讲解氧化锌避雷器泄漏电流校验装置和在线监测技术
氧化锌避雷器的带电测试及在线监测

量。这时, 阻性电流中的谐波分量不但包含 MOA 本身引起的谐波分量, 同时也
包含电网谐波电 压引起的谐波分量。这样在测量全阻性电流时就会产生偏差。
为了排除系统谐波的影响, 在测试 MOA 阻性电流的同时, 实时测试系统的谐 波电压 , 然后再由测试仪补偿电流中系统谐波引起的谐波含量, 从而得到不受
陷, 尤其是阀体受潮、 内部元件老化等。
采用的网络通信标准包括 EI RS- 232C, EIA RS- 422/485 和 A
CAN(Controller Area Network, 控制器局域网)等。
CAN 属于现场总线的范畴,它是一种有效支持分布式控制或实 时控制的串行通信网络。 CAN 是一种多主站局部网络, 多个单片机可 通过 CAN控制器挂到 CAN 总线上。CAN 具有强有力的检错功能以
避雷器是电网中保护电力设备免受过电 压危害
的重要设备, 其运行的可靠性将直接影响到电力系统
示。将试验设备的电 流回路并联于 MOA 计数器两端, 即可获得 MOA 的泄漏电 流(计数器内阻大, 试验时可不计分流 )。将试验设备的电压回路并接于母线 盯
二次电压端子, 可获得母线电 压相位。经过傅立叶变换可以得到基波和各种谐波
度校正法。 由于 B 相受到的干扰基本上是相互抵消的, 补偿角度 4o 0。 P e= 对 A, C 相设置补偿角度, 将该补偿角度“ 到电 加” 流电 压夹角 华中。A, C 相分
别补偿, ,= (wA 1200 )/2,} c=一pc,- 1200 )/20 < 的测量方法是:选择B相 go cpo (c pc
及优先 权和仲裁功能, 可在高噪声干扰环境中 使用, 其最高通信速率
可达 1 Mb/s , 最大通信距离可达 10 km , 所以近年来在电力系统中发 挥着越来越大的作用。 CAN 总线是一种串行数据通信协议。 CAN 在 总线通信接口中集成了CAN 协议的物理层和数据链路层功能, 可完
氧化锌避雷器的在线监测讲课教案

技术讲课教案题目:氧化锌避雷器的在线监测授课人:马拉多纳当前采用的MOA一般不含间隙,在交流电压作用下,避雷器的总泄漏电流(全电流)包含阻性电流I R(有功分量)和容性电流I C(无功分量)。
在正常运行情况下,流过避雷器的主要电流为容性电流,阻性电流只占很小一部分,约为10%~20%左右。
当阀片老化、避雷器受潮、内部绝缘部件受损以及表面严重污秽时,容性电流变化不多,阻性电流增加较大。
因此对氧化锌避雷器进行全电流检测,方法简单,可以在一定程度上反映避雷器的绝缘状况,但不如检测阻性电流灵敏。
氧化锌避雷器的在线检测通常有补偿法和谐波法两种。
补偿法误差较小,但测量时必须引入电网电压信号,有时无法实现。
谐波法测量时无需动用电网的PT,不须断开避雷器的接地线,仅用钳型CT直接钳在避雷器的接地线上,即可测得氧化锌避雷器的全泄漏电流和阻性泄漏电流。
此外,在氧化锌避雷器的在线检测中,越来越多地采用数字化测量和谐波分析技术,简化硬件电路和测量方法。
一、全电流带电检测全电流带电检测原理如图所示。
使用交流毫安表或万用表的交流毫安档,也可用经桥式整流器连接的直流毫安表,并接在动作记数器或接地开关上测量全电流,这是一种简便可行的方法。
当电流增大到2~3倍时,往往认为已达到危险界限。
现场测量经验表明,这一标准可以有效地检测氧化锌避雷器在运行中的劣化。
图中R 3是保护阀片,保护间隙为放电管,用以防止避雷器劣化后的较大电流引起的设备损坏。
并联在动作计数器上时应考虑动作计数器内阻的影响。
二、补偿法检测阻性电流氧化锌避雷器阀片的劣化反映为阻性电流增大。
因此,直接测量阻性电流I R 反映氧化锌避雷器的劣化更为灵敏。
