变压器的工作原理 分类及结构
变压器的结构及工作原理

变压器的结构及工作原理
变压器是一种通过电磁感应来改变交流电压的电气设备。
其主要由铁芯、一组初级和次级线圈组成。
铁芯是变压器中的核心部分,通常由铁合金材料制成,具有良好的导磁性能。
初级线圈位于铁芯的一侧,由一定数量的绕组组成,通常称为主线圈。
次级线圈位于铁芯的另一侧,同样由一定数量的绕组组成,通常称为副线圈。
当交流电通过主线圈时,产生的磁场会穿过铁芯并感应到副线圈中。
由于铁芯的导磁性能,磁场能够有效地传导到副线圈中,使得副线圈中也产生电磁感应。
根据法拉第电磁感应定律,当磁场的变化导致导线中的磁通量发生变化时,就会在导线中产生感应电动势。
通过变压器的设计,使得主线圈和副线圈的绕组比例不同,可以实现将输入电压转变为输出电压的目的。
当输入电压施加在主线圈上时,根据变压器的工作原理,输出电压将会与输入电压成正比例关系。
具体的比例关系由绕组的匝数比决定,即输出电压与输入电压之间的比值等于次级线圈的匝数与主线圈的匝数之比。
由于变压器的基本原理是基于电磁感应,因此其工作效率较高。
另外,变压器还具有隔离输入和输出电路、阻碍电流流入负载的能力等特点,使其在电力系统、电子设备和能源传输等领域中得到广泛应用。
第三章 变压器

Zk
Uk Ik
Rk
pk
I
2 k
Xk
Z
2 k
Rk2
绕组的电阻时随温度而变的,故经过计算的到的短路参数应 根据国家标准规定折算到参考温度。
三 、相量图
根据T形等效电 路,可以画出相应 的相量图。
四 、近似等效电路图
RK、XK和ZK分别称为短路电阻、短路电抗和短路阻抗。
单相变压器基本方法总结
分析计算变压器运行的方法:
基本方程式:变压器电磁关系的数学表达式。 等效电路:基本方程式的模拟电路。 相量图:基本方程式的图示表示。
三者是统一的,一般定量计算用等效电路,讨论各 物理量之间的相位关系用相量图。
E2 KE2
E2 KE2
U 2 KU 2
(二)电流的归算 电流归算的原则:归算前后二次侧磁动势保持不变。
N2'I2' N2I2
(三)阻抗的归算
I 2
I2 K
阻抗归算的原则:归算前后电阻铜耗及漏感中无功功率不变。
I 22 R2
I
2 2
R2
I22 X 2
I
2 2
X
2
R2
I
2 2
I22
R2
K 2R2
S7-315/10 三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节 能型.
SJL-1000/10 三相油浸自冷式铝线、双线圈电力变压器,额定容量为 1000千伏安、高压侧额定电压为10千伏。
我国生产的各种变压器主要系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
同心式绕组 1—铁心柱 2—铁轭 3—高压线圈 4—低压线圈
交叠式绕组 1—低压绕组 2—高压绕组
变压器的结构和工作原理

变压器的结构变压器是一种静止的电气设备,它利用电磁感应原理,把一种电压等级的交流电能转换成另一种电压等级的交流电能。
变压器是电力系统中实现电能的经济传输、灵活分配和合理使用的重要设备,在国民经济和其他部门也获得了广泛应用。
一般常用变压器的分类可归纳如下:按相数分:(1)单相变压器:用于单相负荷和三相变压器组。
(2)三相变压器:用于三相系统的升、降电压。
按冷却方式分:(1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。
(2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
按用途分:(1)电力变压器:用于输配电系统的升、降电压。
(2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
(3)试验变压器:能产生高压,对电气设备进行高压试验。
(4)特种变压器:如电炉变压器、整流变压器、调整变压器等。
按绕组形式分:(1)双绕组变压器:用于连接电力系统中的两个电压等级。
