铝碳耐火材料介绍(赵惠忠)
耐火材料简介

耐火材料一、基本概念耐火材料是耐火度不低于1580℃的无机非金属材料。
根据耐火度,有阻火级(1000~158 0℃)、普通级(1580~1770℃)、高级(1770~2000℃)、特级(2000℃以上)四个等级之分。
大部分耐火材料是以多种天然矿石粉料及粒料的混合物为原料生产的,某些耐火材料各种组分的结合要借助外加的结合剂(即大多数工业部门所称的黏结剂)。
结合剂的种类很多,高性能酚醛树脂就是一种性能优良、应用广泛的新型结合剂。
耐火材料是用作高温窑、炉等热工设备的结构材料,也可用作高温容器和部件的材料。
所以在冶金、硅酸盐、化工、石油、动力、机械制造等工业部门都离不开耐火材料,其中冶金工业消耗耐火材料的比例最高,约占总消耗量的60%~70%,每吨产品消耗耐火材料量约18~25kg。
钢铁工业是冶金工业的主要部门,所以也就自然是耐火材料应用的主要领域。
在钢铁工业的各个工序的设备中都离不开耐火材料,从炼铁的高炉、炼钢的转炉到转运钢水的钢包、中间包等整体设备的内衬砖到各局部结构,如钢包、中间包的出口滑板、各种水口等都离不开耐火材料。
耐火材料的分类方法有许多,按化学矿物组成和按外观的分类概况分别参见表9-1及表9-2。
这些分类应遵从ISO1109。
表9-1 耐火材料的化学矿物组成分类不定形耐火材料是由合理级配的粒状和粉状与结合剂共同混合组成的一类混合料,它无规定的外形和状态,通常根据使用需要而分别制成浆状、泥膏状或松散状,故称作散状耐火材料,其不经成型和烧成而直接使用,主要用于构筑成无接缝的整体构筑物、耐火砖成设备内衬的填缝及修补、高温炉出口堵塞用的泥料(炮泥)等。
不定形耐火材料多根据施工工艺类别而分类,由于施工工艺的差异,他们在组成、物料特性(状态、流动性、可塑性等)、应用领域等方面有所不同。
表9-4列出不定形耐火材料按施工工艺特点的分类及主要特征。
表9-4 不定形耐火材料的类别及主要特征。
水泥回转窑过渡带用高铝碳化硅耐火材料制备及性能研究

水泥回转窑过渡带用高铝碳化硅耐火材料制备及性能研究高铝碳化硅耐火材料被广泛应用于水泥回转窑过渡带,对水泥工业的技术进步和发展起着举足轻重的作用。
然而,当前高铝碳化硅耐火材料的服役寿命面临严峻挑战,如替代燃料在水泥工业开始得到应用,这些燃料中的碱性物质会气化形成蒸气并在水泥回转窑内富集,对窑衬耐火材料产生严重的侵蚀;其次水泥回转窑过渡带散热严重,成为水泥工业节能降耗亟待解决的问题,再加上回转窑朝着大型化发展,窑体回转速度加快,过渡带窑衬遭受水泥物料的磨损更加剧烈。
因此,新型水泥回转窑过渡带用耐火材料势必要向着高抗蚀、低导热、高耐磨的方向发展。
耐火材料的抗碱侵蚀性能、导热性能以及耐磨性能都与材料的化学组成、显微结构(气孔结构)都密切相关,如何进一步优化目前广泛应用的高铝碳化硅耐火材料结构和组成,满足新型水泥回转窑对过渡带炉衬的要求是本论文研究重点。
为此,本论文首先系统地研究高铝碳化硅耐火材料制备过程中的结构演变,尤其是高耐磨相碳化硅骨料在材料内部不同区域的氧化行为与形貌特征的关系,建立材料显微结构与力学性能的关系;其次,在材料中通过引入各种不同的微细粉(碳化硅、单质硅、氧化铝、红柱石等),探讨其对材料微结构(碳化硅骨料/基质界面结合特性、气孔结构)和抗碱侵蚀性能影响;再次,探讨在材料中引入轻量化莫来石骨料部分替代致密矾土骨料;或采用锆莫来石原料替代高导热、高耐磨的碳化硅骨料的方式,降低材料的导热系数,系统研究轻量骨料、锆莫来石对材料导热性能、抗碱侵蚀性能和耐磨性能的影响;最后基于上述实验结果,将锆莫来石原料替代高铝碳化硅耐火材料中的碳化硅骨料和矾土细粉,并优化材料的基质组成,制备新型水泥回转窑过渡带用高铝基耐火材料,系统研究材料的导热性能、抗碱侵蚀性能以及耐磨性能,为开发新一代低导热、高抗蚀、高耐磨水泥回转窑过渡带高铝基耐火材料提供理论指导以及优化方向。
