矩阵与行列式、算法初步知识点

合集下载

矩阵与行列式算法初步知识点

矩阵与行列式算法初步知识点

矩阵与行列式算法初步知识点矩阵与行列式是线性代数的基础概念之一、矩阵可以看作是一个二维数组,具有行和列的属性。

矩阵最常见的应用是线性方程组的求解。

例如,对于一个m×n的矩阵A和一个n×1的向量x,可以通过矩阵乘法Ax=b来求解线性方程组。

行列式是矩阵的一个重要属性,可以用来判断矩阵是否可逆。

一个矩阵的行列式为0表示该矩阵不可逆,否则可逆。

行列式还可以用于求解特征值和特征向量。

特征值和特征向量是矩阵在线性变换下的不变性质,对于很多机器学习和深度学习算法都有重要的应用。

算法是计算机科学中的基础概念,是一种解决问题的方法或步骤。

算法设计的核心目标是解决问题的效率和正确性。

常见的算法设计技巧包括递归、分治、动态规划等。

常见的算法包括排序、图算法等。

排序算法可以将一组数据按照一定的规则进行排序,常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。

算法用于在一组数据中查找目标元素,常见的算法有线性、二分等。

图算法用于解决图结构相关的问题,常见的图算法有深度优先、广度优先、最短路径算法等。

在实际应用中,矩阵与行列式经常用于数据表示和运算。

例如,在机器学习中,数据通常以矩阵的形式进行表示,通过矩阵运算可以进行特征提取、模型训练等操作。

行列式的性质可以帮助我们优化计算过程,例如通过LU分解来求解线性方程组,可以减少计算量。

在计算机图形学中,矩阵与行列式用于表示和变换物体的位置和形态。

通过矩阵运算可以实现物体的平移、旋转、缩放等操作。

算法的设计与分析是计算机科学中的重要内容。

好的算法可以大大提高程序的执行效率,减少资源的使用。

算法的设计过程包括问题分析、算法设计、编码实现和性能评估等步骤。

在设计算法时,我们要考虑问题的规模、输入数据的特征以及算法的复杂度等因素。

通常,我们希望算法在求解问题时具有较高的时间和空间效率,并且给出符合问题要求的正确结果。

总之,矩阵与行列式、算法初步是计算机科学和线性代数中的重要知识点。

矩阵和行列式复习知识点(完整资料).doc

矩阵和行列式复习知识点(完整资料).doc

【最新整理,下载后即可编辑】矩阵和行列式复习知识梳理9.1矩阵的概念: 矩阵:像[27],[4202],[945354]的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、B 、C…表示三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵;① 矩阵行的个数在前。

② 矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。

行向量、列向量单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。

通过矩阵变换,解决多元一次方程的解。

9.2矩阵的运算 【矩阵加法】不同阶的矩阵不可以相加;记11122122A A A A A =⎡⎤⎢⎥⎣⎦,11122122B B B B B =⎡⎤⎢⎥⎣⎦,那么⎥⎦⎤⎢⎣⎡++++=+2222212112121111B A B A B A B A B A ,【矩阵乘法】,[A 1A 2]×[A 1A 2]=11122122A B A B A B A B ⎡⎤⎢⎥⎣⎦; ⎥⎦⎤⎢⎣⎡++++=22221221212211212212121121121111B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka ==【矩阵变换】相似变换的变换矩阵特点:k [1001]等轴对称变换的变换矩阵:[−1001]、[100−1]、[0110]等旋转变换的变换矩阵:[0−110]等9.3二阶行列式【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。

行列式行数、列数一定相等;矩阵行数、列数不一定相等。

二阶行列式的值a d D ac bd bc==-展开式ac - bd【二元线性方程组】 对于二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩,通过加减消元法转化为方程组xy D x D D y D ⋅=⎧⎪⎨⋅=⎪⎩其中111111222222,,x y a b c b a c D D D a b c b a c ===方程的解为{A =A A A A =AAA用行列式来讨论二元一次方程组解的情况。

矩阵的运算与行列式

矩阵的运算与行列式

矩阵的运算与行列式矩阵是线性代数中重要的概念之一,而矩阵的运算与行列式是矩阵理论的基础内容。

本文将详细介绍矩阵的基本运算及相关概念,并探讨行列式的性质与计算方法。

一、矩阵的基本运算1. 矩阵的定义与表示方式矩阵是由一定数量的数构成的矩形阵列,通常用大写字母表示。

例如,一个m行n列的矩阵A可以表示为:A = (a_ij)_{m×n} = \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}其中,a_ij表示矩阵A中第i行第j列的元素。