直接测量阻性 I R 需要同时抽取系统电压信号,以便能够借以消除总泄漏电流中的容性电流分量。
其基本原理与容性设备的阻性电流检测相同,如图上图所示。
采用这种类型的阻性电流检测仪比较方便实用,因为它是以钳形电流互感器取样,不必断开原有接线,而且不需人工调节,自动补偿到能直接读取I R 及P 。
电网氧化锌避雷器在线监测和带电测试技术规定

电网氧化锌避雷器在线监测和带电测试技术规定一、总则1.电网35~110kV变电站过电压保护采用氧化锌避雷器。
为了做好氧化锌避雷器的在线监测和带电测试这项工作,保证避雷器与电网设备的安全运行,特制定本规定。
2.本规定适用于35kV及以上氧化锌避雷器的在线监测;110kV氧化锌避雷器带电测试。
公司所属各部门、基建安装单位均应按此规定执行。
二、在线监测(一)在线监测装置的技术要求1.带有避雷器动作次数计数器的在线监测装置应符合JB2440-91《避雷器用放电记数》标准的规定,其表面清晰、直观、密封可靠,上下端与接地线应能可靠连接。
2.在线监测装置准确测量的量程应能满足下表要求,超过准确测量量程后应具有限幅功能,在最大量程内,限幅的电流应满足下表要求:1.在线监测装置应安装在易于观察处,在保证安全要求的前提下,高度宜低些。
2.在线监测装置上部引线与避雷器底部的引下线宜采用软连接过渡,或带有伸缩结构的硬连接。
为排除由于MOA 底座用4个小瓷瓶支撑,螺栓孔易积水分流所致在线监测仪数值明显降低,底座选用单个大瓷柱支撑。
3.避雷器的底座无论气候状况如何变化应保持绝缘良好,否则应采用防雨等措施。
4.在避雷器爬距留有裕度的条件下,在线监测装置宜采用屏蔽安装。
(三)运行监测1.安装在线监测装置后,应每天抄表一次(无人值守站至少每周抄表一次),除记录泄漏电流外,还应记录时间、运行电压、环境温度、气候状况等参数。
在雷电季到来之前,各站应对避雷器进行全面检查,登记避雷器放电次数,同时检修部应及时消缺,保证避雷器保持可投状态。
2.变电部在避雷器投运后,应确定所安装避雷器在晴天时运行电流正常值的变化范围(可以以两周记录的电流值变化范围来确定)。
若在正常运行状态下,晴天或采用屏蔽安装的避雷器的运行电流增加到正常值上限的1.1倍;雨天或湿度大于85%时,避雷器的运行电流增加到正常值上限的1.2倍,记录人员应及时上报生技部,并每天增加一次抄表。
氧化锌避雷器及氧化锌避雷器泄露电流检测介绍ppt

检测数据分析与处理
对实际测得的数据进行分析,主要有三类:
1.纵向比较
同一产品,在相同的环境条件下,阻性电流与上次或初始值比较应≤30% ,全电流与上次或初始值比较应≤20%。当阻性电流增加0.3倍时应缩短 试验周期并加强监测,增加1倍时应停电检查。
2.横向比较
同一厂家、同一批次的产品,避雷器各参数应大致相同,彼此应无显著差 异。如果全电流或阻性电流差别超过70%,即使参数不超标,避雷器也 有可能异常。
检测方法
• 检测方法:全电流测试、阻性电流测 试
• 全电流测试:全电流通过在放电计数 器两端并接专用测试仪器获取或通过 带有泄漏电流监测功能的避雷器放电 计数器直接读取。
• 阻性电流测试:阻性电流测试是通过采集避雷器电压 和全电流信号,经过数字信号处理后得到基波或各次 谐波电流和电压的幅值及相角,将基波电流投影到基 波电压上就可以得出阻性电流基波。
81°~83° 良
84°~86° 优
>86° 有干扰
泄漏电流测试结果影响因素
• 1.瓷套外表面受潮污秽的影响 • 2.温度对氧化锌避雷器泄漏电流的影响 • 3.湿度对测试结果的影响 • 4.相间干扰的影响 • 5.电网谐波的影响 • 6.参考电压方法选取的不同 • 7.测试点电磁场对测试结果的影响
氧化锌避雷器
氧化锌避雷器
Metal Oxide Arrester (简称MOA)
