集合优秀课件
合集下载
高中数学集合ppt课件

描述法
总结词
通过描述集合中元素的共同特征来展 示集合的方法。
详细描述
描述法适用于集合元素数量较多,无 法一一列举的情况。例如,集合 B={x|x>2},可以通过描述法表示为 {x|x>2}。
韦恩图法
总结词
通过图形表示集合及其关系的方法。
详细描述
韦恩图法是一种直观的表示方法,通过圆圈、椭圆等图形来 表示不同的集合,以及它们之间的关系。这种方法有助于理 解集合的并、交、差等运算。
总结词
表示两个或多个集合中共有的元 素
详细描述
交集是指两个或多个集合中共有 的元素组成的集合。可以用符号 "∩"表示交集,例如A∩B表示集合 A和集合B的交集。
并集
总结词
表示两个或多个集合中所有的元素, 不考虑重复
详细描述
并集是指两个或多个集合中所有的元 素组成的集合,不考虑重复。可以用 符号"∪"表示并集,例如A∪B表示集 合A和集合B的并集。
互异性
• 互异性是指集合中的元素互不相同,即集合中不会有重复的元素。例如,集合 {1,2,3}中没有重复的元素,而集合{1,2,2,3,3}中有重复的元素2和3。
05
集合的应用
在数学中的应用
1 2
3
集合论
集合论是数学的基础理论之一,它为数学概念提供了一种抽 象的描述方式。通过集合,数学中的许多概念,如函数、数 列、平面几何等都可以被统一地表达和描述。
在经济学中,集合的概念也经常被使 用。例如,可以将一组商品看作一个 集合,然后对这组商品进行分析和比 较。
计算机科学
在计算机科学中,集合的概念被广泛 应用于数据结构和算法的设计。例如 ,数组、链表、栈、队列等数据结构 都是基于集合的。
集合单元复习ppt课件.ppt

4.注意空集特殊性和两重性。 空集是任意集合的子集,即 A ,是任一非空集合的
真子集,即 A(A≠ ).有三种情况: A,AB,A B.
另外还要分清楚 与{}, 与{0}的关系。
例4:下列五个命题:①空集没有子集;②空集是任何一个 集合真子集;③ {0} ;④任何一个集合必有两个或两个 以上的子集;⑤若 AB,则A、B之中至少有一个为空 集.其中真命题的个数( A ) A.0个 B.1个 C.2个 D.3个
X
②“正整数集”的补集是“负整数集X”;
③空集没有子集;
X
④任一集合至少有两个子集; X
⑤若 ABB ,则B A; √
⑥若 AB,则A、B之中至少有一个为空集;X
1.注意集合中元素的实质。 “代表元素”的实质是认识和区别集合的标准。根据 集合元素的确定性,集合中元素都有确定的含义。所 以弄清楚集合中的代表含义什么,才能正确表示一个 集合。代表元不同,即使同一个表达式,所表示的集
则实数a满足_______________
(2)集合A={x|-2<x<1},B={x|x≤a},若 AB ,则
实数a满足_______
(3)已知全集U=R,A={x|1≤x≤2},且B∪CUA=R,B∩CUA ={x|0<x<1或2<x<3},则集合B为________
(4)U={(x,y)|x,y∈R},A={(x,y)|
合也不同。
例如A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2}
例1:P={y=x2+1},Q={y|y=x2+1},S={x|y=x2+1}, M={(x,y)|y=x2+1},N={x|x≥1}.则( D)
高中数学新教材《1.1 集合的概念》公开课优秀课件(好用)

①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?
四、集合的表示
立德树人 和谐发展
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x的所有实数根组成的集合;
(3)由1~10以内的所有质数组成的集合.
思考?
立德树人 和谐发展
(1)你能用自然语言描述集合{2,4,6,8}吗?
(2)你能用列举法表示不等式 x 7 3 的解集吗?
(2)描述法 用集合所含元素的共同特征表示集合的方法称为描述法. 例2 试分别用列举法和描述法表示下列集合:
四、集合的表示
立德树人 和谐发展
描述法
列举法
A={x R | x2 2=0 } B={x Z | 10<x<20 } C={x | x=2n,n N }
A { 2, 2}
B={11,12,13,14,15,16,17,18,19 }
有限集通常用列举法来表示 无限集通常用描述法来表示
六、小结归纳
(1)方程x2 2 0 的所有实数根组成的集合;
(2)由大于10小于20的所有2 0的实数根为 x ,并且满足条件
x2 2 0 ,因此,用描述法表示为
A x R | x2 2 0
方程 x2 2 0有两个实数根 2, 2,因此,用列举法表
高中数学一轮复习课件:集合课件(共31PPT)

