函数概念教学的案例分析

合集下载

三角函数的概念教学设计一等奖4篇

三角函数的概念教学设计一等奖4篇

第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。

三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。

《指数函数的概念》教学设计(最新)

《指数函数的概念》教学设计(最新)

《指数函数的概念》教学设计一、教材分析本节课是新版教材人教A 版普通高中课程标准教科书数学必修1第四章第4. 2. 1节《指数函数的概念》。

从内容上看它是学生学习了一次函数、二次函数、反比例函数、幂函数,以及函数性质的基础上,通过实际问题的探究,建立的又一函数模型。

其研究和学习过程,与之前的函数研究过程类似。

先由实际问题探究,建立指数函数的模型和概念,再画函数图像,然后借助函数图像讨论函数的性质,最后应用建立的指数函数模型解决问题。

体现了研究函数的一般方法,让学生充分感受,数学建模、数学抽象、数据分析等核心素养,及由特殊到一般的思想方法。

二、教学目标1、通过具体实例,了解指数函数的实际意义,理解指数函数的概念.了解指数函数模型的实际背景,认识数学与现实生活的联系.2、通过学习指数函数的概念,培养数学抽象和数学建模的数学素养.三、教学重难点理解指数函数的概念. 四、教学手段通过学生间的讨论、交流及多媒体的演示等手段,使学生对所学知识,由具体到抽象,从感性认识上升到理性认识,在教学过程中让学生自己去感受指数函数的生成过程,由此来突破难点。

五、教学过程同学们好,今天由我和大家一起探究和学习指数函数的概念。

上课前,送给大家一句话:勤学如春起之苗,不见其增,日有所长;辍学如磨刀之石,不见其损,日有所亏。

(PPT )这句话告诉我们什么道理呢?(假定现在获取的知识是1,学习的知识按照1%的速度增长,那么,一年后会怎样?)带着这样的问题,我们一起来学习这一节。

首先来看一下这节课的学习目标(PPT ).1.通过具体实例,了解指数函数的实际意义,理解指数函数的概念。

了解指数函数模型的实际背景,认识数学与现实生活的联系.2.通过学习指数函数的概念,培养数学抽象和数学建模的核心素养.对于幂)0( a a x ,我们已经把指数x 的范围拓展到了实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面我们继续按照此研究思路研究其他类型的基本初等函数.设计意图:明确本节课研究的内容,以及和前面课程的关系.通过对指数幂运算及函数概念和性质学习的铺垫,提出探究课题:指数函数的概念。

高中数学“函数的概念与性质”大单元教学设计分析

高中数学“函数的概念与性质”大单元教学设计分析

课程篇高中数学“函数的概念与性质”大单元教学设计分析郭辉林(广东省南雄市第一中学,广东南雄)培养学生的核心素养是当前高中数学教学中需要教师重点完成的一项教学任务,教师要关注每节课的教学目标,还要站高定位,从单元整体入手规划教学内容,完成主题、单元的教学目标。

换言之,要求教师着重展开大单元教学,推动数学教学质量的提升。

本文以“函数的概念与性质”中“函数的奇偶性”课时教学为例,展开了大单元教学的主要设计,对其设计思路进行重点探讨。

一、高中数学大单元教学的必要性分析新课改背景下,要求在实际的数学教学中关注学生的学习过程,创设与生活关联的、具有任务导向性的真实情境,促进学生自主、合作、探究学习,强化对学生核心素养的培养。

此时,教学目标从知识点的了解、理解与记忆转变为学科核心素养的关键能力、必备品格与价值观念的培育,这就要求必须提升教学设计的站位和格局,即从关注单一的知识点、课时转变为大单元设计,以此改变学科教学的碎片化,力求实现教学设计与素养目标的有效对接。

因此,展开高中数学大单元教学是当前教育改革视域下的必然选择。

二、高中数学“函数的概念与性质”大单元教学设计的突破性分析大单元教学设计在高中数学“函数的概念与性质”中的应用,能够让学生在实际的探究中实现思维碰撞,推动学生数学学科核心素养的提升。