2. 矩阵的加法与减法对于两个同型矩阵A和B,它们的加法与减法定义如下:A +B = (a_ij + b_ij)_{m×n}A -B = (a_ij - b_ij)_{m×n}需要注意的是,矩阵的加法与减法仅适用于具有相同维度的矩阵。

3. 矩阵的数乘对于一个矩阵A和一个数k,矩阵的数乘定义如下:kA = (ka_ij)_{m×n}二、行列式的性质与计算方法1. 行列式的定义行列式是一个数,它与方阵A的元素相关。

一个n阶方阵A的行列式记作det(A)或|A|,定义如下:|A| = \sum_{σ∈S_n} (-1)^{sgn(σ)} a_{1σ(1)} a_{2σ(2)} \cdotsa_{nσ(n)}其中,S_n表示排列群,σ表示一个n阶排列,sgn(σ)表示排列σ的符号,a_{1σ(1)} a_{2σ(2)} \cdots a_{nσ(n)}表示方阵A中由排列σ决定的元素。

矩阵和行列式知识要点

矩阵和行列式知识要点

矩阵和行列式知识要点矩阵和行列式初步一、 矩阵9.1 矩阵的概念矩阵及其相关的概念1、矩形数表叫做矩阵矩阵中的每个数叫做矩阵的元素由个数排成的行列的数表n m ⨯m n ()n j m i a ij ,,2,1;,,2,1 ==mnm m nn a a a a a a a a a212222111211称为矩阵.n m ⨯记作⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A212222111211nm ij a ⨯=)(2、矩阵叫做方程组的系数矩阵。

⎪⎪⎭⎫⎝⎛-1321它是2行2列的矩阵,记为22⨯A ,矩阵可简记为An m A ⨯注意: 矩阵的符号,是“()”,不能是“| |”.列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

等,或者必要时可记为n m ij n m n m a B A ⨯⨯⨯)(,说明:通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有下列三种:(1)互换矩阵的两行(2)把某一行同乘以(除以)一个非零常数(3)某行乘以一个数加到另一行通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算矩阵列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ⨯==⨯),,2,1;,2,1( 111212122212.....................n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎪⎝⎭记为列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

,()m n m n ij A B a ⨯⨯必要时可记为等,或者A=。

0m nO O ⨯所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对应的位置上的元素相等,则称矩阵A 与矩阵B 相等。

矩阵和行列式复习知识点汇总

矩阵和行列式复习知识点汇总

矩阵和行列式复习知识点汇总一、矩阵的定义和运算:1.矩阵是一个按照矩形排列的数字集合。

一个m×n的矩阵有m行和n列。

2. 矩阵的元素通常用小写字母表示,如a_ij表示矩阵A的第i行第j列的元素。

3.矩阵的加法:若A和B是同型矩阵,则它们的和A+B也是同型矩阵,且相加的结果为对应位置的元素之和。

4.矩阵的数乘:若A是一个矩阵,k是一个标量,则kA是一个矩阵,且每个元素都乘以k。

5. 矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则AB是一个m×p的矩阵,其中C_ij等于A的第i行与B的第j列对应元素的乘积之和。