氧化锌避雷器主要由氧化锌压敏电阻构成,
在正常工作电压下压敏电阻值很大,相当于
绝缘状态,但在冲击电压下,压敏电阻呈低
氧 化
值被击穿,相当于短路状态,但压敏电阻被
锌 避
击穿状态是可以恢复的,当高于压敏电阻的
雷
电压消失后,它又恢复了高阻状态。因此,
氧化锌避雷器绝缘电阻、泄漏电流的测量方法

氧化锌避雷器是电力系统的重要保护设备,被称为电力系统的"保护神"。
由于氧化锌避雷器长期在运行电压和过电压作用下,保护神也有健康欠佳的时候,因此,定期对氧化锌避雷器进行绝缘电阻及泄露电流测试,对保护氧化锌避雷器,延长使用寿命很有必要。
一试验目的1.掌握测量绝缘电阻及吸收比的原理和操作方法;2.掌握测量泄漏电流的原理及操作方法;3.分析设备绝缘状况。
二试验内容1.用兆欧表(摇表)测量试品(三相电缆及氧化锌避雷器)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三试验装置及接线图1.使用兆欧表测量试品绝缘电阻和吸收比的接线图图1 兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。
2.测量泄漏电流的装置及线路图如下:图2 测量三相电缆的泄漏电流图中:T1:调压器;T2:高压试验变压器;D:高压整流硅堆;R:保护电阻;C:滤波电容;V2:静电电压表;R2:测量电阻;V1:电压表;T、O:试品四试验步骤1.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。
2.按图1接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。
3.读取15秒及60秒时的读数,即为R15及R604.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L 或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。
5.摇表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2、3。
6.按图2接线,经检查无误后,合闸平稳升压,当电压升至试验电压时,保持1分钟,再读取微安表读数。
7.将调压器退至零位,断开电源,对A相放电后,再分别对B、C两相进行上述步骤6。
五试验数据处理1.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。
吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。
氧化锌避雷器的在线监测技术要点

Telecom Power Technology运营维护技术 2024年3月25日第41卷第6期199 Telecom Power TechnologyMar. 25, 2024, Vol.41 No.6潘俊锐,等:氧化锌避雷器的在线监测技术要点监控中心,以便管理人员做出正确决策。
总之,在线监测系统通过相关功能对氧化锌避雷器进行信息采集与分析,确保其稳定运行。
2 氧化锌避雷器的在线监测技术要点2.1 在线监测系统对时在对氧化锌避雷器基波阻性电流法与谐波分析法原理的研究中发现,在线监测系统采样工作的同步性对最后的监测结果影响巨大。
虽然系统监测的泄露电流数值极小,但是极小的误差会造成较大误差。
因此,在线监测系统对采样工作的同步性具有极高要求,技术人员须对系统进行对时调整。
对时方法有2种:一是采用GPS 同步授时模块进行对时,该模块可以在2 ns 内进行同步授时,减少时间误差;二是技术人员可运用IRIG-B 码时钟进行对时,抗干扰能力极强,确保传输信号稳定,进而使接受信号精度极高。