相应教学设计主要在以下几方面实现突破。

(一)重视问题引导积极创设多种学习情境,并以问题为导向、驱动,让学生在课堂教学中展开深度学习,加深学生对所学知识点的理解以及掌握。

(二)重视过程探索结合讲解、探索、推理、观察、动手实践等多种教学活动的展开,引导学生自主思考、得出知识点定义,让学生能够在课堂教学中经历猜想、验证、证明、理解等学习过程,丰富学习体验。

(三)重视能力培养引导学生参与问题探究,实现对学生猜想能力、问题分析与解决能力、动手能力、逻辑推理能力等多种能力的更好培养。

(四)重视文化渗透结合生活化图片的提供,让学生切实感悟到“数学源于生活”,引导学生发现生活中的数学美,从而达到进一步提升学生文化素养的效果。

初中数学_函数的概念教学设计学情分析教材分析课后反思

初中数学_函数的概念教学设计学情分析教材分析课后反思

18.1 函数的概念(1)一、教学目标1.认识数量的意义,知道常用的数量,能在具体实例中认识并分清变量和常量.2.知道用运动、变化的观点看待事物,理解变化过程中的两个变量之间相互依赖的含义,从而理解函数的概念.3.初步了解表达两个变量之间依赖关系的方法,在参与变量的发现和函数概念的形成过程中,提高观察、概括、分析问题和解决问题的能力.二、教学重难点教学重点:结合具体实例归纳、概括函数的概念教学难点:理解函数的概念三、教学过程设计4.【情境三:温度变化问题】某气象站测得当地某一天的气温变化情况,如图所示:(1)两个变量是否存在确定的依赖关系?(2)填表:时间(时)0 3 8 14 21 24温度(℃)进一步感受变量之间确定的依赖关系的含义. 初步了解表达两个变量之间依赖关系的方法,不是只有解析式,还有图、表,为学生进一步理解函数的概念、学习函数的表示方法提供铺垫.三、概念讲解,获取新知.1.上述三个情境,研究过程中有什么共同特征?2.三个情境中的变量有什么取值范围吗?3.概念:在某个变化的过程中,有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y随着x的变化而变化,它们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量. 情境1和情境2中,这种表达两个变量之间依赖关系的数学式子称为函数解析式.4.为什么研究函数呢?函数的概念,要指出其中到“变化过程”和“变量的取值范围”,但主要强调“两个变量之间存在确定的依赖关系”. 完善概念时可结合前问题再具体加以解释.让学生理解研究函数的目的是研究变化规律,感受数学与生活的联系.四、内化新知,归纳概括.练习:气温的摄氏度数x与华氏度数y之间可以进行如下转化,华氏度数y是不是摄氏度数x的函数?为什么?帮助学生理解、巩固函数的概念,判断一个变量是不是另一个变量的函数.学情分析八年级的学生已经具备了一定的抽象思维能力,接受力较强。

处于此阶段的学生求知欲强但注意力容易分散,爱听故事,爱动手,因此安排活动让学生动手与动脑,小组合作探究活动容易发挥学生的好奇心和合作能力。

初中函数概念教学举例有效性的心理分析

初中函数概念教学举例有效性的心理分析
背概念的字面定义 而不能领会概念 的内涵 。三是学 生在 l
函数概念学习之前 , 所掌握 的是常量数学知识 , 主要是代 I
四、 反的必要性
反例的必要性是指在 函数概念给 出后 ,要及 时给出
数式的恒等变形和方程、 不等式等, 以通过运算结果为 目 l 正反例变式让学生进行辨析。通过正反例变式以使学生 的, 主要目的是计算’ 。 而函数是研究变量与变量之间关系 l 对函数概念的内涵与外延有个清晰的边界,这样进一步

53 ・
刘海涛 : 初中函数概念教学举例有效性的心理分析
对初中学生而言, 形成抽象概念的能力不强, 对抽象的概 l 间对应的本质属性, 做为首例容易扩大函数概念的内涵,
念还把握不了本质属性,虽然函数概念是在初二年级进 j 认为两个变量之间必须有解析式表示才是函数。而问题 行学习, 但初二只是学生理解抽象概念转折点 , 还不具备 l 做为函数概念形成的首例, 3 是具有典型代表性的。 问题