A.{2}
B.{2,3}
C.{3,4}
D.{2,3,4}
索引
5.设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁UB)
=( B)
A.{3}
B.{1,6}
C.{5,6}
D.{1,3}
索引
6.若集合A,B,U满足A B U,则U=( B )
A.A∪(∁UB)
B.B∪(∁UA)
解 ∵B⊆A, ∴若B=∅,则2m-1<m+1,解得m<2;
2m-1≥m+1, 若 B≠∅,则m+1≥-2, 解得 2≤m≤3.
2m-1≤5, 故实数m的取值范围为(-∞,3].
索引
1.若B⊆A,应分B=∅和B≠∅两种情况讨论. 2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为 元素或区间端点间的关系,进而求得参数范围.注意合理利用数轴、Venn 图帮助分析及对参数进行讨论.求得参数后,一定要把端点值代入进行验 证,否则易增解或漏解.
又|x-1|≤3,即-3≤x-1≤3,
所以-2≤x≤4,则B=[-2,4]; 因为xx- +45≤0,所以-5<x≤4,则 C=(-5,4], 所以A⊆B,A⊆C,B⊆C.故选D.
索引
(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m
的取值范围为__(-___∞__,__3_]__.
索引
1.思考辨析(在括号内打“√”或“×”)
(1)任何一个集合都至少有两个子集.( × ) (2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × ) (3)若1∈{x2,x},则x=-1或1.( × ) (4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.( √ )
集合的概念-课件ppt

(一)集合的概念:
各种各样的事物或一些抽象的符号,都可以看作对象。
一般地,把一些能够确定的不同的对象看成一个整体,就
说这个整体是有这些对象的全体构成的集合(或集)。 构成集合的每个对象叫做这个集合的元素(或成员)
如:小于10的自然数 0,1,2,3,4,5,6,7,8,9 构成了一个集合
集合举例
3、文氏图:用一条封闭的曲线的内部来 表示一个集合.
例1:用列举法表示下列集合
(1)A {x N | 0 x 5} A {1,2,3,4,5} (2)B={2,3}
例2:用描述法表示下列集合
(1){1,1}; (2)大于3的全体偶数构成的集合;
(二)“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来表示,元 素通常用小写英语字母a,b,c,…来表示;
2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作 a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A, 记作要注意“∈”的方向,不能把a∈A颠倒过来写.
问题:正偶数的集合怎么表示, 能否使用列举法?
{x R | x能被2整除,且大于0} 或{x R | x 2n, n N}
问题解决:用集合中元素的特征性 质来描述
2、描述法: 在集合I中,属于集合A的任意元素x都 具有性质p(x),而不属于集合A的元 素都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质,于是集合A 可以表示如下:
3.空集
(1)考虑方程x+1=x+2的解的全体构成的集合.显然这 个集合不含任何元素.
(2)一般地,我们把不含任何元素的集合叫做空集, 记作Ф
知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
集合间的基本关系ppt课件