(2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
(3)自耦变电器:用于连接不同电压的电力系统。
也可做为普通的升压或降后变压器用。
按铁芯形式分:(1)芯式变压器:用于高压的电力变压器。
(2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。
(3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。
在电力系统中,用到最多的是油浸式变压器,其最基本的结构式铁芯、绕组、绝缘材料、邮箱等组成,为了使变压器安全可靠地运行,还需要冷却装置、保护装置。
一、铁芯铁芯是组成变压器基本的组成部件之一,是变压器导磁的主磁路,又是器身的主骨架,它由铁柱、铁轭和夹紧装置组成。
常用的变压器铁芯一般都是用硅钢片制做的。
硅钢是一种合硅(硅也称矽)的钢,其含硅量在0.8~4.8%。
物理变压器总结报告范文(3篇)

第1篇一、引言变压器作为一种重要的电力设备,广泛应用于电力系统、工业生产和日常生活中。
它能够将高压电能转换为低压电能,或将低压电能转换为高压电能,以满足不同场合的用电需求。
本文将对物理变压器的工作原理、分类、结构、性能和应用等方面进行总结报告。
二、变压器工作原理变压器的基本工作原理是电磁感应。
当交流电流通过变压器的原线圈时,在原线圈周围产生交变磁场,这个交变磁场在变压器的副线圈中感应出电动势。
由于原线圈和副线圈的匝数不同,因此副线圈的电动势与原线圈的电动势成比例。
变压器通过电磁感应实现电能的传输和转换。
三、变压器分类1. 按变压器用途分类(1)电力变压器:用于电力系统中的电压变换和传输。
(2)工业变压器:用于工业生产中的电压变换和电源供应。
(3)特种变压器:用于特殊场合,如电炉变压器、中频变压器等。
2. 按变压器结构分类(1)油浸式变压器:变压器线圈和铁芯浸在绝缘油中,具有良好的绝缘性能和散热效果。
(2)干式变压器:变压器线圈和铁芯不浸在绝缘油中,适用于防火、防爆等特殊场合。
(3)气体绝缘变压器:变压器线圈和铁芯被绝缘气体(如SF6)包围,具有更高的绝缘性能和可靠性。
3. 按变压器相数分类(1)单相变压器:用于单相交流电路。
(2)三相变压器:用于三相交流电路。
四、变压器结构1. 线圈:变压器线圈由绝缘导线绕制而成,分为原线圈和副线圈。
原线圈连接电源,副线圈连接负载。
2. 铁芯:变压器铁芯由硅钢片叠压而成,用于形成交变磁场,提高变压器的效率。
3. 绝缘油:油浸式变压器中的绝缘油具有绝缘、散热、防潮等作用。
4. 套管:套管用于连接变压器线圈和外部电路,同时起到绝缘和保护作用。
五、变压器性能1. 变比:变比是指变压器原线圈和副线圈的匝数之比,表示变压器电压变换的比例。
2. 效率:变压器效率是指输出功率与输入功率的比值,表示变压器能量转换的效率。
3. 空载损耗:变压器在无负载情况下消耗的功率,主要由铁芯损耗和线圈损耗组成。
500kV变压器原理及结构(自耦变压器)

c)在正常情况下,主变压器不允许超过铭牌的额定值运行。正常运行时,变压器的外加一 次电压可比额定电压高,但不宜超过额定电压的110%。
d)500kV #2主变三侧582167、20267接地开关为快速接地开关,30267为普通接地开关, 合上以后主变三侧接地,只有在主变检修时才能将此三把接地开关合上。
变压器日常巡视检查应包括以下内容:
a)500kV#2主变正常送电时,按调度令从500kV侧对主变充电(充电时不投断路器充电保护) ,空载运行正常后,在220kV侧并列。停电时先停35kV侧、再停220kV侧、最后停 500kV侧。
b)500kV#2主变220kV侧电压互感器、避雷器配备有独立隔离开关和接地开关,编号分别 为2029、2028、20297、20287,主变正常运行时电压互感器、避雷器的独立隔离开 关应合上。隔离开关的作用是当电压互感器或避雷器需要检修时,起到隔离作用。
变压器日常巡视检查应包括以下内容:
