间接转矩控制原理

间接转矩控制原理
间接转矩控制原理

变频器基础知识

变频器基础知识 变频器是把工频电源(50Hz 或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CP U 以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、G T O(门极可关断晶闸管)、B JT(双极型功率晶体管)、M OSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、S I TH(静电感应晶闸管)、M GT(MOS 控制晶体管)、M CT(MOS 控制晶闸管)、I GBT(绝缘栅双极型晶体管)、H VIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM 模式优化问题吸引着人们的浓厚兴趣, 并得出诸多优化模式,其中以鞍形波PWM 模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的V VVF 变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM 控制变频器、PWM 控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f 控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 V VVF :改变电压、改变频率 CVCF :恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz 或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n =60 f(1-s)/p (1) 式中 n ———异步电动机的转速; f ———异步电动机的频率; s ———电动机转差率; p ———电动机极对数。 由式(1)可知,转速n 与频率f 成正比,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V ,输出功率为0.75~400kW ,工作频率为0~400Hz ,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U /f=C 的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统 开关电源设计学习园地 https://www.360docs.net/doc/ac11935111.html,

转矩控制矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=4.44f1N1Φm式中:E1--定子 每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm- 每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时, 可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区 的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频 率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率 变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保 持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以 转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电 机的扭矩。 矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种,前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

004 基于Cruise的混合动力汽车能量管理与控制策略研究_东风商用车_殷政等

基于Cruise的混合动力汽车能量管理与控制策略研究 殷政周杰敏 (东风商用车技术中心,武汉,430056) 摘要:在CRUISE环境中分别建立11L加电机与13L发动机的车辆模型,分析了HEV能量管理策略和不同工作模式间相互切换的条件,在MATLAB/SIMULINK中搭建了基于负荷平衡的转矩分配策略。对比分析两车型在CWTVC工况下的燃油消耗表现,为下一步控制策略调试和参数匹配优化提供数据支持。 关键词:混合动力;CRUSIE;模糊控制 主要软件:A VL CRUISE 1. 前言 随着排放法规的日趋严格,汽车厂家为降低排放所做的努力已不再局限于改善燃烧过程和后处理系统。而目前发动机技术与投入的巨额开发成本相比,技术进步带来的收效却很小。同时现行经济需求的变化,在油价不断高涨的情况下对大马力发动机的需求却不断上升,因此电能在车辆上的应用越来越迫切。 电机虽然能很好的替代发动机,但由于客户需求与特殊的经济应用领域,商用车特别是载货和牵引车在很长一段时间内是不可能实现纯电动的运行,因此HEV的发展是未来一大趋势。而新的动力源的加入则需求耦合机构能使两种动力源能平稳输出,这对协调控制策略提出了新的要求。 本文针对串联式HEV制定出整车控制策略。基于扭矩需求算法制定出整车工作模式,在各个工作模式下对能量源进行合理分配,以实现经济油耗为目标进行控制。通过CRUISE 和Matlab联合仿真,获得了良好的控制效果。 2. CRUISE整车模型建立 2.1 CRUISE介绍 CRUISE是一款针对整车动力性、燃油经济性进行仿真分析的软件,通过图形建模方式,可以快速的根据需求建立整车模型,进行概念的修正工作。而其BUS连接方式可以便捷的提供各数据信息给控制系统,用来做被控对象模型能准确的表达车辆在工况下的实际表现。特别是在混合动力方向的应用有多个特点: ①拥有丰富的混合动力模块库,便于模型的搭建,数据列表界面便于数据的输入和存储。 ②自带的FUNCTION和MAP模块能快速的在CRUISE环境中建立简单的控制算法,便于模型的验证和参数的调整。而提供对外接口可以与matlab等软件建立联合仿真,以便进行更加复杂的控制算法的实现。 ③其自带的驾驶员模型根据路谱的车速需求可以很快的解耦出加速、刹车、离合踏板信号并通过BUS连接导入到控制算法中,这种前向仿真模式便于控制算法的搭建。 2.2 整车模型的建立 分别建立11L+电机和13L的车辆模型,部分参数如下:车辆总重为65T,变速箱为ZF12档,工况为C-WTVC。模型如下图1所示:

直接转矩控制

课程设计(论文) 题目名称异步电动机直接转矩控制系统仿真 课程名称运动控制系统 学生姓名曾斌 学号0841229082 系、专业电气工程、电气 指导教师林立 2011年7月4号