二、矩阵的特殊类型:1.零矩阵:所有元素都为0的矩阵。

2.对角矩阵:主对角线上元素以外的其他元素均为0的矩阵。

3.单位矩阵:主对角线上元素都为1,其他元素为0的对角矩阵。

4.转置矩阵:将矩阵A的行和列互换得到的矩阵,记作A^T。

5.逆矩阵:对于一个n阶方阵A,如果存在一个矩阵B使得AB=BA=I (其中I为单位矩阵),则称B为A的逆矩阵,记作A^(-1)。

只有非奇异矩阵才有逆矩阵。

三、行列式的定义和性质:1. 行列式是一个与方阵相关的标量值。

一个n阶方阵A的行列式通常用det(A)或,A,表示。

2. 二阶方阵A的行列式可表示为:det(A) = a11 * a22 - a12 *a213.计算三阶及以上行列式时,可利用代数余子式和拉普拉斯展开公式。

4.行列式的性质:a) 若A的其中一行(列)的元素全为0,则det(A) = 0。

b) 若A的两行(列)互换,则det(A)的符号会变化。

c) 若A的其中一行(列)的元素都乘以常数k,则det(kA) = k^n * det(A)。

d) 若A的两行(列)相等,则det(A) = 0。

e)若A的其中一行(列)的元素都乘以常数k,再加到另一行(列)上,对应行列式的值不变。

四、矩阵的行列式和逆矩阵:1. 对于一个n阶方阵A,若其行列式不为0(即det(A) ≠ 0),则A是一个非奇异矩阵,有逆矩阵A^(-1)。

矩阵与行列式的运算与特性总结

矩阵与行列式的运算与特性总结

矩阵与行列式的运算与特性总结矩阵与行列式是线性代数中重要的概念,它们在各个领域中都有广泛的应用。

本文将对矩阵与行列式的运算与特性进行总结,并介绍其在数学和科学中的应用。

一、矩阵的基本概念与运算1.1 矩阵的定义与表示矩阵是由若干个数按一定的规则排列成的矩形阵列。

一般用大写字母表示矩阵,如A、B等。

矩阵的行数和列数分别表示矩阵的阶数。

1.2 矩阵的运算矩阵的运算包括矩阵的加法、减法和乘法。

两个矩阵可以相加或相减的条件是它们的阶数相同,对应位置上的元素进行相加或相减。

矩阵的乘法要求第一个矩阵的列数等于第二个矩阵的行数,运算结果的行数与第一个矩阵的行数相同,列数与第二个矩阵的列数相同。

1.3 矩阵的转置与逆矩阵矩阵的转置是将矩阵的行变为列,列变为行得到的新矩阵。

逆矩阵是满足乘法交换律的矩阵,即矩阵与其逆矩阵相乘等于单位矩阵。

二、行列式的基本概念与特性2.1 行列式的定义与性质行列式是一个与矩阵相关的数值,用来表示线性方程组的解的情况。

行列式的值为零表示线性方程组无解,非零表示线性方程组有唯一解或无数解。

2.2 行列式的性质行列式具有以下特性:- 行列式与其转置行列式相等;- 行列式的两行(列)互换,行列式变号;- 行列式的某一行(列)乘以常数,等于常数乘以行列式;- 行列式的某一行(列)加上另一行(列)的k倍,行列式不变。

2.3 行列式的运算行列式的运算包括代数余子式、余子式、伴随矩阵和逆矩阵等。

代数余子式是行列式中每个元素对应的余子式乘以(-1)的幂次,而余子式是去掉某一行和某一列后所得到的行列式。

伴随矩阵是将原矩阵中的元素换成对应的代数余子式,并且将矩阵转置。

逆矩阵是满足矩阵与其逆矩阵相乘等于单位矩阵的矩阵。

三、矩阵与行列式的应用3.1 线性方程组的求解矩阵与行列式的概念广泛应用于线性方程组的求解。

通过将系数矩阵与常数向量组成增广矩阵,并进行初等行变换,可以求得方程组的解或判断方程组是否有解。

3.2 统计学中的应用矩阵与行列式在统计学中也有重要的应用。

40、矩阵、行列式和算法初步


精锐教育网站:
精锐教育·教务管理部
中小学 1 对 1 课外辅导专家 (2)确切性:算法的每一步必须有确切的定义; (3)可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成; (4)输入:一个算法有 0 个或多个输入,以刻划运算对象的初始条件。所谓 0 个输入是指算法本身定出了初始条件。 (5)输出:一个算法有 1 个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
(1)将两人的成绩各阶段成绩用矩形表示; (2)写出行向量、列向量,并指出其实际意义。
算法初步 【知识点梳理】
1、算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列, 并且这样的步骤或序列能解决一类问题。 2、算法的五个重要特征: (1)有穷性:一个算法必须保证执行有限步后结束;
精锐教育网站: 精锐教育·教务管理部
中小学 1 对 1 课外辅导专家 9.计算
cos330 sin 330
sin 270 _______ cos 270
三、解答: 10.已知 A 2 B
1 2 1 0 2 1 ,A B 1 1 ,C 4 1 ,求 2 A B C . 3 1
(2)条件结构分支结构的一般形式
精锐教育网站:
精锐教育·教务管理部
中小学 1 对 1 课外辅导专家
条件 是 处理