j)为了防止油劣化过速以及绝缘老化,强油循环变压器上层油温最高不得超过85℃,绕组 温度最高不得超过105℃;正常监视油面温度不超过75℃,绕组温度不超过95℃。
k)长期停用及检修后的变压器,投入运行前,应对变压器及其保护,信号装置进行全面的 检查,应核对保护连接片投切是否正确。
自耦变压器运行原理 结构及运行注意事项
1
第一节 工作原理、分类及结构
一、变压器的工作原理 • 变压器是利用电磁感应原理从一个电路向另一个
电路传递能量或传输信号的一种电器
要部件——铁心和套在铁心上的两个绕组。两绕 组只有磁耦合而没有电的联系
变压器结构简介与工作原理

变压器结构简介与工作原理标题:变压器结构简介与工作原理引言概述:变压器是电力系统中常见的电气设备,用于改变电压的大小,实现电能的传输和分配。
了解变压器的结构和工作原理对于电力系统的设计和运行至关重要。
本文将介绍变压器的结构和工作原理,帮助读者更好地理解这一重要设备。
一、变压器的结构1.1 主要由铁芯和线圈组成变压器的主要结构包括铁芯和线圈。
铁芯由硅钢片叠压而成,用于传导磁场。
线圈分为初级线圈和次级线圈,通过电流在线圈中产生磁场。
1.2 绝缘层变压器的线圈之间和线圈与铁芯之间都需要绝缘层来防止电路短路和绝缘击穿。
绝缘层通常采用绝缘纸、绝缘漆等材料。
1.3 外壳和冷却系统变压器通常有外壳来保护内部结构,外壳通常由金属材料制成。
变压器还配备有冷却系统,如风扇或油冷却系统,用于散热。
二、变压器的工作原理2.1 电磁感应原理当变压器的初级线圈通电时,产生的磁场会感应次级线圈中的电动势,从而产生电流。
这是基于电磁感应原理的工作原理。
2.2 变压器的转比变压器的转比是初级线圈匝数与次级线圈匝数的比值。
根据转比的不同,变压器可以实现升压、降压或绝缘功能。
2.3 能量传输变压器通过磁场的感应实现能量的传输,将电能从一端传输到另一端。
这样可以实现电力系统中电压的调节和分配。
三、变压器的分类3.1 按用途分类变压器可以按用途分为配电变压器、整流变压器、隔离变压器等,用途不同结构也会有所不同。
3.2 按冷却方式分类变压器可以按冷却方式分为油浸式变压器、干式变压器等,不同的冷却方式适用于不同的环境和功率等级。
3.3 按结构分类变压器可以按结构分为壳式变压器、环氧树脂浇铸变压器等,不同结构适用于不同的安装场所和环境要求。
四、变压器的应用领域4.1 电力系统变压器在电力系统中起到核心作用,用于升压、降压、分配和传输电能,保障电力系统的正常运行。
4.2 工业领域变压器在工业领域中用于控制电压、调节电流,为各种设备提供合适的电源。
变压器本体结构培训课件

七、变压器常见试验项目及标准
4、接线组别检查;
七、变压器常见试验项目及标准
5、绕组连同套管的绝缘电阻试验;
试验标准:大于出厂值70%; 试验目的:对检查变压器整体的绝缘状况具有较高的灵敏度,能有效地检 查出变压器绝缘整体受潮、部件表面受潮或脏污、以及贯穿性的集中性缺 陷。例如,各种贯穿性短路、瓷件破裂、引线接壳等现象。
七、变压器常见试验项目及标准
3、绕组连同套管的介质损耗试验;
试验标准:不大于出厂值的130% 试验目的:油纸绝缘是有损耗的,在交流电压作用下有极化损耗和电导损 耗,通常用tgδ来描述介质损耗的大小,且tgδ与绝缘材料的形状、尺寸无关, 只决定于绝缘材料的绝缘性能,所以作为判断绝缘状态是否良好的重要手 段之一。绝缘性能良好的变压器的tgδ值一般较小,若变压器存在着绝缘缺 陷,则可将变压器绝缘分为绝缘完好和有绝缘缺陷两部分,当有绝缘缺陷 部分的体积(电容量)占变压器总体积(电容量)的比例较大时,测量的 tgδ也较大,说明试验反映绝缘缺陷灵敏,反之不灵敏。所以tgδ试验能较好 地反映出分布性绝缘缺陷或缺陷部分体积较大的集中性绝缘缺陷,例如变 压器整体受潮或老化、变压器油质劣化以及较大面积的绝缘受潮或老化、 绕组上附着油泥及严重的局部缺陷等。由于套管的体积远小于变压器的体 积,在进行变压器tgδ试验时,即使套管存在明显的绝缘缺陷,也无法反映 出来,所以套管需要单独进行tgδ试验。tgδ试验是反映变压器的整体绝缘性 能,一般对判断局部绝缘缺陷是不灵敏的.