邵阳学院课程设计(论文)任务书 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):

邵阳学院课程设计(论文)评阅表 学生姓名曾斌学号0841229082 系电气工程系专业班级电气一班 题目名称三相异步电动机直接转矩控制课程名称运动控制系统 一、学生自我总结 二、指导教师评定 注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面; 2、表中的“评分项目”及“权重”根据各系的考核细则和评分标准确定。

摘要 直接转矩控制技术在电力机车牵引、汽车工业以及家用电器等工业控制领域得到了广泛的应用。在运动控制系统中,直接转矩控制作为一种新型的交流调速技术,其控制思想新颖、控制结构简单、控制手段直接、转矩响应迅速,正在运动控制领域中发挥着巨大的作用。 本文分析异步电动机数学模型的基础上,提出了一种基于MATLAB/SIMULINK的交流电机直接转矩控制系统的仿真模型.通过搭建独立的功能模块和模块的有机整合, 得到一个完整的异步电动机控制系统的仿真模型在仿真模型中,定子磁链控制器电磁转矩控制器均采用双电平方式, 仿真结果证明了该方案的合理性和有效性。 仿真结果表明:DTC系统具有动态响应速度快、精度高、易于实现的优点。仿真结果验证了该模型的正确性和该控制系统的有效性。 关键词:异步电机;直接转矩控制;MATLAB仿真

最新电力电子技术在轨道交通牵引系统中的发展知识分享

电力电子技术在轨道交通牵引系统中的 发展

电力电子技术在轨道交通牵引系统中的发展 第一组 电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、GIBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。 1轨道车辆牵引领域电力电子器件的发展 1.1 电力电子器件的发展 自1957 年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。 传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。因此,半控制器件的发展已处于停滞状态。 到了70 年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。进入80 年代以后,伴随着GTO器件的发展及成熟,MOS 器件的开发则繁花似锦。绝缘栅双极晶体管(IGBT)独占鳌头。至此电力电子器件又从电流控制型器件发展到电压控制型器件。90 年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。而IGCT 器件既具有IGBT 器件的开关特性,同时又具有GTO 器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的

转矩控制矢量控制和VF控制解析

转矩控制矢量控制和V F 控制解析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气 隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式 中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的 基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频率从基频向上可以 调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一 个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。矢量控制时的速度控制(ASR)通过操作转矩指令,使得速 度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。带PG的V/f控 制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG的反馈或速 度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法

(完整版)基于扭矩的发动机控制策略简介

ECU开发参考文档基于扭矩的发动机控制策略

更改历史

目录

1 绪论 基于扭矩模型的电喷系统将车辆的各种功能和发动机的各种控制参数以扭矩为中间变量建立了扭矩关系并以扭矩请求的形式向系统提出请求。系统在扭矩协调器中将上述扭矩请求与系统的运行效率进行协调,并通过扭矩中央转换实现了对发动机输出扭矩的控制。 1.1引言 基于扭矩模型的发动机管理系统其控制策略是以扭矩为主,通过子系统(如起动控制、怠速控制、转速控制、零部件保护控制等)、车辆功能要求(如真空助力转向、空调运行等)、传动系统控制(如自动变速器换档等)以及驾驶性要求等向系统提出发动机输出功率和扭矩的要求。系统对上述请求通过计算产生该请求扭矩的发动机进气充量,再控制电子节气门提供理想的进气冲量,从而实现对发动机输出扭矩的请求。 虽然实现上述扭矩模型控制策略的一个重要执行元件是电子节气门,但是在采用机械连接式节气门的发动机管理系统开发过程中引入扭矩模型的控制策略,其同样也能获得较满意的效果。目前东南汽车与上海联合电子合作的菱帅轿车新电喷系统开发过程中采用了扭矩模型控制策略,其不仅在标定和匹配过程中简化了工作,而且更重要的是在满足EURO-Ⅱ排放法规的前提下获得了良好的动力性、驾驶性和燃油经济性。 2 模型介绍 根据Moskwa 和Hedrick 建立的汽车动力传动系统控制的四冲程火花塞点燃式发动机模型,它有三个状态变量:进气管内的空气质量(也可是进气管内压力),进入燃烧室的燃油质量流动速率和发动机转速。 第一状态方程:m'α = m'αi - m'α0 (1) mα为进气管内的空气质量。 m'αi 为进入进气管的空气质量流动速率,是节气门开度α的函数f(α)。 m'α0 为离开进气管并进入燃烧室的空气质量速率。 第二状态方程,即燃油质量流动速率状态方程: τf * m"fi + m'fi = m'fc (2) m'fi是进入燃烧室的真实燃油速率。