通过以上研究工作,可以得到以下主要结论:1.高铝碳化硅耐火材料制备过程中材料内碳化硅骨料存在不同程度的氧化,部分区域碳化硅骨料出现硅元素蒸发及表面石墨相析出的现象,上述碳化硅的氧化行为取决于骨料周围的氧分压大小。
镁铝碳砖理化指标

镁铝碳砖理化指标
1. 化学成分
镁铝碳砖的主要化学成分包括氧化镁(MgO)、氧化铝(Al2O3)和碳(C)。
其具体的化学成分应符合相关标准,以保证其理化性能的稳定。
2. 物理性能
镁铝碳砖的物理性能包括密度、气孔率、体积密度等。
这些性能指标直接影响其使用效果和寿命。
镁铝碳砖的密度通常在2.9-3.1g/cm3之间,气孔率较低,体积密度较大,具有良好的抗热震性和抗侵蚀性。
3. 耐火性能
镁铝碳砖的耐火性能是其重要的理化指标之一。
它抵抗高温作用的能力直接决定了其在各种窑炉中的使用效果。
镁铝碳砖的耐火性能主要表现在高温强度、荷重软化温度、抗热震性等方面。
这些性能指标均应符合相关标准,以保证其在高温环境下的稳定性和安全性。
4. 机械性能
镁铝碳砖的机械性能包括抗压强度、抗折强度、耐磨性等。
这些性能指标反映了镁铝碳砖在承受机械作用时的稳定性和耐久性。
镁铝碳砖的机械性能应满足相关标准,以保证其在各种工作条件下的稳定性和可靠性。
5. 热膨胀系数
镁铝碳砖的热膨胀系数是其在高温环境下尺寸稳定性的重要指标。
热膨胀系数的大小直接影响到镁铝碳砖在窑炉中的使用效果和寿命。
镁铝碳砖的热膨胀系数应控制在合理的范围内,以保证其在高温环境下的尺寸稳定性和抗热震性。
综上所述,镁铝碳砖的理化指标包括化学成分、物理性能、耐火性能、机械性能和热膨胀系数等方面。
这些指标的合格与否直接影响到镁铝碳砖的使用效果和寿命。
因此,在使用镁铝碳砖时,应对其理化指标进行严格的检验和控制,以确保其在各种工作环境下的稳定性和安全性。
中国铝碳质耐火材料行业市场运行及发展趋势预测报告

中国铝碳质耐火材料行业市场运行及发展趋势预测报告当前,中国铝碳质耐火材料行业市场在国内外经济格局的影响下出现了一些变化。
随着国家经济的不断增长和相关行业的发展,铝碳质耐火材料行业在市场上得到了广泛的应用和推广,成为重要的产业链条之一。
本报告分析了当前行业市场的运行情况,并对未来发展趋势进行了预测。
一、市场运行情况1.市场规模逐渐扩大近年来,随着钢铁、水泥、电解铝、玻璃等相关行业的需求不断增长,铝碳质耐火材料的市场规模也逐渐扩大。
数据显示,2019年中国铝碳质耐火材料市场规模已超过1000亿元,预计未来几年将持续保持增长。
2.客户需求日益多元化随着市场竞争的日趋激烈,客户对铝碳质耐火材料的需求也日益多元化。
除了耐火砖、钢包砖等传统产品外,客户还需要高性能、高品质、超耐火等特殊的材料,以满足不同行业的需求。
3.企业竞争加剧当前,中国铝碳质耐火材料行业存在着一些竞争激烈、品牌稀缺、技术含量低等问题。
面对国际市场的竞争,国内企业需要在技术研发、品牌建设、市场拓展等方面加强自身实力,并积极主动开拓海外市场。