110kV变压器本体
目录
概述
原动机
发电机 升压变压器
降压变压器 配电变压器
用户
一、变压器原理
• 电磁感应:
变压器原理
二、变压器的分类
变压器的工作原理

2020/6/9
二、互感器
• 互感器是电流互感器和电压互感器的合称。 • 互感器的主要功能是: (1)可使仪表和继电器标准化。如电流互感器
副绕组的额定电流都是5A;电压互感器副绕 组的电压通常都规定为100V。 (2)可使测量仪表、继电器等二次设备与一次 主电路隔离。降低仪表及继电器的绝缘水平, 简化仪表构造,同时保证工作人员的安全。
相同 储油柜内油面高度随变压器的热胀冷缩而变动 储油柜限制了油 与空气接触的面积 从而减少了水分的侵入与油的氧化。 • 气体继电器 气体继电器是变压器的主要安全保护装置 当变压器内部 发生故障时 变压器油气话产生的气体使继电器动作 发出信号 示意工 作人员及时处理或令其开关跳闸 • 绝缘套管 变压器绕组的引线是通过箱盖上的陶瓷绝缘套管引出的 作 用是使高低压绕组引线与变压器箱体绝缘 10到35KV采用空心气式 或充油式套箱 110KV 及以上的采用电容式套箱。
绕 组 名 称 首 端
高 压 绕 组 ABC 低 压 绕 组 a bc
末 端
中 点
XYZ O
xyz o
2020/6/9
1.星形联结用符号“Y(或 y)”表示 • 三个首端 A、B、C(或 a、b、c)向外引出 • 末端 X、Y、Z(或 x、y、z)连接在一起成为中性点 2.三角形联结用符号“D(或d)”表示 • 各相间联结次序为 A - X - C - Z - B - Y(或 a- x
2020/6/9
变压器并联运行的条件
• 2、负载时各变压器所分担的负载量,应该按各自额定容 量的大小成比例分配,防止其中某台过载或欠载。 3、负载时各变压器所分担的电流,应该与总的负载电流 同相位。这样当总的负载电流一定时,各变压器所分担的 电流最小;如果各变压器所分但的电流一定时,则总的负 载电流最大。 要达到上述理想的并联状态,并联运行的变压器必须具备 以下三个条件: 1、各变压器的原边额定电压要相等,各副边额定电压也 要相等,即变比要相等; 2、各变压器副边线电势对原边线电势的相位差应相等, 即连接组要相同; 3、各变压器的阻抗电压标么值应相等,短路阻抗角应相 等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器
• 第一节 变压器的工作原理 分类及结构
第一节 变压器的工作原理 分类 及结构
一.变压器的工作原理 • 变压器---利用电磁感应原理,从一个电路向 另一个电路传递电能或传输信号的一种电器 • 是电力系统中生产,输送,分配和使用电能的 重要装置。 • 也是电力拖动系统和自动控制系统中 ,电能传 递或作为信号传输的重要元件
2.变压器变比 • 当一次绕组上加上额定电压 U1N 时,一般规定此时二 次绕组开路电压将是额定电压 U2N ,因此可以认为, 变压器的电压比就是匝数比 • 在三相变压器中,电压比规定为高压绕组的线电压与 低压绕组的线电压之比
第二节 单相变压器的空载运行
(二) 空载电流 1)空载电流主要作用是在 铁心中建立磁场,产生 主磁通 2)空载时的变压器实际上 就是一个非线性电感器 • 其磁通量与电流的关系, 服从与铁磁材料的磁化 曲线 Ø=f(i))
其中 Z1 = r1 + jx1
2.空载运行时等值电路
3.空载运行时相量图
第二节 单相变压器的空载运行
4.应注意的问题 • 注意 r1、x1 是常量 • 而励磁阻抗的大小和变压器工作点有关 • 因铁心中存在饱和现象,rm、xm 随着饱和程度 的增加而减小 • 但当电源电压的变化范围不大,对应铁心中磁 通的变化为也不是很大时,Zm 的值基本上可视 为不变。
磁通与电势的关系(图3-3)
第二节 单相变压器的空载运行
2)感应电动势 • 感应电动势 e1、e2 在相位上滞后于 Øm 的电角度是 90° • 有效值是: 3)相量表达式 • 根据上述讨论,有E1、E2的相量表达式为
磁通Fm与电势E1、E2的相量关系(图3-4)
第二节 单相变压器的空载运行