条件

处 理 1
处 理 2
两种结构的共性: ① 一个入口,一个出口。特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。 ② 结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。 以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点) 提醒:解决分段函数的求值等问题,一般可采用条件结构来设计算法. (3)循环结构的一般形式 在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复 执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

矩阵与行列式的计算与性质

矩阵与行列式的计算与性质矩阵与行列式是线性代数中重要的数学概念,对于许多数学和工程问题的建模与求解都非常关键。

本文将介绍矩阵与行列式的基本概念,以及它们的计算方法和一些常见的性质。

一、矩阵的定义与基本概念1.1 矩阵的定义矩阵是一种按照行和列排列的数表。

一个m行n列的矩阵常记作A=[a_ij],其中a_ij表示矩阵A中第i行第j列的元素。

1.2 矩阵的分类根据矩阵的特点,可以将其分为以下几种类型:1)零矩阵:所有元素都为0的矩阵。

2)对角矩阵:只有主对角线上的元素不为零,其余元素都为零的矩阵。

3)上三角矩阵:主对角线以下的元素都为零的矩阵。

4)下三角矩阵:主对角线以上的元素都为零的矩阵。

5)方阵:行数等于列数的矩阵。

6)转置矩阵:将矩阵的行与列对换得到的新矩阵。

二、矩阵的运算2.1 矩阵的加法和减法给定两个相同大小的矩阵A和B,它们的和(差)矩阵记作C=A±B,即C=[c_ij],其中c_ij=a_ij±b_ij。

2.2 矩阵的数乘给定一个矩阵A和一个标量k,它们的数乘记作B=kA,即矩阵B 的每个元素等于k乘以矩阵A对应元素。

2.3 矩阵的乘法给定一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积矩阵C=A*B是一个m行p列的矩阵。

矩阵C的第i行第j列的元素c_ij等于矩阵A的第i行元素与矩阵B的第j列元素对应乘积的和。

三、行列式的定义与性质3.1 行列式的定义对于一个n阶方阵A=[a_ij],其中a_ij是方阵A中第i行第j列的元素,方阵A的行列式记作det(A)或|A|,计算方法如下:1)当n=1时,det(A)=a_11;2)当n>1时,det(A)=a_11*A_11+a_12*A_12+...+a_1n*A_1n,其中A_11、A_12、...、A_1n是n-1阶子矩阵的行列式。

3.2 行列式的性质行列式具有以下几个重要的性质:1)行列式与转置:det(A)=det(A^T),其中A^T表示矩阵A的转置矩阵。

矩阵和行列式知识要点

矩阵和行列式知识要点一、矩阵(Matrix)1.定义矩阵是按照一定规则排列的数(或变量)的矩形阵列。

一般用大写字母表示,如A、B,其元素用小写字母表示并用下标表示元素的位置。

2.类型根据矩阵的元素可以分为实矩阵(元素为实数)、复矩阵(元素为复数)、数值矩阵(元素为纯数值而不是变量)等。

3.运算(1)矩阵的加法:对应元素相加。

(2)矩阵的数乘:矩阵的每个元素乘以相同的数。

(3)矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A乘以B的结果是一个新的矩阵C,C的第i行第j列的元素是A的第i行与B的第j列元素的乘积之和。

4.逆矩阵如果一个方阵A存在逆矩阵A-1,使得A与A-1相乘等于单位矩阵I,即A·A-1=I,那么称A为可逆矩阵或非奇异矩阵,A-1为A的逆矩阵。

5.矩阵的转置将一个矩阵的行变为同序数的列,列变为同序数的行,得到的新矩阵称为原矩阵的转置矩阵。

二、行列式(Determinant)1.定义行列式是一个表示线性变换对坐标的拉伸或者压缩程度的标量值。

一般用竖线“,,”或者方括号“[]”表示。

2.性质(1)行列式的值等于其转置矩阵的值。

(2)行列式对换两行(列)变号。

(3)行列式中如果有两行(列)相同,则行列式的值为0。

(4)行列式其中一行(列)的元素都是两数之和,行列式的值可以分开计算。

3.行列式的计算方法(1)拉普拉斯展开法:取行(列)进行展开,将问题逐步转化为计算较小规模的子行列式。

(2)数学归纳法:将行列式的展开按照第一行(列)来进行,用递归的方法逐步减小行列式的规模。

4.逆矩阵与行列式的关系若矩阵A可逆,则A的逆矩阵A-1的值等于A的行列式的倒数,即A-1=1/,A。

三、矩阵和行列式的应用1.线性方程组2.线性变换矩阵可以表示线性变换,通过矩阵与向量的乘法,可以实现向量的旋转、缩放等操作。

3.特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换下的固有性质,通过计算矩阵的特征值和特征向量,可以得到矩阵的重要信息,如对称矩阵的主对角线元素就是其特征值。