二、发展趋势分析1.技术创新是主要发展方向随着市场的逐渐成熟,技术创新成为铝碳质耐火材料行业未来的主要发展方向。
企业需要加强技术研发,推出更加优质、高品质、高耐火性的产品,并提供更加全面、专业的服务。
同时,加强技术转化和应用推广,推进国内技术水平的提升,拓展海外市场。
2.市场规模将继续扩大随着国家经济的发展和相关行业的推动,铝碳质耐火材料市场规模将继续扩大。
未来几年,随着钢铁、水泥、电解铝等产业的稳步发展,铝碳质耐火材料的需求将得到进一步提升。
3.智能化、数字化生产将成为趋势随着科技技术的不断进步,智能化、数字化生产将成为铝碳质耐火材料行业的趋势。
企业需要加强信息化建设,提高生产自动化水平,从而提高生产效率和产品质量,提高市场竞争力。
4.环保、可持续发展是必然趋势随着全球气候变化和环保意识的不断加强,环保、可持续发展也成为铝碳质耐火材料行业的必然趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响烧成铝碳滑板质量的因素
2、不烧铝碳滑板
原料:刚玉、莫来石、Ⅰ等和Ⅱ等高铝矾土熟料、鳞 片石墨、SiC、Si粉等。
特点:不用烧成、油浸及干馏热处理、工艺简单,但 相对于烧成铝碳滑板而言,强度偏低,气孔率稍高。
3、铝锆碳质滑板
影响滑板使用寿命的主要原因是形成各种裂纹(热应 力作用),为了提高滑板的使用寿命,采用低的膨胀系数 的材料是最有效的途径。如提高碳含量,但随着碳量的增 加,滑板被氧化的危险性增大,一旦制品被氧化,制品的 抗冲刷和抗侵蚀能力降低;在配料中提高莫来石含量也能 提高制品的抗热震稳定性,但随着莫来石含量的提高, SiO2也相应提高,滑板的抗侵蚀能力下降。而最理想的方 法是在配料中加入锆莫来石。
铝碳质耐火材料
铝碳质耐火材料是指将氧化铝原料和 碳素原料,大多数情况下还加入其它原料, 如SiC、金属Si等,用沥青或树脂等有机 结合剂粘结而成的碳复合耐火材料。 铝碳质耐火材料大量应用于钢铁生产 工艺过程中的连铸工序、高炉铁水沟和铁 水包等设备上。图6.1是钢铁生产工序图 及有关设备名称。
连铸工序:
连铸用耐火材料,是指从钢包开始连铸工 序所用的耐火材料。近年来,由于对钢材质 量要求的提高,对连铸用耐火材料的质量也 不断提高,连铸对耐火材料的要求为: •
耐高温;
• 不与钢液或合金发生反应;抗渣性强;
• 抗高速钢流冲刷;
• 低气孔率,防止空气进入钢液;高的抗热冲击能力;
• 精确的几何尺寸;
• 装置和使用简单,质量稳定,价格不能太高。
原料:烧结刚玉、电熔刚玉、烧结刚玉-莫来石、合成莫
来石、鳞片石墨、碳黑、硬质沥青和添加剂。 工艺流程: 铝碳滑板的制造工艺流程如图6.5。
氧化铝原料(粗中细)
碳素原料(石墨、碳黑)
混 合
添加物(Si、Al、SiC)
成 型
还 原 烧 成
油 浸
热 处 理
机 加 工
成 品
结合剂
图6.5 滑板制造工艺流程
烧成铝碳滑板的结合系统
2.0 1.5 õ ¯ Á Ñ » Â ª ² ¯ Ä À Ê AZTS
ò Í Ê ¥ È Å Õ Â /£
1.0
0.5
0.0 0 200 400 600 800 1000 1200 1400 1600 Â È æ Î ´ /¡
图6.4 有关材料的的膨胀曲线
6.1.3 滑板的基本制造工艺
1、烧成铝碳滑板
