的.

相关文档
最新文档