但精度过高会耗费巨大成本,因此技术人员应根据系统需求进行合理的精度选择。
现阶段,精度选择可分为 1 μs 、1 ms 、10 ms 以及1 s ,只须确保其精度可以满足系统最小分辨率[2]。
因IRIG-B 码时钟得对时成本较低,虽然对时精度不如GPS 同步授时模块,但可以满足系统需求。
因此,技术人员可利用IRIG-B 码时钟进行对时,确保采样同步。
2.2 在线监测信号去噪在氧化锌避雷器的数据采集工作中,获取的数据存在多种杂波。
因氧化锌避雷器的泄露电流值极小,若未进行去噪处理,则容易导致监测结果存在误差,无法准确反映氧化锌避雷器的真实情况。
基于此,技术人员应合理选择数据处理算法进行去噪。
小波去噪技术可以对收集到的信号加以分解,在信号分解后,保留有用的信号内容,将无用的信号系数取值为0,完成去噪工作。
通过多次分解去噪,最终可以得到有用信息。
简述氧化锌避雷器的在线检测方法

简述氧化锌避雷器的在线检测方法摘要:避雷器是变电站保护设备免遭雷电冲击波袭击的设备。
当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备的雷电冲击水平以下,使电气设备受到保护。
氧化性避雷器在运行中,有泄露电流流过氧化锌阀片,电流中的有功分量会使阀片发热,从而引起它伏安特性发生变化,若长期作用将导致阀片老化,直至出现热击穿。
为此必须对其进行及时的预试,而相邻的电器主设备往往不能及时停运,因而必须采用带电测量的方法对其进行测量。
采用合理的试验方法,消除因相邻设备带电而带来的电磁干扰尤为重要。
关键词:氧化锌避雷器;在线检测;方法;应用1 氧化锌避雷器在线监测的重要性氧化锌避雷器取消了串联间隙,当泄露电流流过氧化锌阀片时,电流中的有功分量使阀片发热,引起它伏安特性发生变化,如果长期作用将导致氧化锌避雷器阀片老化,直至出现热击穿。
当避雷器受到冲击电压作用时,阀片也会在冲击电压能量的作用下发生老化;内部受潮或内部绝缘支架绝缘性能不良,会使工频电流增加,功耗加剧,严重时可能导致内部放电,这将导致主设备得不到保护,严重时可能发生爆炸,影响系统的安全运行。
而避雷器预试必须停运主设备,会影响设备的运行可靠性,并且会受运行方式的限制无法停运主设备,导致避雷器不能按时预试。
2、氧化锌避雷器的结构及原理氧化锌避雷器由主体元件,接线盖板,绝缘底座等组成,而220kV等级及以上还配备有均压环,改善电位的分布。
避雷器内部采用氧化锌电阻片为主要元件。
如果系统出现大气过电压或操作过电压时,氧化锌避雷器呈现低阻值,使残压被限制在允许值以下,从而可靠地对电力设备进行保护,而避雷器在系统正常运行电压下,它呈高阻值,从而使避雷器只流过很小的电流,现在一般氧化锌避雷器都装有泄露电流监视器。
氧化锌避雷器能释放雷电和释放电力系统操作过电压能量,从而保护电工设备避免受瞬时过电压危害,而且能够截断续流,不导致引起系统接地短路。
氧化锌避雷器在线监测系列说明书

1、准确测量避雷器持续电流(泄漏电流)及避雷器动作次数。 2、不锈钢外壳,美观大方。圆形结构,密封性好。 3、泄漏电流表为彩色刻度并有带电警示指示灯,方便观察。
三、 适用环境的要求:
1、适用于户内或户外 2、环境温度为-30℃~+40℃ 3、电网额定频率 50HZ-60HZ 4、安装处没有强烈振动
JSH/JCQ 带污秽避雷器在线监测器 一、 概述
JSH 型避雷器在线监测器 (又称避雷器漏电流及动 作记录器),是高压交流电力系统中与氧化锌避雷器配套 使用的仪器,该仪器串接在避雷器接地回路中。监测器 中的毫安表用于监测运行电压下通过避雷器的漏电流 (峰值),可以判断避雷器内部是否受潮,元件是否异 常等情况;污秽表用于监测避雷器瓷套外部的污秽电流 的大小(也就是污秽的大小);动作计数器则记录避雷 器的过电压动作次数。雨天或潮湿天气,瓷套外表的漏 电流会同时进入监测仪毫安表内,使毫安表在瓷套漏电流大的时候,无法正确反映避雷器的内外 部问题。因此我们在监测仪中增加了一块污秽表,在瓷套底部套上屏蔽环,把外部漏电流与避雷 器漏电流同时分开,并将外绝缘污秽程度在污秽表上反映出来,使我们的 JSH 型监测器更完美。