• 变压器空载运行时,电动势平衡方程式如下:
• 由主磁通产生的电势 E1 与产生主磁通的励磁电流 Im 之间存 在关系,可以直接用参数形式来表示。
• 由于 Im 中有有功分量与无功分量,故 -E1 可表示为 Im 流 过一个阻抗时所引起的阻抗压降,即
励磁阻抗 Zm, 励磁电抗 xm, 励磁电阻 rm • 变压器空载运行时原边电动势平衡方程式如下
第四节 变压器的等效电路及向量图
归算后变压器负载运行时的基本方程式将变为如下形 式 • Ì1 + Ì2'= Ìm • Ù1= -È1+ Ì1Z1
• Ù2'= È2'- Ì2′Z2′ • -È1 = ÌmZm
• È1 = È2'
二.变压器等效电路
单相变压器负载运行时各物理量的关系如图所示
第四节 变压器的等效电路及向量图
第二节 单相变压器的空载运行
• 什么是空载运行? • 变压器一次绕组加上交流电 压,二次绕组开路的运行情 况
一.空载时的物理情况
1.空载磁场 • 空载电流 i0 产生一个交变磁 通势 i0N1 ,并建立交变磁场 • 主磁通 Øm通过铁心闭合的磁 通量(占绝大部分) • 漏磁通Ø1ó通过油和空气闭合 的磁通量(占少量)
• 由于漏磁通所通过的途径是非磁性物质,其磁导率是 常数,所以漏磁通的大小与产生此漏磁通的绕组中的 电流成正比 • 所以漏电动势 E1s 的有效值与电流 Im 关系为
• 式中x1为一次绕组的漏电抗
二.空载运行时电势平衡方程式、相量图及等效电路
1.空载运行时电势平衡方程 单相变压器空载运行时的各物理量如图所示
磁化曲线 Ø=f(i)(图3-5)
3)磁滞作用与涡流现象使 Ø(t)=f[i(t)]的关系复杂化
磁滞作用导致励磁电流有功无功分量出现示意图(图3-6)
第二节 单相变压器的空载运行
• 空载电流可认为是励磁电流,用 Im 表示, • 空载运行时从电源输入少量电功率 p0 ,主要用来补 偿铁心中的铁损耗 pFe,
Hale Waihona Puke 四节 变压器的等效电路及向量图1.问题? 是否可找到一个便于工程计算的单纯电路,以 代替无电路联系、但有磁路耦合作用的实际变 压器。 但这个电路必须能正确反映变压器内部电磁过 程 2.答案:有! • 这种电路称为变压器的等效电路 • 前提条件是必须进行绕组归算
第四节 变压器的等效电路及向量图
一、绕组归算 • 绕组归算就是把二次绕组的匝数变换成一次绕组的 匝数 • 或者将一次绕组的匝数变换成二次绕组的匝数来进 行运算, • 但不改变其电磁效应的一种分析方法 (一) 归算原则: 1、归算前后的磁通势平衡关系不变 2、各种能量关系保持不变 • 归算值用原来的符号加 ' 表示 • 下面以二次侧归算到一次侧为例
第一节 变压器的工作原理 分类及结构
2.变压器按相数可 分为单相和三 相变压器
三相变压器外观示 意图
第一节 变压器的工作原理 分类及结构 三.变压器的结构简介
1.铁心 • 铁心是变压器中主要的磁路部分。通常由含硅量较高, 厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或冷 轧硅钢片叠装而成 • 铁心分为铁心柱和铁轭俩部分,铁心柱套有绕组;铁 轭闭合磁路之用 • 铁心结构的基本形式有心式和壳式两种
控制变压器
第一节 变压器的工作原理 分类及结构
• 1.变压器 ---- 静止 的电磁装置 • 变压器可将一种电压 的交流电能变换为同 频率的另一种电压的 交流电能 • 电压器的主要部件是 一个铁心和套在铁心 上的两个绕组。 •变压器原理图(图3-1)
第一节 变压器的工作原理 分类及结构
• 与电源相连的线圈,接收交流电能,称为一次 绕组 用U ,I ,E ,N 表示, • 与负载相连的线圈,送出交流电能,称为二次 绕组 用U ,I ,E ,N 表示。 • 同时交链一次,二次绕组的磁通量的相量为 Fm ,该磁通量称为主磁通
(二) 电动势和电压的归算 • 因为 N2‘= N1 所以: E2'= k E2 (三) 电流的归算 • 保持磁通势在归算前后不变,N2'I2'= N2I2 ,则 • I2'= (N2/N2')I2 = (N2/N1)I2 = I2/k