举两个变 量之 间的关系用解 析法表示 的例子 ,这样会使 式表示 的 , 表格法 、 用 图像法表示 两个变量之 间的关系 ,
学生认 为函数 解析式是 函数概念 的本质属性 ,从而扩大 舍弃代数例子 、 几何例 子中的解析式这个非本质属性 。 这
函数 概念 的内涵 。例如 , 下问题 1问题 2 举如 、 两个 例子 样才能有利于学生充分感知素材 ,正确形成 函数概念 的

正 例 的 充分 性
, 正例 的充分性是指 在函数概 念的形成过程 中 ,所举 式 )所 以 至少 应 包 括用 两种 方法 表 示 两 个 变 量 的 对 应 关
正例 的个数 、 正例的类型满足什么条件 , 才能使学生形成 系 , 从这个角度分析至少二个例子。 第三 , 从学生 的气质类型上来分析 , 至少应有 四个例 正确 的函数概念 的表征 。 函数概念 的形成过程 中, 很 在 有

高一数学教案《函数概念》

高一数学教案《函数概念》

高一数学教案《函数概念》高一数学教案《函数概念》作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

教案应该怎么写才好呢?下面是店铺为大家收集的高一数学教案《函数概念》,仅供参考,欢迎大家阅读。

高一数学教案《函数概念》1教学目标:使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.教学重点:函数的概念,函数定义域的求法.教学难点:函数概念的理解.教学过程:Ⅰ.课题导入[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:问题一:y=1(xR)是函数吗?问题二:y=x与y=x2x 是同一个函数吗?(学生思考,很难回答)[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).Ⅱ.讲授新课[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B 中都有一个数2n和它对应.在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.请同学们观察3个对应,它们分别是怎样形式的对应呢?[生]一对一、二对一、一对一.[师]这3个对应的共同特点是什么呢?[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.现在我们把函数的概念进一步叙述如下:(板书)设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.记作:y=f(x),xA其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.[师]理解函数的定义,我们应该注意些什么呢?(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)注意:①函数是非空数集到非空数集上的一种对应.②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.③集合A中数的任意性,集合B中数的惟一性.④f表示对应关系,在不同的函数中,f的具体含义不一样.⑤f(x)是一个符号,绝对不能理解为f与x的乘积.[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示Ⅲ.例题分析[例1]求下列函数的定义域.(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.解:(1)x-20,即x2时,1x-2 有意义这个函数的定义域是{x|x2}(2)3x+20,即x-23 时3x+2 有意义函数y=3x+2 的定义域是[-23 ,+)(3) x+10 x2这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).注意:函数的定义域可用三种方法表示:不等式、集合、区间.从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11注意:f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a时的函数值.下面我们来看求函数式的值应该怎样进行呢?[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢![生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.[师]生乙的回答完整吗?[生]完整!(课本上就是如生乙所述那样写的).[师]大家说,判定两个函数是否相同的依据是什么?[生]函数的定义.[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)(无人回答)[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!(生恍然大悟,我们怎么就没想到呢?)[例2]求下列函数的值域(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}(3)y=x2+4x+3 (-31)分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.解:(1)yR(2)y{1,0,-1}(3)画出y=x2+4x+3(-31)的图象,如图所示,当x[-3,1]时,得y[-1,8]Ⅳ.课堂练习课本P24练习17.Ⅴ.课时小结本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳) Ⅵ.课后作业课本P28,习题1、2. 文章来高一数学教案《函数概念》2教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期222324252627282930新增确诊病例数10610589103113126981521013.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的'有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇函数教学教案设计篇一教学目标:(一)教学学问点:1.对数函数的概念;2.对数函数的图象和性质。

(二)本领训练要求:1.理解对数函数的概念;2.把握对数函数的图象和性质。

(三)德育渗透目标:1.用联系的观点分析问题;2.认得事物之间的相互转化。

教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发觉、探究教学辅佑襄助:多媒体教学过程:一、引入对数函数的概念由同学的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否料想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要讨论的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(∞,+∞)2.对数函数的图象和性质:由于对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.讨论指数函数时,我们分别讨论了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并察看它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即那时候,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们紧要介绍了指数函数的反函数——对数函数.而且讨论了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3函数教学教案设计篇二一、教学内容分析本节内容是高一数学必修4(苏教版)第三章《三角恒等改换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。