异步电机直接转矩控制系统研究 开题报告

天津科技大学本科生毕业设计(论文)开题报告 学院电子信息与自动化学院 专业 2007电气工程及其自动化 题目异步电机直接转矩控制系统研究 姓名杨乐 指导教师(签名) 年月日

拟选题目异步电机直接转矩控制系统研究 选题依据及研究意义 直接转矩控制技术是继矢量控制技术之后发展起来的一种新型、高性能变频调速技术。它利用空间矢量分析方法,直接在定子坐标系下计算和控制交流电机的转矩,采用定子磁场定向,通过对转矩和磁链的滞环控制产生PWM信号,直接对逆变器的开关状态进行最佳控制,以获得系统的高动态性能。它不像矢量控制那样,将交流电动机与直流电动机作比较、等效和转化,更不需要模仿直流电动机的控制而要求利用解耦后的简化交流电动机数学模型来实现对转矩的间接控制,具有转矩响应快、控制结构简单、易于实现全数字化的特点,得到广泛应用。 随着经济的发展,在诸多领域里利用高性能的交流调速逐步替代价格较高的直流调速是一个趋势。而直接转矩控制是高性能交流调速技术中潜力最大的一种,而且其控制方法本身非常适合全数字化实现,这一点正和现在飞速发展的电子技术相适应,所以对其进行深入的研究具有良好的现实意义。 文献综述(对已有相关代表性研究成果的综合介绍与评价) 1985年德国学者Depenbrock和日本学者Takahashi相继提出异步电机的直接转矩控制(DTC)思想。DTC是继矢量控制之后发展起来的一种高性能交流调速技术。DTC直接在定子坐标下计算和控制转矩,并采用定子磁链定向控制,产生最佳PWM信号,从而对逆变器开关状态进行最优控制,以获得高动态性能的转矩控制。DTC摒弃了复杂的矢量变换与计算,大大减少矢量控制性能易受参数变化影响的问题,结构简单,易于数字化控制。DTC的研究虽然已取得了很大进展,但是它在理论和实践上还不够成熟,如低速性能差、脉动转矩大、限制了系统的调速范围。矢量控制和直接转矩控制都属于磁场定向控制,前者是转子磁场定向控制,而后者是一种特殊的定子磁场定向控制。 直接转矩控制技术一诞生,就以自己新颖的控制思想,简洁明了的系统结构,优良的静态性能受到了普遍的关注和得到了迅速的发展。DTC在德国经过10多年的发展,其低速性能和高速域的谐波处理,都有明显的改善,并进入实用阶段。目前DTC己经成功地应用于大功率高速电力机车、地铁、城市有轨电车的传动控制系统,例如穿越英吉利海峡的高速列车采用的就是DTC系统。德国、日本、瑞典、美国等都投入了大量的人力、物力和资金来开发和发展此项新技术。我国对DTC仍处于仿真和实验阶段,仍有不少控制性能问题和应用问题有待解决。