行列式及矩阵学习指导

02 行列式的值可以通过计算其所有不同行不同列元 素的乘积的代数和得到。
行列式基本性质
行列式与它的转置行列式相等。 互换行列式的两行(列),行列式变
号。
如果行列式有两行(列)完全相同, 则此行列式为零。
Hale Waihona Puke 行列式的某一行(列)中所有的元素都 乘以同一数k,等于用数k乘此行列式。
行列式中如果有两行(列)元素成比 例,则此行列式为零。
04
典型题型解析与技巧指导
求解行列式值问题
利用行列式的性质进行化简
通过行列式的性质,如交换两行、提取公因子、将一行乘 以常数加到另一行等,将行列式化简为易于计算的形式。
展开法
对于低阶行列式,可以直接利用行列式的定义进行展开计算。对于高 阶行列式,可以选择适当的行或列进行展开,以降低计算复杂度。
递推法
行列式及矩阵学习指 导
目录
• 行列式基本概念与性质 • 矩阵基本概念与运算 • 行列式与矩阵关系探讨 • 典型题型解析与技巧指导 • 复习方法与应试策略建议
01
行列式基本概念与性质
行列式定义及表示方法
01 行列式是数学中的一个重要概念,表示一个方阵 所有元素按一定规则组成的代数和。
02 通常用大写字母D表示行列式,如D=|aij|,其中 aij表示矩阵中第i行第j列的元素。
1
在求解线性方程组时,可以利用矩阵的初等变换 将增广矩阵化为行阶梯形矩阵,进而求解行列式。
2
在计算矩阵的逆时,需要利用行列式的性质和矩 阵的初等变换,将原矩阵化为单位矩阵,同时得 到逆矩阵。
3
在多元函数微积分中,可以利用雅可比矩阵计算 多元函数的偏导数,而雅可比矩阵正是由函数的 一阶偏导数构成的矩阵。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵与行列式考试内容:矩阵的意义.行列式的意义以及对角线法则. 算法的含义以及逻辑结构. 考试要求:(1)会用矩阵的记号表示线性方程组. (2)掌握二阶、三阶行列式展开的对角线法则,以及三阶行列式按照某一行(列)展开的方法.会利用计算器求行列式的值.(3)掌握二元、三元线性方程组的公式解法(行列式表示),会对含字母系数的二元、三元线性方程组的解的情况进行讨论.(4)在具体问题的解决过程中,理解程序框图的逻辑结构:顺序,条件分支,循环.矩阵与行列式 知识要点1、形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。

2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ⋅⋅⋅称为行向量;垂直方向排列的数组成的向量12n b b b ⎛⎫⎪ ⎪ ⎪⋅⋅⋅ ⎪⎝⎭称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ⨯阶矩阵,m n ⨯阶矩阵可记做m n A ⨯,如矩阵13⎛⎫⎪⎝⎭为21⨯阶矩阵,可记做21A ⨯;矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭为33⨯阶矩阵,可记做33A ⨯。

有时矩阵也可用A 、B 等字母表示。

3、矩阵中的每一个数叫做矩阵的元素,在一个m n ⨯阶矩阵m n A ⨯中的第i (i m ≤)行第j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128⎛⎫⎪⎪ ⎪⎝⎭第3行第2个数为3221a =。

4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。

如000000⎛⎫⎪⎝⎭为一个23⨯阶零矩阵。

5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭均为三阶方阵。

在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余元素均为零的方阵,叫做单位矩阵。

如矩阵1001⎛⎫⎪⎝⎭为2阶单位矩阵,矩阵100010001⎛⎫⎪⎪ ⎪⎝⎭为3阶单位矩阵。

6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

7、对于方程组231324244x y mz x y z x y nz ++=⎧⎪-+=⎨⎪+-=⎩中未知数z y x ,,的系数按原来的次序排列所得的矩阵2332441m n ⎛⎫ ⎪- ⎪⎪-⎝⎭,我们叫做方程组的系数矩阵;而矩阵2313242414m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭叫做方程组的增广矩阵。

