地下工程围岩稳定性分析概要
岩石力学 第六章 地下空间开挖围岩稳定性分析

行支护达到人工稳定; 支护和破裂岩体本应是相互影响、共同作用的,但 现在还做不到完全用共同作用理论为指导来解决支 护设计问题; 古典地压学说:1907年,普氏学说——俄罗斯学者; 1942年,太沙基学说——美国学者; 在60年代,共同作用理论提出以后的30多年,弹塑 性力学的研究方法在岩石力学研究中一直占据主导 的地位,古典地压学说则被冷落一旁;
r , r p0
解析表达式
R02 1 2 p0 r r
净水压力下围岩应力分布
2019/1/20
《岩石力学》
7
讨论
开巷(孔)后,应力重新分布,也即次生应力场;
, 均为主应力,径向与切向平面为主平面; r
应力大小与弹性常数 周边
2019/1/20
c cot
《岩石力学》
24
塑性区半径
( p0 c cot )(1 sin ) R p R0 P c cot 1
1sin 2 sin
讨论
R p与 R0 成正比,与 p0 成正变,与 c 、
塑性区应力与原岩应力
900 , 2700 处, p0 (3 1) ; 0 0 p0 (3 ) ; 在巷道的侧边,即 0 , 180 处,
在巷道的顶、底板,即
2019/1/20
《岩石力学》
14
应力集中系数与 , 的关系
2019/1/20
《岩石力学》
15
巷道周边位移
o
开挖后(周边)
u (1 ) p 0 R0 E
《岩石力学》
11
2019/1/20
地下洞室围岩稳定性问题

岩爆 有关岩爆的基本概念 在地下开挖或开采过程中突然地以爆炸的形式表现出来爆。围岩的破坏有时会这就是所谓的岩当岩爆发生时,岩石或煤等突然从围岩中被抛出或弹出,抛出的岩体大小不等,大者可达几十吨,小者长仅几厘米。大型岩爆通常伴有剧烈的气浪和巨响.甚至还伴有周围岩体的振动。岩爆对于地下采掘或地下工程建筑常能造成很大的危害.大者能破坏支护、堵塞坑道,造成重大的伤亡事故。小者也能威胁工人的安全。因此,研究这类破坏的发生、发展与防治,对于地下开挖工作的安全与经济有着重要意义。
围岩应力重分布的主要特征是:
1
径向应力随着向自由表面的接近而逐渐减小,至洞壁处变为零。
2
切向应力在一些部位愈接近自由表面切向应力愈大,并于洞壁达最高值,即产生所谓压应力集中,在另一些部分,愈接近自由表面切向应力愈低,有时甚至于洞壁附近出现够应力,即产生所谓拉应力集中。这样,地下洞宝的开挖就将于围岩内引起强烈的主应力分异现象,使围岩内的应力差愈接近自由表面愈增大,至洞室周边达最大值。
(c) final bench excavation
(b) 9th bench excavation
(a) arch portion excavation
01
岩爆的类型和特点
05
断层错动引起的岩爆
03
围岩表部岩石突然破裂引起的岩爆
02
按发生的部位及所释放的能量类型,岩爆有不同的类型
04
矿柱或大范围围岩突然破坏引起的岩爆四川纳竹天池煤矿就曾多次发生这类岩爆,最大的一次将20余吨煤抛出20多m远
岩爆的产生条件与发生机制 本质上,岩爆乃是洞室围岩的一种伴有突然释放大量潜能的剧烈的脆性破坏。从产生条件方面来看,高储能体的存在及其应力接近于岩体强度是产生岩爆的内在条件,而某些因素的触发效应则是岩爆产生的外因。
地下硐室围岩稳定分析