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

矢量控制与直接转矩控制之我见

矢量控制与直接转矩控制之我见 My Opinion on Vector Control and Direct Torque Control 艾默生网络能源有限公司变频器开发部 刘宏鑫 MDI R&D Department of Emerson Network Power Co.,LTD Liu Hong Xin 摘要:本文阐述采用矢量控制与直接转矩控制技术的变频器性能的优劣,提出了两种技术的发展方向。 关键词:矢量控制 直接转矩控制 变频器 Abstract: The merits and demerits of inverter using VC and DTC are discussed in detail. The trend of VC and DTC is presented in this paper. Keywords:Vector Control Direct Torque Control Inverter 一、矢量控制与直接转矩控制技术发展 自从70年代初期西德Blaschke等人首先提出矢量控制(Vector Control,简称VC)理论,到80年代中期德国人M.depenbrock等人首先提出直接转矩控制理论(Direct Torque Control,简称DTC)以来,全世界各地的高校、科研机构、各大变频器公司投入巨大资金和精力来研究,高性能交流变频调速技术如雨后春笋般的涌现出来。由于矢量控制与直接转矩控制技术均是基于异步电机的动态模型,而且均采用外环为速度环,内环为转矩和磁链控制,从而实现转速和磁链的近似解耦,获得了较好的动态性能[1]。 矢量控制的研究重点在于矢量控制环路的结构、无速度传感器速度辨识和电机参数的离线和在线辨识。DTC的重点在于无速度传感器速度辨识、磁链和转矩自控制、脉冲优化选择器等方面。两者的目的在于提高系统转矩控制动态响应、稳态速度精度(速度辨识的精度、转矩脉动大小、冷态热态情况下的自适应能力)、系统的鲁棒性。由于两者算法对于数字化要求非常高、对运算的速度要求也非常高,因此受CPU速度的限制,真正高性能全数字化的无PG变频器在90年代中后期才陆续出现的。表1是1999年8家公司商用化无速度传感器的性能比较[2]。 近几年来,变频器的控制水平又有很大提高,如日立SJ300具有电压检测电路,可以达到1∶500以上的调速范围,而且零速可以达到150%的转矩,富士VG7由于具有电压检测电路,开环辨识精度较高,号称达到开环伺服水平。由于欧洲变频器研发工作着重于V/F 控制或者闭环矢量控制模式,欧洲开环矢量控制变频器的技术水平与日本的差距较多。由于欧洲的制造业非常发达,推动了伺服控制技术的发展,相比日本有一定的优势。 二、通用变频器控制技术的现状

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

全功率驱动的异步风电机组的控制策略研究

第28卷第7期电 力 科 学 与 工 程 Vol.28,No.7,1  全功率驱动的异步风电机组的控制策略研究 王瑞新,王 毅,孙 品 (华北电力大学电气与电子工程学院,河北保定071003 )摘要:通过全功率PWM变流器并网的笼型异步风力发电机组(the Full Rated Converter Induction Gener-ator,FRC-IG),以其低成本、高可靠性和易维护的特点引起了人们的关注。在分析笼型异步风电机组数学模型的基础上,对全功率PWM变流器的控制策略进行了研究,给出了基于转矩给定的最大功率跟踪控制策略,通过对电磁转矩的调节间接控制发电机转速来跟随最大功率曲线。网侧变流器采用并网电压控制策略,根据并网电压的幅值来调节无功功率抑制电网电压的波动,在保证风电机组安全运行的同时降低了机组并网对电网的影响。仿真结果表明所采用的控制策略能很好地实现风电机组的最大风能跟踪,降低并网点电压波动。在电网电压故障期间,并网电压控制策略还可以有效地提高机组的低电压穿越能力,保障风电机组稳定运行。 关键词:笼型异步发电机;最大功率跟踪;风力发电;全功率变流器中图分类号:TM614 文献标识码:A 收稿日期:2012-06-05。 基金项目:国家自然科学基金资助项目(50977028 )。作者简介:王瑞新(1986-) ,男,硕士研究生,研究方向为笼型异步变速恒频风力发电系统,Email:risan1221@163.com。0 引言 近年来风力发电得到了迅速发展,并且开始 在电力供应中发挥重要作用。变速恒频风力发电机组可以在不同的风速下调节风力机转速,从而捕获到最大风能,相对于定速风力发电机组在效 率和可控性上具有很大优势[ 1] 。目前变速恒频风力发电的主流机型是永磁直驱风力发电机组和双 馈风力发电机组[ 2,3] 。永磁直驱风力发电机组由永磁同步电机通过全功率变流器实现并网发电,由于风力机直接驱动发电机,省去了增速齿轮箱,提高了机组的可靠性,并且运行维护量较小。但随着机组容量的不断增大以及永磁材料涨价,体积大和成本高的问题日益突出。双馈风电机组采用的是绕线式异步电机作为发电机,定子侧直接并网,转子侧变流器只传递转差功率,相对于永磁发电机组有很大的成本优势。但双馈发电机转子侧存在滑环,使得维护成本大大增加,而且发电机直接与电网相连,故障穿越能力也不如通过 全功率变流器并网的永磁直驱风电机组。基于上 述两种机型的优缺点,又提出了一种以笼型异步 电机代替永磁电机的变速恒频发电机型[ 4~6] ,将笼型异步发电机通过全功率变流器连接到电网实现并网发电。该机型在成本和可靠性上优于永磁风电机组,在并网控制能力和维护方面优于双馈机组,但需采用高速比齿轮箱和全功率变流器。 目前采用该机型的西门子SWT-3.6-107风 电机组[7] 已获得实际应用,但对此种机型控制策 略研究的文献却相对较少。文献[8]提出了一种异步机通过全功率变流器并网的控制策略,定子侧变流器采用不需要磁链传感器的间接矢量控制,降低了系统传感器的成本。文献[9]对FRC-IG机组在电网电压跌落时,通过电机电磁转矩的调节使风电机组安全穿越电网故障。文献[10]将模糊控制应用到FRC-IG风电机组的控制系统中,减小参数误差对系统的影响。 变速恒频风电机组可以在风速变化的情况下,通过对风力机桨叶和转速的调节,使风力机捕获最大风能,运行在最大功率点上。变速恒频风电 专栏·新能源技术 NEW ENERGY  TECHNOLOGY