一般地,如果集合 A 是集合 B 的子集(A⊆B),且集合 B 是集合 A 的子集 (B⊆A),此时,集合 A 与集合 B 中的元素是一样的,因此,集合 A 与集合 B 相等,记作
A=B
符号语言:若A B, B A,则A B.
A(B)
真子集
如果集合 A⊆B,但存在元素 x∈B,且 x A,我们称集合 A 是集合 B
解:由
a2
1,
ab b.
或
a2 b, ab 1.来自得a 1, b 0.
或
a 1, b 1.
(舍去).
所以 a 1,b 0.
本节课的知识网络:
子集 AB
空集 ()
相等 AB
真子集 A B
性质
性质
(2)设 C 为立德中学高一(2)班女生的全体组成的集合,D 为这个班学生的全 体组成的集合;
(3) E={x|x是两条边相等的三角形},F={x|x是等腰三角形}.
可以发现,在(1)中,集合 A 的任何一个元素都是集合 B 的元素.这时 我们说集合 A 包含于集合 B,或集合 B 包含集合 A.(2)中的集合 C 与集合 D 也有这种关系.
的真子集. 例如:集合 A={1,2,3},集合 B={1,2,3,4,5}.4,5在集合 B 中,但 不是集合 A 中的元素.所以 A 是 B 的真子集
读作:“A真含于B(或“B真包含A”).
BA
空集
我们把不含任何元素的集合叫做空集,记为 ∅,
并规定:空集是任何集合的子集; 是任何非空集合则真子集.
一般地,对于两个集合A、B,如果集合 A 中任意一个元素都是集合 B中 的元素,我们就说这两个集合有包含关系,称集合 A 为集合 B 的子集.记作:
集合的概念及其基本运算PPT优秀课件1

∴A
B,
∵3b-2=3(b-1)+1,∴B=C. ∴A∪B=C.
答案
∪
=
跟踪练习1
(2010·无锡模拟)设集合A={1,a,b},B=
{a,a2,ab},且A=B,则实数a=___, =___. -1 b0
解析 由元素的互异性知:a≠1,b≠1,a≠0, 又由A=B,
2 2 a 1 a b 即 或 解得 a 1 , b 0 . , ab b ab 1
①若a=0,则A=R;
4 1 a a 1 4 ③若a>0,则 A {x| x }. a a (1)当a=0时,若AB,此种情况不存在.
②若a<0,则 A {x| x };
[2分]
当a<0时,若AB,如图,
1 4 a 8 a 2, 则 a 8. 1, a 1 2 2 a
1 ∴ UP={x|x≤0或x> 2
1 P={x|0<x≤ 2
}, },
1 2
∴(
UM)∩(
UP)={x|x≤0或
<x<1}.
5.(2010·常州模拟)已知全集U=R,集合M={x|x≥ x 1 1},N={x| ≥0},则 U(M∩N)=__________. {x|x≤2} x2 解析 因为M={x|x≥1},N={x|x>2或x≤-1},
25 2 2 1 {( m , n ) | m n 或 m n } 成的集合为___________________________. 9 9
2 2
解析
因为A∩B为单元素集,即圆x2+(y+n)2=4与圆
2 2 3 m ) ( n 2 n ) 3 2 (x-3m)2+(y-2n)2=9相切,此时(
集合的基本运算ppt课件

A={x|x是揭阳一中高一级参加篮球比赛的同学},
B={x|x是揭阳一中高一级参加跳远比赛的同学},
求A∩B。
参赛共100人
A
B
篮:54人 跳:68人
参加篮
参加跳
A∩B
球比赛
远比赛
篮+跳:_2_2__人
揭阳一中高一级既参加篮球比赛又参加跳远比赛的同学
阅读与思考:集合中元素的个数
把含有有限个元素的集合A叫做有限集; 用card来表示有限集合A中的元素个数.
加法运算
“相加”
问题导入
类比实数的加法运算,你能否尝试定义集合间 “相加”运算?
观察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数};
(3)A={1,2,3},B={2,3,5,9},C={1,2,3,5,9}
作业: (1)整理本节课的题型; (2)课本P12的练习1~4题; (3)课本P14的习题1.3的1、2、3、5题.
的补集❷,记作∁UA 符号语言 ∁UA=_{_x_|x_∈__U_,__且_x_∉_A_}_____
图形语言
运算性质
A∪(∁UA)=__U__,A∩(∁UA)=___∅_,∁U(∁UA)=____,A ∁UU=∅,∁U∅=U
题型 1 补集的运算
例1 (1)若全集U={x∈R|-2≤x≤2},则集合A={x∈R|-2≤x≤0}的
如:A={1,2,3,5},则card(A)=4.
一般地,对于任意两个集合A、B,有: card(A∪B)=card(A)+ card(B)-card(A∩B).