地下硐室围岩稳定分析5.地下洞室围岩稳定性分析―――岩体⼒学作业之五⼀、名词释义1.围岩:指由于⼈⼯开挖使岩体的应⼒状态发⽣了变化,⽽这部分被改变了应⼒状态的岩体称为围岩。
地下⼯程开挖过程中,在发⽣应⼒重分布的那⼀部分⼯程岩体称为围岩。
2.围岩压⼒:地下洞室围岩在重分布应⼒作⽤下产⽣过量的塑性变形或松动破坏,进⽽引起施加于⽀护衬砌上的压⼒。
作⽤在⽀护物上的围岩的变形挤压⼒或塌坍岩体的重⼒称为围岩压⼒。
3.静⽔应⼒状态:在岩⽯⼒学中,地下深部岩体在⾃重作⽤下,岩体中的⽔平应⼒和垂直应⼒相等的应⼒状态。
4.形变围岩压⼒:指围岩在⼆次应⼒作⽤下局部进⼊塑性,缓慢的塑性变形作⽤在⽀护上形成的压⼒,或者是有明显流变性能的围岩的粘弹性或者粘弹—粘塑性变形形成的⽀护压⼒。
⼀般发⽣在塑性或者流变性较显著的地层中。
5.松动围岩压⼒:指因围岩应⼒重分布引起的或施⼯开挖引起的松动岩体作⽤在隧道或坑道井巷等地下⼯程⽀护结构上的作⽤压⼒。
⼀般是由于破碎的、松散的、分离成块的或被破坏的岩体坍滑运动造成的。
6.冲击围岩压⼒:(1)是地下洞室开挖过程中,在超过围岩弹性限度的压⼒作⽤下,围岩产⽣内破坏,发⽣突然脆性破坏并涌向开挖(采掘)空间的⼀种动⼒现象。
(2)强度较⾼且完整的弹脆性岩体过渡受⼒后突然发⽣岩⽯弹射变形所引起的围岩压⼒。
7.膨胀围岩压⼒:在遇到⽔分的条件下围岩常常发⽣不失去整体性的膨胀变形和位移,表现在顶板下沉、地板隆起和两帮挤出,并在⽀护结构上形成形变压⼒的现象。
8.应⼒集中:受⼒物体或构件在其形状或尺⼨突然改变之处引起应⼒在局部范围内显著增⼤的现象。
9.应⼒集中系数:指岩体中⼆次应⼒与原始应⼒的⽐值,也可⽤井巷开挖后围岩中应⼒与开挖前应⼒的⽐值来表⽰。
10.侧压系数:岩体中⼀点的⽔平应⼒与垂直应⼒的⽐值。
11.围岩(弹性)抗⼒系数:当隧洞受到来⾃隧洞内部的压⼒P时,在内压⼒作⽤下,洞壁围岩必然向外产⽣⼀定的位移△α,则定义围岩的弹性抗⼒系数为K=P/△α。
8-1 地下洞室围岩稳定性分析

洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
地下洞室围岩稳定性分析

地下洞室围岩稳定性分析在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。
工程地质讲稿-第9章:地下洞室围岩稳定性

地下水作用
地下水压力、渗透性等对围岩 稳定性产生影响,特别是在软
弱岩体中更为显著。
围岩稳定性评价方法
工程地质分析法
通过对地质勘察资料进行综合 分析,评估围岩的稳定性和可
能发生的不良地质现象。
数值分析法
利用数值计算方法模拟围岩应 力分布、变形和破坏过程,为 工程设计和施工提供依据。
谢谢观看
重要性
围岩稳定性是地下洞室工程设计 和施工中的关键问题,直接关系 到工程的安全性、经济性和可行 性。
围岩稳定性影响因素
01
02
03
04
地质条件
包括岩体的物理性质、岩层结 构、节理裂隙发育程度和地下
水状况等。
洞室设计
洞室的跨度、形状、埋深、支 护方式等设计因素岩的扰动程度和 支护结构的及时性有直接影响
控制地下水压力
设置排水系统
在洞室周边设置排水系统,以降 低地下水压力和防止涌水。
采取止水措施
在洞室周边采取止水措施,如注 浆、粘土填塞等,以防止地下水
渗入。
合理选择施工方法