深度理解和准确把握教学内容——有关函数教学的案例分析


教材探析
这节课应把 函数的“ 数” 与图像 的“ 形” 结合起来 研究 , 使抽象思 维和形象思维相互作用 , 实现数量关 系与图形性质 的相互 转化。只有把 “ 当k > O 时, 在 每 个象 限 内 , v 随 的增大 而减小 ; 当k < 0 时, 在 每个 象 限内 , y 随 的增大而增大。 ” 这样抽象 的句子 , 通过与 图像 的上升下降结合起来解释 ,使代数 问题 的信 息 转换到直观 图形上 , 解决起来才会容易得多 。
( 2 ) 当 < 0 时呢?

《 认识 函数》 中的“ 函数三种表示方法” 教学过程
概述如下 :
师: 一般地 , 在某 个 变 化 过 程 中 , 设 有 两 个 变 量 Y ,如果对于 的每一个确定 的值 , v 都有唯一确定 的值 , 那 么就说 是 的函数 , 叫做 自变量 。 我们发现 这里两个变量之间的函数关系是用什 么来表达的? 生: 等式 。 师 :这种表示 函数关系 的等式 ,叫做 函数解析 式, 简称函数式 。 用函数解析式表示函数的方法也 叫 解 析 法 。( 板书: 解 析法 ) 师: 大家再看看这张表格表示 的是 函数关系吗?

减小 ,同学们 能不 能以y = 为例举 出一个若

则 < Y 2 的例子? 生: 例 如 l = 6 , Y l = 1 , x 2 = l , y 2 = 6 , 此时 就是 J 2 而 生: 图像法 。 ( 教师板书 , 接下去开始讲解下一个 知识点 : 求 函数 值 ) 这是我们 常见的数学概念教学 的基本模式 , 学 生 在 教 师 的引 导 下 进行 接 受 性 学 习 。 分析 教 师 对 此 教 学内容的理解是 : 函数有三种表达方法 : 解析法 、 列表法 、 图像法 , 让学生了解这三种表示方法是本节 课 的 教学 目标 之 一 。 基 于 以上 理 解 教 师 先 让学 生直 观感受函数 的三种表示方法 , 根据已有 知识 、 预习铺 垫, 教师引导直接说 出各种表示方法的名称 。 很明显此教学设计存在的问题是教师对教学内 师: 很好 , 你还能举一个 自变量取值为负数时的

函数的概念教学分析报告

函数的概念教学设计四川省成都市双流县棠湖中学唐小文【课标教材解读】(一)教学内容:本课题是人教版必修中的内容;与以往相比,教材对函数概念的处理方式发生了很大的变化。

改变了以往线映射后函数的顺序,直接通过三个背景实例,在问题的引导下分析概括出运用集合与对应语言描述的函数定义。

这样,既衔接了初中阶段将函数看成变量间的依赖关系的认识,又进一步提升到运用集合与对应的语言来刻画函数。

为了理过程与方法目标:通过积极参与函数概念的学习,亲身经历函数概念的获得过程,培养学生观察问题,提出问题的探究能力,进一步培养学生抽象、概括、归纳、及从“特殊到一般”的分析问题的能力:德育情感目标:通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质,同时展现数学人文精神,体现数学文化价值及其在社会进步、人类文明发展中的重要作用。

【课时分解目标】、知道函数是描述变量之间的依赖关系的一种重要数学模型;、能够模仿教师的例子提出生活中具有函数关系的实例;、能用集合与对应的语言来描述函数的定义,能对具体函数指出定义域、对应法则、值域;、会求一些简单函数(带根号,分式)的定义域和值域;、能够从函数的三要素的角度去判定两个函数是否是同一个函数。

【教学重点难点】重点:正确理解函数的概念,能从初中函数定义提升到用集合与对应的语言刻画函数定义;难点:函数概念的理解,用集合与对应的语言刻画函数定义的抽象性;【评价设计】表现性评价:学生的学习热情与课堂参与程度(对表情、态度、气氛等及时评价);交流式评价:合作讨论,归纳总结能力(对问答、质疑、纠错、改错等及时评价);呈现性评价:学生回答问题的正确率,板书的规范和正切率(对投影、展示、板演适时评价);【教学过程设计】一、课前预习、生成问题为了使得课堂教学更有针对性,更有效率,在课前我给出预习提纲。