ABB变频器直接转矩控制

直接转矩控制 直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。 直接转矩控制(Direct Torque Control,DTC)变频调速,是继矢量控制技术之后又一新型的高效变频调速技术。20 世纪80 年代中期,德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。1987 年,直接转矩控制理论又被推广到弱磁调速范围。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。直接转矩控制也具有明显的缺点即:转矩和磁链脉动。针对其不足之处,现在的直接转矩控制技术相对于早期的直接转矩控制技术有了很大的改进,主要体现在以下几个方面: (1)无速度传感器直接转矩控制系统的研究 在实际应用中,安装速度传感器会增加系统成本,增加了系统的复杂性,降低系统的稳定性和可靠性,此外,速度传感器不实用于潮湿、粉尘等恶劣的环境下。因此,无速度传感器的研究便成了交流传动系统中的一个重要的研究方向,且取得了一定的成果。对转子速度估计的方法有很多,常用的有卡尔曼滤波器位置估计法、模型参考自适应法、磁链位置估计法、状态观测器位置估计法和检测电机相电感变化法等。有的学者从模型参考自适应理论出发,利用转子磁链方程构造了无速度传感器直接转矩控制系统,只要选择适当的参数自适应律,速度辨识器就可以比较准确地辨识出电机速度。 (2)定子电阻变化的影响

矢量控制与直接转矩控制的比较

矢量控制与直接转矩控制的比较 矢量控制是交流电机最为完美的控制方案;直接转矩控制是一种粗况的控制方案。 1971年,F Blaschke比较系统地提出了矢量控制理论。矢量控制是通过坐标变换和矢量旋转,将交流电机完全等效为直流电机,然后应用成熟的直流电机控制方案,控制交流电机。因此从控制方案上讲,应用矢量控制的交流调速系统和直流调速系统具有同样的控制性能。又由于交流电机没有换向器,而且转子结构的特殊性,使得交流调速系统的最终控制性能要优于直流调速系统。 矢量控制系统的原理框图如下, 矢量控制理论的提出,被认为是交流电机控制理论发展过程中的里程碑。 同其他理论一样,矢量控制理论从提出到在实践中获得成功应用,也经历了坎坷的过程。 1.在当时的情况下,矢量控制的计算量相对较大,各个子单元的计算速度能否满足控制系统整体要求, 2.磁场定向的准确性,受电机参数时变的影响较大。 因此,在应用的初期,实际效果差强人意。人们在理论的先进性,和实际的应用效果之间做了一定的取舍。在此背景下,于1977年,A.B.P iunkett在IEEE 杂志上首先提出了直接转矩的控制思想,1985年,由德国鲁尔大学的Depenbrock教授首次取得了实际应用。 直接转矩控制德语称之为Direkte Selb-Stragelung, 英语称之为Direct Self-Control。由于它控制的是转矩,因此后来也经常称之为Direct Torque Control。 直接转矩控制的思想源于矢量控制,其原理框图如下, P214 图6-62 由于直接转矩控制是在两相静止坐标系内,省去了矢量控制中的旋转变换,因而使计算量减少,从而提高了系统整体的运行速度。这在90年代初,鉴于当时的集成芯片的水平,这样的减少还是很有必要的。 另外,由于直接转矩控制采用定子磁场控制,避免了转子电阻时变的影响,因此在一定程度上减弱了电机参数时变对系统的影响。

相关文档
最新文档