根据地下水压力情况,选择合适 的施工方法,如逆作法、分部开 挖法等,以减少对围岩稳定性的
影响。
监测与预警系统
设置监测点
在洞室周边设置监测点,对围岩位移、变形、应 力等情况进行实时监测。
工程地质讲稿-第9章地下洞室围岩 稳定性
目录
• 地下洞室围岩稳定性概述 • 地下洞室围岩应力分析 • 地下洞室围岩破坏模式与机理 • 提高地下洞室围岩稳定性措施 • 地下洞室围岩稳定性工程实例
01
地下洞室围岩稳定性概 述
定义与重要性
定义
地下洞室围岩稳定性是指围岩在 一定时间内保持其自身结构完整 性和稳定性的能力。
地下洞室围岩稳定性分析方法综述

问题,然而,由于岩石力学的研究对象是复杂的岩土体材料,一 般均具有非线性、非连续性、非均质及多相性等特点,尤其是天 然岩体,由于其赋存的特殊性,它被各种地质构造(如断层、节 理、层理等)切割成既连续又不连续的形态,从而一般均形成一 个从松散体到弱面体再到连续体的材料序列,而且,天然岩体所 涉及的力学问题是一个多场(应力场、温度场、渗流场)、多相 (气相、固相、液相)等影响下的复杂耦合问题,再加上工程开 挖和外部环境的影响,致使许多情况下,我们不能获得较为准确 的力学参数和本构模型。“力学参数和本构模型不准”已成为岩 石力学理论分析和数值模拟的“瓶颈”问题。
值或变形速率判据用于软弱围岩往往时效不佳,根据牛顿运动 定律,物体从运动转变为静止状态的必要条件是,加速度由负 值渐趋为零。因此,围岩稳定性判据应以加速度为主,辅以变 形值或变形速率,据此提出了变形速率比值判据。
然而采用不同的失稳判据得到的稳定安全度一般是不相同 的,如何建立一个具有理论基础的、可得到唯一解的失稳判据 是今后需要解决的问题。
2存在的问题21参数及本构岩石力学参数和本构模型是岩石力学研究中最核心的两个问题然而由于岩石力学的研究对象是复杂的岩土体材料一般均具有非线性非连续性非均质及多相性等特点尤其是天然岩体由于其赋存的特殊性它被各种地质构造如断层节理层理等切割成既连续又不连续的形态从而一般均形成一个从松散体到弱面体再到连续体的材料序列而且天然岩体所涉及的力学问题是一个多场应力场温度场渗流场多相气相固相液相等影响下的复杂耦合问题再加上工程开挖和外部环境的影响致使许多情况下我们不能获得较为准确的力
传统的岩石力学理论是以岩石的加载试验(包括室内及现 场原位试验)为基础,引入成熟的弹塑性理论等建立起来的而 地下洞室岩体开挖后的实际情况是以卸荷为主,且往往有较大 的拉应力区出现。显然传统的岩石力学理论统一采用加载试验 获取的岩体力学参数,应用适合于加载情况的力学分析软件进 行分析与计算,得到的变形及稳定分析结论与现场的实际情况 必然有巨大区别,甚至连趋势都无法反映[4]。
工程地质 第七章 地下洞室围岩稳定性的工程地质分析

处围岩的应力降低,加之新开裂处岩体在 水和空气影响下加速风化,岩体向洞内产 生塑性松胀。这种塑性松胀的结果,使原 来由洞边附近岩石承受的应力转移一部分 给邻近的岩体。因而邻近的岩体也就产生 塑性变形。这样,当应力足够大时,塑性 变形的范围是向围岩深部逐渐扩展的。由 于这种塑性变形的结果,在洞室周围形成 了一个圈,这个圈一般称为塑性松动圈
机理:破碎、松散岩体在重力、渗压、动荷载作用下产生塌落 产生条件:
1) 断层破碎带、裂隙密集带、槽状、囊状风化带、溶洞堆积物; 2)多位于洞顶→边墙.