让学生通过自主学习完成预习提纲中的问题,对知识形成初步认识。

老师应结合教学的重难点,以及学生预习时可能产生的问题来设计课堂。

2.1.1函数的概念(第一课时)说课稿


及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数概念教学的案例分析
胜利二中北校区刘兵
函数概念是高中数学重要的概念之一,其思想充斥在代数的各个方面。

初中学生虽已接触过函数的概念,但那时仅对函数的概念描述性了一下,无定义域与值域可言。

高中数学给函数定义一新的内涵,增加了“对应法则”和“定义域与值域”,又解释为“函数实际上是集合A到集合B的映射”,由描述性语言过渡到集合映射语言。

因此高中函数概念是在新的高度去同化与提升原有概念。

函数概念的教学,如何激活学生原有的知识,让学生参与概念发展的全过程,以达到理解和掌握概念的教学目的,以下是一名教师关于一个函数概念教学的案例与分析。

一、案例背景:
函数概念是学生较难理解的一个难点,铁别是普通高中学生,学习的积极性、主动性乃至学习成绩相对较差,因此,如何通过函数教学,让学生不但学好函数概念,理解静与动的辩证关系,而且要培养学生学习数学的兴趣,达到教与学的双丰收。

二、组织教学:
师:鼓励学生不怕困难、勇于探索,采用自学导引组织教学。

先和学生回顾初中函数概念及正比例函数、反比例函数、一次函数和二次函数的解析式,以此提出问题,投影显示:
师:这些问题的解决对学生是一个挑战,函数例子的判定与学生已有知识发生冲突,需要对函数概念的深入理解。

学生的主要错误可能出现在:y=1(x∈R)不是函数,因为式子中没有自变量x。

问题2的两个函数是同一函数,因为经过约分两式是相同的。

师:请学生关注刚发下的自学导引学案:
( 1)学生新入学,开学初要分配座位,每一位同学指定这个班的教室里唯一一把椅子。

( 2)住校生分配宿舍,给每一位住校生指定学生宿舍里唯一一个床位。

( 3)集合A到B的对应:乘2
(4)集合A到B的对应:求平方
(5)集合A到B的对应:求倒数
实施任务:
师:观察、讨论上面的对应都有什么样的特点?上述五个例子有什么共同点?同桌间相互交流
学生观察例子时,教师在巡视,大多学生观察、思考,也有的学生不知所措,找不到解决问题的思路,同学交流众说纷纭,意见不一致,教师找了一位平时成绩较好的学生回答问题:生:一个变量在某一范围内每取一个确定的值,另一个变量都有唯一确定的值与之对应。

师:肯定了学生的回答,并对(1)、(2)作图示分析,以加深学生对一一对应的理解;同时师生一起回答(3)、(4)、(5)的对应为一对一、二对一、一对一。

接着采用自学导引,直接用文字表述抽象出函数概念及函数三要素(定义域、值域、对应法则),并指出两个函数当且仅当他们的定义域、值域、对应法则完全相同时才是同一函数。

函数概念在学生不经中引出,从而降低了难度,然后检查学生是否理解概念。

请学生观察(3)、(4)、(5),并指出定义域、值域、对应法则分别是什么?学生回答(3)中值域为{1,2,3,4,5,6},显然出现了问题,一句定义正确地予以纠正,显然应去掉集合中的1、3、5才符合定义。

布置学生说出“正比例函数、反比例函数、一次函数和二次函数的定义域、值域和对应法则”。

并及时纠正出现与定义相悖的地方。

投影显示:
理解函数的定义,应该注意:
① 函数是非空数集到非空数集的一种对应
② 符号“f:A B”表示A到B的一个函数,其三要素:定义域、值域、对应法则三者缺一不可。

③ A中数去只有任意性,B中数的必须有唯一性
④ f表示对应关系,不同函数,f含义不一样
⑤ f(x)是一个符号,不代表f与x的乘积,还可用g(x),F(x)等表示
回答前面提出的两个问题:
生甲: y=1(x∈R)是一个函数
学生训练:例 1,求下列函数定义域:
因为时间关系,教师讲了(1)(2)例题后,就下课了,布置完作业后,结束任务。