中间包和结晶器的钢水被流出的渣的保护渣所 覆盖,连铸用水口的外壁被渣蚀损,特别是浸入式 水口由于浸渍在碱和氟成分高的蚀损性强的保护渣 中,所以保护渣线的蚀损很严重,是影响浸入式水 口寿命的主要因素。
6.2.1 长水口的损毁原因及其发展过程
长水口在熔融钢水从钢包向中间包浇注 过程中,具有重要的气密功能。长水口的损 毁原因主要是:
AZTS的主要矿物组成为刚玉、斜锆石、和莫来 石(monoclinc- ZrO2 )。
刚玉中含有Al2O3-TiO2和m- ZrO2,这类材料由三 种以上矿相组成,矿相在材料中分布均匀。
AZTS材料应用于滑板后的能使滑板的膨胀率 和弹性模量降低,热震稳定性提高。图6.4是AZTS 等材料的膨胀曲线。
① 浇注初期因耐热剥落性差而发生纵 向开裂;
② 由于机械强度差,耐热应力能力低 而导致颈部裂缝; ③ 渣线及内表面的侵蚀;
④ 连接处的氧化或氧气清洗造成的变 质。
对于长水口来说,耐热剥落是最重要的, Al2O3-SiC-C系材料因具有优良的耐热剥落性目前 被广泛使用,然而玻璃状SiO2尽管其的膨胀率低 对改善材料的耐热剥落性有效,但SiO2下列缺点: ① SiO2易于熔融钢水和渣中的Mn或Fe氧 化物形成低熔物;
滑动水口系统(包括上下水口、上下 滑板)作为钢包和中间包的钢水流量控制 系统,因可控性好,能提高生产率而得到 迅速发展。
滑动水口系统优于传统的塞头水口控 制系统,它促进了钢包精炼工艺和连铸技 术的发展,同时,随着钢产量的上升和钢 质量的提高,与此同时多炉连铸技术的发 展必须要求滑动水口系统增加使用寿命, 减少操作费用。
随着多炉连铸要求的提高,碳结合铝碳质滑板解 决了陶瓷结合滑板存在的问题。添加石墨的铝碳质滑 板比高铝质滑板使用寿命要高得多,特别适用于电炉 和中间包的小型滑板上,但在大型钢包滑板上还不令 人满意。这是因为滑板面的损毁随着气孔率的降低或 常温耐压的提高而减轻,但因此也增大了弹性模量, 从而降低了热震稳定性。
表6.1
¬ å Ä ² ð Î ½ » ©³ Ê Ë Ð Ê ² ð Ê Ë ý Ú ª´ © ó Ö ¿ Ö ¾ À ² ý Ú Ü §¥ ð Ö ¿ Ö Î Ä Ë ¬ ¯ í æ ² ð » ´ ªÃ Ê Ë Å ä ² Ñ Æ «É ¬Á Î ý Ú Ü §ô ü Ö ¿ Ö Î ³ Ô ¬ ¯ í æ þ ä » ´ ªÃ ©Â ¬ ¯ í æ þ ä » ´ ªÃ ©Â ý Ú Â û Ö ¿ ´ È
钢包+中间包
高炉
钢包 转炉 钢包滑板 上挡渣堰 长水口 中间包盖 中间包
混铁车
中间包用滑板 下挡渣堰
浸入式水口
图6.1 钢铁生产工序
6.1 连铸用铝碳质耐火材料
6.1.1 连铸对耐火材料的要求
60年代连铸技术的引入,使得模铸-脱模-均 热炉-开坯这一工序过程得以简化为一步将钢液变 成热轧钢坯的过程,并具有节能、节省基建投资、 降低生产成本、提高效率的优点,是一种高产、低 耗的生产方法。连铸工序在钢嵌方法与龟裂方向的关系
6.2 铝碳质长水口、整体塞棒和浸入式水口
连铸用长水口和浸入式水口一般是在较大的热震条件 下使用,所以过去用熔熔融SiO2材质,但随着连铸技术的 发展,长水口和浸入式水口的使用条件变得日益苛刻,因 此耐蚀性和热震性更好的等静压成型的铝碳质和锆碳质水 口已成为主体。 连铸用水口的使用目的是为了保证钢包-中间包之间 或中间包-结晶器之间的钢水顺利通过,同时具有重要的 气密功能以防钢水的二次氧化和渣的卷入。这些连铸用水 口的使用寿命和稳定性对连铸机的生产率以及板坯的质量 有很大的影响。