溶洞堆积物
⑸松软岩体
局部塌方
表现形式:内鼓、缩径、局部挤出、剪切、滞后性。 机理:塑性变形、膨胀、流变、蠕变。
产生条件:
1)岩性软弱:形成年代新、胶结差;
—— 松软或破碎岩体
r
工程类比法
7.4 围岩工程地质分类
BQ的分类方法在第四章已经介绍过了。 在这具体提出修正系数的取值
[BQ]=BQ-100(K1+K2+K3)
指:未对洞壁采取任何支护措施,围岩由变形发展至 破坏的时间
式中:t切向拉应力,切向压应力,Rt围岩的抗拉强度,Rb饱和抗压强度
•围岩的抗剪强度是否适应围岩的剪应力。 例:如图
K
F T
洞顶块体Q1和洞壁块体Q2的稳定性系数分别为
K 2(c1l1 c2l2)(ctg ctg)/ L23
K (Q2 costg4 c4l4 ) / Q2 sin
情况的工程 隧 洞 分 类●
无压隧洞(承受围岩压力、外水压力)
⑵ 弹性抗力 —— 一般指有压隧洞冲水后,围岩在内水压力作用 下产生压缩变形的同时对衬砌所形成的反力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种 断面 形状 的洞 体应 力状 态比 较
二、开挖后围岩中出现塑性圈时的重分布应力
洞室开挖后围岩的稳定性,取决于二次应力与围 岩强度之间的关系。
如果洞周边应力小于岩体的强度,围岩稳定。 否则,周边岩石将产生破坏或较大的塑性变形。 围岩一旦松动,如不加支护,则会向深部发展, 形成具有一定范围的应力松弛区,称为塑性松动圈。 在松动圈形成过程中,原来周边集中的高应力逐渐向 深处转移,形成新的应力增高区,该区岩体被挤压紧 密,称为承载圈。此圈之外为初始应力区。
围岩失稳机制及破坏形式
围岩变形破坏的常见形式
2.块体滑移
块体滑移是块状结构围岩常见的破坏形式。 这类破坏常以结构面交切组合成不同形状的块体 滑移、塌落等形式出现。分离块体的稳定性取决 于块体的形状有无临空条件、结构面的光滑程度 及是否夹泥等。
坚硬岩体中的块体滑移
块 状 结 构 岩 体 的 块 体 滑 移
洞 室 围 岩 应 力 重 分 布 对 比 图
第三节 围岩稳定的工程地质分析
一、围岩稳定的概念 围岩稳定是指在一定时间内,在一定的地质力
和工程力作用下岩体不产生破坏和失稳。围岩在压 应力、拉应力及剪应力作用下能否破坏的判断:
1.围岩的抗压强度和抗拉强度是否适 应围岩应力。(公式略)
2.围岩的抗剪强度是否适应围岩的剪 应力。 (公式略)
三 类 典 型 的 分 离 体
3.层状弯折和拱曲
岩层的弯曲折断,是层状围岩变形失稳的 主要形式。
平缓岩层,当岩层层次很薄或软硬相间时, 顶板容易下沉弯曲折断。
在倾斜层状围岩中,当层间结合不良时, 顺倾向一侧拱脚以上部分岩层易弯曲折断,逆 倾向一侧边墙或顶拱易滑落掉块。
在陡倾或直立岩层中,因洞周的切向应力 与边墙岩层近于平行,所以边墙容易凸邦弯曲。
Ⅳ类为不稳定围岩,规模较大的各种变形破坏都 可能发生。 V 类为极不稳定围岩,不能自稳,变形破坏严重。
地下 洞室 围岩 工程 地质 分类
岩石强度评分表(A)
围岩完整程度评分表(B)
结构面状态评分表(c)
地下水评分表(D)
主要结构面产状评分表(E)
地下工程围岩自稳能力
第四节围岩压力与弹性抗力
(2)围岩压力系数法。(简介)
(3)块体极限平衡法。(简介)
用 普 氏 平 衡 拱 理 论 计 算 山 岩 压 力
第五节 提高围岩稳定性的措施
一、支护与衬砌
1.支撑 在洞室开挖过程中,用以稳定围岩用
的临时性措施,按照选用材料的不同,有 木支撑、钢支撑及混凝土支撑等。在不太 稳定的岩体中开挖时,需及时支撑以防止 围岩早期松动。