三、案例分析:
从教师的数学任务框架来看,他要求学生理解函数的概念,掌握函数三要素,会求函数定义域,这些对学生都是具有挑战性,所以本节课的教学任务。

但在数学教学过程中,教师并没有保持高水平的任务,在组织学生由(1)、(2)、(3)、(4)、(5)自主建构导出函数概念时,所花的时间较少,没有帮助一般学生深入理解;问题1、问题2对学生是具有挑战性的,在很多学生还没有真正参与进去的时候,教师以成绩优秀的学生思维代替一般学生的思考;师生解决(3)、(4)、(5)定义域、值域、对应法则后,对定义域、值域这两个概念讲解只停留在表面,没有深化,对值域C B也没点清楚;写成y=kx等教师讲评时,也没有让学生暴露自己的思维过程,而只是订正,重点转移到答案正确与否。

整堂课下来,虽然采用了自学导引学案、投影、积极开展师生交流,但教师更关注的是自己的思维及本堂课的教学进度,把高水平“做数学”的任务降为低水平的程序型。

影响本节课的因素如下:
(1)挑战成了无问题行为:问题1、问题2对学生是具有挑战性的,为了解决这两个问题,学生必须深层次理解函数概念。

理解这一概念一般要经历:识别不同事物→从一类相同事物
中抽出共性→将这种共性与记忆中的观念相联系→同已知的其它概念分化→将本质属性一般化→下定义等过程。

所以函数概念建构是“只可意会而不可言传”的,必须通过学生的内化才能完成。

然而老师没有保持问题的复杂性,降低了难度,大部分学生只是按照老师设计的问题回答,轻描淡写的过去了,对函数的概念形成是由教师设计好的学案直接给出。

事实上,课后很多学生对函数的概念还是一知半解,自然在解决问题时错误百出。

(2)没有督促学生保持高水平的认知过程:由学生观察五种对应,得出共同点时,有些学生不知道如何去做,显得有些焦虑,老师没有促使学生努力建构,也没有给学生搭脚手架,而是更关注课堂教学进度,以成绩优秀的学生思维代替一般学生的思考。

自学导引学案中的(1)、(2)、(3)、(4)、(5)五种对应,都是具体、特殊、有限的,从特殊到一般这是一个质的飞跃,它需要学生经历大量体验后才能主动建构知识,参与知识产生和形成的全过程。

(3)未在概念间建立联系:函数概念的教学实际上是在初中学习的基础上进行的同化教学,所以函数概念应与初中概念紧密联系,集合A中的自变量x对应集合B中应变量y,对应关系一定要让学生理解。

看到函数就该想到函数的定义域、值域,定义域求法是本节课重点之一,值域求法是难点之一,应注意联系。

然而这次课教学设计忽略了这个基础。

4)教学重点转移到答案正确与否:教师在学生解决函数的定义域、值域时,未关注学生思维,而只是简单订正,在讲解例(1)、(2)时,也只关注程序及答案正确与否。

教师关注模仿和反复的练习,认为这能使学生掌握知识,从而得到正确答案。

(5)未建立在学生已有的基础之上:教师更多的关注讲述自己的思维过程而不是倾听学生的思维过程,对学生的知识水平估计过高,跳跃太快,题目梯度不大,容量较大,过度稍快,学生有些还是不清楚。

(6)时间:由于教师过于关注教学进度,结果让学生自主建构函数概念的时间太少。

四、启示:
导出函数概念后,对函数、函数的定义域、值域关系,要点清楚,定义域是重点,函数的性质都是在定义域内研究的,值域是一个难点,本节课应着重讲清这几个概念。

由学生展示高水平思维同时,也要发解一般同学的理解程度。

通过对一次公开课的案例分析,它给我们的帮助是明显的,我们的教师要即时总结教学经验,坚持理论与实践的结合,坚持长期的学习、积累,才能厚实我们的专业基础,提高教学水平,才能形成自己的教育思想、教学风格,成为专家型的教师。

相关文档
最新文档