(四) 阻抗的归算 • 保持归算前后铜耗及漏感中无功功率不变的原则 由:I2'2 r2' = I22 r2 得 r2'= I22/I2'2 r2 = k2r2 • 由:I2'2 x2' = I22 x2 得 x2'= I22/I2'2 x2 = k2x2
列出一次、二次绕组的电动势平衡方程式 u1 = i0r1+(-e1s)+(-e1) = i0r1+ N1dF1s/dt + N1dFm/dt u20 = e2 = - N2 dFm/dt
(一) 感应电动势与主磁通
1.变压器感应电势 1)主磁通 • 若 u1 随时间按正弦规律变化,则 Øm 也按正弦规律变 化,设 则对 e1 有: • e1(t) = -N1 dFm/dt = -wN1Fm cos wt = wN1Fm sin(wt-90°) = E1m sin(wt-90°) • 而对 e2 有: • e2(t) = -N2 dFm/dt = -wN2Fm cos wt = wN2Fm sin(wt-90°) = E2m sin(wt-90°) 所以 e1 和 e2 也按正弦规律变化
考虑到一般变压器中,Zm >> Z1,若把励磁支路前移,可得 Γ 字 型近似等效电路如下: 近似等效电路可用于分析计算变压器负载运行的某些问题 如二次侧电压变化,并联运行的负载分配等
2.一字型等效电路 由于一般变压器 Im>>IN,进一步把励磁 Im 忽略不计, 得到变压器一字型近似等效电路如下: 其中: rs 短路电阻 , xs 短路电抗, Zs 短路阻抗, 统称为变压器的短路参数
由于 N2′= N1,这 是电压比等于 1 的 变压器,因此,E2′= E1,图中 a-b 和 cd 是等电位点 • 用导线把它们联接 起来,考虑到 • Ì1 + Ì2′= Ìm È1 = -ÌmZm 则得等值电路如图:
三.相量图
根据变压器得“T”形等效电路,可画出相应得相量图
四.近似等值电路
1. Γ 字型等效电路
• Im 中含有有功 IFe(损耗电流)和用以建立磁场的无 功 Iu (磁化电流) • Im2 = Im2 + IFe2
• IFe = pFe/E1 @ pFe/U1 • 通常,Iu >> IFe ,U1 与 Im 之间相位角 ø 接近90°) 0
第二节 单相变压器的空载运行
(三) 漏磁通与漏电抗 • 设漏磁通所经磁场磁阻 Rm1,则
心式变压器结构示意图
第一节 变压器的工作原理 分类及结构
2.绕组 • 绕组是变压器的电路部分, 它是用纸包的绝缘扁线或 圆线绕成。 右图为交叠式 绕组 3.其他结构部件 • 以典型的油侵式电力变压 器为例,其他结构部件有: • 油箱、储油柜、散热器、 高压绝缘管套以及继电保 护装置等外形如下图
第一节 变压器的工作原理 分类及结构
1 1 1 1 2 2 2 2
• 请注意 图3-1 各物理量的参考方向确定。
第一节 变压器的工作原理 分类及结构
• 2.理想变压器 • 不计一次、二次绕组的电阻和铁耗,其间耦合系数 K=1 的变 压器称之为理想变压器 • 描述理想变压器的电动势平衡方程式为
第一节 变压器的工作原理 分类及结构
• 若一次、二次绕组的电压、电动势的瞬时值均按正弦 规律变化,则有 • 不计铁心损失,根据能量守恒原理可得 • 由此得出一次、二次绕组电压和电流有效值的关系 • 令 K=N1/N2,称为匝比(亦称电压比),则
第三节 单相变压器的基本方程式
一.负载运行时变压器内部物理情况
第三节 单相变压器的基本方程式
• 变压器带有负载时,变压器内的物理情况与空载时有所不同 1. 变压器负载运行时,二次绕组中的电流 I2 产生磁通势 I2N2 2. 由于电源电压恒定 U1 = 常数,则 E1 @ 常数,Øm @ 常数 所以,产生主磁通的磁势也不会改变,因此,达到新的平衡 的条件是: • 绕组的电流增量 DI1 所产生的磁通势,与二次绕组电流 I2 所产生的磁通势相抵消,以维持主磁通基本不变。即 DÌ 1N1 + Ì2 N2 = 0 • 这表明,二次绕组的电流增加时,一次绕组的电流就相应地 增加,这样,通过电磁感应作用,变压器把电能从一次侧传递 到二次侧