层状结构围岩变形破坏特征
4.碎裂岩体的松动解脱
碎裂结构岩体在张力和振动力作用下容易松 动、解脱,在洞顶则产生崩落,在边墙上则表现 为滑塌或碎块的坍塌。
5.松软岩体
一般强烈风化、强烈构造破碎或新近堆积的 土体,在重力、围岩应力和地下水作用下常产生 冒落及塑性变形。常见的塑性变形和破坏的形式 有边墙挤入、底鼓及洞径收缩等。
第七章 地下洞室围岩稳定性的工程地质分析
鲁布革水电站隧道施工
有压及无压隧洞
第一节 围岩应力的重分布
地下洞室开挖前,岩体内的应力状态称为初 始应力状态。
开挖后,由于洞室周围岩体失去了原有的支 撑,破坏了原来的受力平衡状态,围岩将向洞内 产生松胀位移,从而引起洞周围一定范围内岩体 的应力重新调整,形成新的应力状态。该应力称 重分布应力、二次应力或围岩应力。
一、山岩压力
1.山岩压力的类型
根据山岩压力形成机理,可分为变形山压、 松动山压和冲击山压几种类型。
(1)变形山压是由于围岩的弹性恢复或塑性变 形所产生的围岩压力。一般塑性变形主要有塑性 挤入、膨胀内鼓及弯折内鼓等,变形山压具有随 时间延长而增大的特点。
(2)松动山压是由于围岩拉裂塌落、块体滑移、 碎裂松动等所引起的。松动山压仅限于围岩产生 松动脱落的局部范围内。它是以重力的形式作用 在衬砌上,其大小取决于脱落岩石的重量。
围岩压力,是指围岩的强度适应不了围岩应力
而产生塑性变形或破坏时,岩压力的大小在工程上具有重要
的意义。如果取值过大,则衬砌需要做得很厚,造
成浪费。反之,取值太小,衬砌做得很薄,承受不
了实际的山岩压力,造成衬砌的破坏和围岩失稳。
把围岩对衬砌的反力称为弹性抗力或围岩抗力。 围岩抗力愈大,愈有利于衬砌的稳定,
碎裂岩体松动解脱
碎裂结构围岩塌方示意图
散体结构岩体发生塑性挤出的几种情形
三、(修正)围岩质量等级与自稳能力的关系
I 类为稳定岩体,围岩可长期稳定。
Ⅱ类为基本稳定围岩,不会产生塑性变形,局部 可能产生掉块。
Ⅲ类围岩稳定性差,围岩强度不足,局部会产生 塑性变形,不支护可能产生塌方或变形破坏, 完整的较软岩稳定性较好,可定为“暂时稳 定”。
(3)冲击山压是由于岩体中积聚的弹性应变能 突然释放所引起的,具有产生岩爆的条件时才能 产生冲击山压。
2.松动山岩压力的确定方法
(1)普氏压力拱理论。M.M.普罗托季亚科诺 夫根据对一些矿山坑道的观察和松散介质的模型试 验于1907年提出了平衡拱理论。普氏认为,由于断 层、节理的切割,使洞室围岩成为类似松散介质的 散粒体。由于洞室开挖应力重分布,使洞顶破碎岩 体逐渐坍塌,最后塌落成一个拱形才稳定下来。所 以普氏认为,洞顶的山岩压力就是拱形塌落体的重 量。这个拱称为塌落拱、平衡拱或压力拱。
直接影响围岩稳定的是二次应力状态,它与 岩体的初始应力状态、洞室断面形状及岩体特性 等因素有关。
一、开挖后围岩保持弹性时的重分布应力
圆形 洞室 围岩 重分 布应 力计 算简 图
洞室周边围岩应力弹性重分布计算公式
用弹 性理 论计 算圆 形洞 室周 边应 力重 分布
地下洞室围岩应力(弹性、弹塑性)重分布
二、围岩变形破坏的特点
由于岩体在强度和结构方面的差异,洞室围 岩变形与破坏的形式多种多样,主要的形式有脆 性破裂、块体滑移、弯曲折断、松动解脱、塑性 变形等。
1.坚硬完整岩体的脆性破裂 在坚硬完整的岩体中开挖地下洞室,围岩一
般是稳定的。但是在高地应力地区,经常产生岩 爆现象。岩爆是储存有很大弹性应变能的岩体, 在开挖卸荷后,能量突然释放所形成的,它与岩 石性质、地应力积聚水平及洞室断面形状等因素 有关。