xx= 0x13,为清零,如 22 13 00 13 0A 则对计数器值清零; xx=0x14,为修改地址的指令,如 22 14 2A 3E 0A 则将监视仪编号为 0x2A。对于一个新的芯 片,初始地址为 0x30,必须进行一次修改地址,新的地址就可以永久保存。 监视仪回传数据:9 个 16 进制数: 11 bb xx xx xx xx xx xx LF 第一位:11,引导字; 第二位:bb,编号(地址或指令); 第三、四位:xx xx;前面是高八位,后面是低八位,MCU 内部温度值; 第五、六位:xx xx;前面是高八位,后面是低八位,泄漏电流值; 第七位:xx;动作计数;0~99,整数; 第八位:xx,校验位;xx=第三位+第五位+第七位。 第九位:换行符。 温度值最后一位十进制数等于 0.1 摄氏度;温度值仅供参考。 电流值最后一位十进制数等于 10-6 安培;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲解氧化锌避雷器泄漏电流校验装置和在线监测技术
氧化锌避雷器在电力系统广泛地应用,在电力系统的安全性方面有了很大的提高。
产生了巨大的经济效益。
经过现场的运行表明:由于氧化锌避雷器长期承受工频电压、冲击电压及内部受潮等因素的作用而趋于老化,使其绝缘特性遭到破坏,表现为阻性泄漏电流增加,引起热崩溃,致使氧化锌避雷器发生爆炸。
氧化锌避雷器在老化或劣化的过程中,阻性电流TR变化明显,而容性电流TC基本无变化。
由于流过氧化锌避雷器的全电流主要是容性电流IC,阻性电流IR所占的比例较小,一般其幅值只占全电流Tx的1/10-1/5,因此,全电流的变化不能很好地反映氧化锌避雷器性能的变化。
目前普遍采用阻性电流信号来监测氧化锌避雷器的性能状况。
性能指标及工作原理
氧化锌避雷器阻性电流测试仪校验装置,该校验装置能够实现以下校验功能:阻性电流测量误差试验、全电流测量误差试验、容性电流测量误差试验、参比电压测量误差试验、有功功率测量误差试验、参比电压波形畸变对测量误差影响试验、输入阻抗试验。
因此,对氧化锌避雷器的阻性泄漏电流进行长期的在线监测是保证其安全运行的重要手段。
但阻性泄漏电流并不能直接检测,而需要从总泄漏电流中分离出来,目前研究的焦点是如何提高阻性泄漏电流的提取精度。
主要监测方法及存在的问题
目前氧化锌避雷器的监测方法主要有:总泄漏电流法、阻性电流三次谐波法、基波法和常规补偿法等。
研究发现:氧化锌避雷器的总泄漏电流值的大小不能*反映氧化锌避雷器的绝缘状况,而其阻性泄漏电流峰值的大小是表征绝缘特性优劣的重要指标。
氧化锌避雷器(MOA)由于具有非线性特性好、通流量大、残压低等优点,已成为电网中重要的过电压保护设备。
由于氧化锌避雷器在运行过程中长期承受工频过电压、雷电过电压、操作过电压以及外界环境因素的影响,会逐渐老化或劣化。
可能的原因有阀片与瓷套之间的局部放电,内部受潮,热击穿,避雷器外套表面的污秽等。
氧化锌避雷器在老化或劣化的过程中,阻性电流IR变化明显,而容性电流IC基本无变化。
由于流过氧化锌避雷器的全电流主要是容性电流IC,阻性电流IR所占的比例较小,一般其幅值只占全电流IX的1/10-1/5,因此全电流的变化不能很好地反映氧化锌避雷器性能的变化。
目前普遍采用阻性电流信号来监测氧化锌避雷器的性能状况。
性能指标及工作原理