8、矩阵的运算1)矩阵的加法:当两个矩阵A B ,的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A B ,的和(差),记作:()A B A B +-。

加法运算律:A B B A +=+加法结合律:()()A B C A B C ++=++ 2)数乘矩阵设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵。

记作:αA分配律:()B A B A γγγ+=+ ;A A A λγλγ+=+)(结合律:()()()A A A γλλγγλ== 3)矩阵的乘积一般,设A 是k m ⨯阶矩阵,B 是n k ⨯阶矩阵,设C 为n m ⨯矩阵如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积.记作:C AB =。

分配律:AC AB C B A +=+)(,CA BA A C B +=+)( 结合律:()()()B A B A AB γγγ==,()()BC A C AB = 注:交换律不成立,即BA AB ≠9、行列式展开的对角线法则:11122122 b ba ab a b a =-10、二元一次方程组:111222,a xb yc a x b y c +=⎧⎨+=⎩,其中x,y 为未知数,方程组系数不全为0系数行列式1122 b ba D a =;1122 b b xc D c =;1122 c c x a D a =(1)当0D ≠时,方程有唯一解xy D x D D y D⎧=⎪⎪⎨⎪=⎪⎩(2)当0D =,0x y D D ==时,方程组有无穷多解; (3)当0D =,,x y D D 中至少有一个不为零,方程组无解.11、掌握三阶行列式展开的对角线法则,以及按某一行(列)展开的方法;对角线法则: 333222111c b a c b a c b a =231312123213132321c b a c b a c b a c b a c b a c b a ---++按第一行展开: 333222111c b a c b a c b a =1a 3322c b c b -1b 3322c a c a +1c 3322b a b a其中1A =3322c b c b ,1B =-3322c a c a ,1C =3322b a b a 分别叫做元素1a ,1b ,1c 的代数余子式总之,三阶行列式可以按其任意一行(一列)展开成行(或该列)元素与其对应的代数余子式的乘积之和。

三阶行列式的每一个元素的代数余子式,根据该元素的位置应加在行列式上的符号由下式给出: +-+-+-+-+12、知道行列式的某些性质(性质1)把行列式的各行变为相应各列(称行列转置)时,其行列式的值不变。

即:333222111c b a c b a c b a =321321321c c c b b b a a a (性质2)把某行列式的某一行(或列)的所有元素同乘以某个数k ,等于用数k 乘以原行列式。

即:333222111c b a c b a kc kb ka =k 333222111c b a c b a c b a (性质3)如果行列式的某一行(或列)的元素都拆成前后两项,那么这个行列式的值等于分别取前项,后项为此行(或列)而其余行(或列)不变的两个行列式的和。

即:333222c b a c b a t s q p n m +++=333222c b a c b a s p m +333222c b a c b a t q n (性质4)如果行列式某两行(或两列)的对应元素都相等,那么这个行列式的值必等于零。

(性质5)三阶行列式具有性质:将某一行(或列)的每个元素都乘以实数k ,加到另一行(或列)的对应元素上,得到的行列式与原行列式的值相等。

13、会对含有字母的三元线性方程组无解,有解及解的个数进行讨论(类似于二元线性方程组):(1)当D 0≠时,方程组有唯一解(2)当y x D D D ,,0=z D ,中至少有一个不为零,方程组无解。

(3)当0,0====z y x D D D D 时,方程组无解或有无穷多解。

14、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法程序框图的基本符号起止框任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两端必须是起止框。

输入输出框表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置处理框是采用来赋值、执行计算语句、传送运算结果的图形符号判断框判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y”与“N”)两个分支用带有箭头的流程线连接图形符号.15、三种基本的逻辑结构:顺序结构、条件结构和循环结构 (1)顺序结构顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

(2)条件结构分支结构的一般形式两种结构的共性:①一个入口,一个出口。

特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。

②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。

以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)提醒:解决分段函数的求值等问题,一般可采用条件结构来设计算法.(3)循环结构的一般形式在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

相关文档
最新文档