通常将连铸用水口安装在滑板或整体塞棒下方, 上部用夹持器固定,下部自然下垂,用于控制钢水 的流量,使钢水通过水口内孔下流。因些连铸用水 口要承受注钢初期的强烈热震和由钢水下流等所造 成造成的振动机械力。因此在长水口中夹持器夹持 部分部位(颈部)的折损以及水口的裂纹,但因预 热条件和材质不同,颈部和流钢口周围出现裂纹的 现象也时有发生。
连铸用耐火材料如图6.2所示,其中 用到碳复合耐火材料的部位有:钢包的 渣线,各种水口砖、各种滑板及整体塞 棒。
渣线MgO-C砖
Al2O3-MgO 质浇注料
水口砖
整体Al2O3 质塞棒
Al2O3-C滑板
铝碳质 浸入式水口
图6.2 连铸用耐火材料
滑动水口用耐火材料
注钢用耐火材料,60年代以前使用套筒塞 棒,60年代开发了滑动水口,从钢包往中间包 以及从中间包往结晶器中注钢,是连铸用耐火 材料的一大变革。作为钢水流量的控制方式, 最早提出滑动水口方案的是1885年美国专利, 1964年、1968年德国和日本分别开始使用滑动 水口,我国70年代开始推广使用。
² ð Ê Ë Ö Ë Á Ä Ä Ë Ó Ê Ë µ ® ô³ ¥ ð ë ² ð
È Õ ð Ö Ô ± ½ Ú ¬ å Ä í æ µ ü Õ µ Ô » ©³ ªÃ Al2 O3µ ¬ ½ Å
6.1.5 防止滑板龟裂的措施
目前滑板龟裂的措施大多是采用钢箍热嵌的方法,且为了使已 产生的龟裂不发生在滑动方向上,需要考虑滑板的紧固方法,一般 在纵向紧固滑板时,易产生同方向龟裂,所以从斜边方向紧固的方 法有利于提高滑板的使用寿命。 图6.6求出了热嵌方法与龟裂发生方向的关系。
6.1.2 滑板
1>. 滑板的类型及组成
往复式
旋转式
图6.3 滑板类型 从结构上分:按滑动方式的不同,分为往复式和旋转式; 从组成滑板的块数上分:两层式和三层式; 从用途上分:由钢包用和中间包用滑板。
2>. 滑板的发展
滑动水口系统发展初期,滑板砖使用的是陶瓷结 合高铝或镁质耐火材料,为增强其基质耐蚀性,防止 渣的渗透,采用焦油浸渍,工作地点受到焦油的严重 污染。镁质滑板用在钢渣量多或含氧量高的腐蚀钢种 场合,MgO含量为85~95%,另加一些Al2O3或尖晶石以 提高其热震稳定性。
② 高温下发生SiO2(s)+C(s)=SiO(g)+CO(g) 反应,其被分解,在耐火材料制品中形成空隙;
铝锆碳质滑板制造工艺
与烧成铝碳滑板相比主要的区别在于用锆莫来石 代替莫来石,锆莫来石的配入量一般在7~45%,<7%显 示不出优良的热震性和抗渣性,超过45%,抗渣性也 不理想。
6.1.4 滑板耐火材料的损毁
滑板耐火材料的损毁形式因使用条件而异,须根 据钢种和浇注(连铸或模铸)的不同,选择合适的材 质。 表6.1列出滑板用耐火材料损毁的主要原因及损毁 形式的关系,这些原因一般不是单独存在的,而是相 互影响,成倍加剧损毁,因此对于滑板用耐火材料来 说,掌握其使用条件、损毁形式、考虑其应具备的性 能平衡是必不可少的。
一般情况下,强度上升,热震稳定性下降,这 是铝碳质滑板存在的问题。 莫来石、锆莫来石、锆刚玉等材料比刚玉的膨 胀系数小,因此这些材料适合于作为滑板的原料, 以降低制品的膨胀系数和提高其的热震稳定性。
目前,作为一种膨胀率低适合于生产低膨胀高、 抗热震稳定性的材料如AZTS(Al2O3-ZrO2-TiO2-SiO2) 已被投入生产和使用。