氧化锌避雷器阻性电流测试仪,该校验装置能够实现以下校验功能:阻性电流测量误差试验、全电流测量误差试验、容性电流测量误差试验、参比电压测量误差试验、有功功率测量误差试验、参比电压波形畸变对测量误差影响试验、输入阻抗试验。
附:交流耐压试验装置试验方法及应用
一、适用范围
该试验方法适用于变电站、配电室、电力线路、设备安装等工程的电气绝缘试验。
二、试验工艺
1、试验分类:
(I)非破坏性试验绝缘试验:绝缘电阻、吸收比、极化指数、泄漏电流测试、介质损失角正切。
(2)破坏性试验:交流耐压试验、直流耐压试验。
2、试验方法
1、绝缘电阻、吸收比和极化指数试验。
(1)试验的意义及作用
测量电气设备的绝缘电阻能灵敏地反映绝缘情况,有效到发现设备局部受潮或整体受潮和赃污,以及绝缘击穿和严重过热老化等缺陷。
吸收比和极化指数能反映设备受潮程度,是判断设备是否受潮的一个重要指标。
(2)试验仪器选用标准
IOOV以下电气设备或回路采用250V兆欧表
500V以下至IOOV电气设备或回路采用500V兆欧表
3000V以下至500V电气设备或回路采用IoooV兆欧
10000V以下至3000V电气设备或回路采用250OV兆欧表
10000V以上电气设备或回路采用250Ov或5000V兆欧表
(3)试验方法及步骤
根据不同被试品接线测量:“E”接被试品的接地端,“1.”接被试品的高压端,“G”接屏蔽端。
检查兆欧表,短接“1.”端和“E”端其指针指零,开路指针指“8”时,将高压端用绝缘工具接至被试品,同时记录时间分别读取15s和60s(或Imin和IOmin)时绝缘电阻值。
断开兆欧表,对试品短接放电并接地。
测量时记录被试设备温度、湿度、气象情况、试验日期及使用仪表。
(4)试验接线及注意问题
测量变压器绕组绝缘电阻时,被测绕组各引线端应短连,非被试绕组短接接地,即规程法。
测量发电机绕组绝缘电阻时,试验被试相1.端子,非被试相短接接地。
发电机绕组的绝缘电阻与温度有很大关系,一般温度上升I(TC绝缘电阻下降一半。
测试前后都应充分放电,放电时间不小于5min,否则会影响测试效果。
测量电力电容器绝缘电阻时,应在测试前后对电容器充分放电2-5min,测量时,在未断开兆欧表引线时,不得停止摇动手柄(或关断数字兆欧表电源)以免损坏兆欧表。
(5)试验注意事项及影响试验因素分析测量大容量电机和较长电缆的绝缘电阻时,充电电流很大,因而兆欧表开始指示数很小,但并不表示被试品绝缘不良,必须经过较长时间,才能得到正确结果,并要防止被式设备对兆欧表反充电损坏兆欧表。
测量吸收比时,避免记录时间带来的误差。
屏蔽环装设位置应正确,为了避免表面泄漏的影响,测量时应在绝缘表面加等电位屏蔽环。
兆欧表与被试品间的连线应采用厂家为兆欧表配备的线,而且两根线不能交叉扭绞或拖地,否则会产生测量误差。
为便于比较,对同一设备进行测量时应采用同样型号的兆欧表,同样的接线。
兆欧表的容量对绝缘电阻、吸收比等测量结果都有一定的影响,在进行试验结果分析比较时应加以注意。
所测的绝缘电阻值及吸收比应符合规程要求,但简单规定绝缘电阻值是不全面的,试验中应将所测量结果与有关数据进行比较。
如:同一设备各相间、同类设备间、出厂试验数据、耐压前后数据通过比较分析,更容易发现异常,作到科学地分析判断测试结果及被试物的绝缘状况。
尊敬的用户:感谢您关注我们的产品,本公司除了有此产品介绍以外,还有真空度测试仪,SF6微水测试仪,真空开关动特性测试仪,断路器动特性测试仪,高压开关动特性测试仪,串联谐振耐压试验装置,高低压开关柜通电试验台,六相继电保护测试仪,静电电压表,三倍频发生器,三倍频感应耐压装置,超低频耐压试验装置,0.1HZ超低频高压发生器,硅橡胶高压线,真空检测仪,CT伏安特性测试仪,变压器变比测试仪,矿用杂散电流测试仪,高压测试仪.变频介质损耗测试仪等等,您如果对我们的产品有兴趣,咨询。
谢谢!。