三角函数的性质及三角恒等变换

合集下载

三角函数中的三角恒等式详解

三角函数中的三角恒等式详解

三角函数中的三角恒等式详解三角恒等式是三角函数中的重要概念,在数学中具有广泛的应用和意义。

它们描述了各种三角函数之间的关系和等式。

通过研究和掌握三角恒等式,可以解决各种与三角函数相关的问题,同时也可以更深入地理解三角函数的性质和特点。

1. 正、余、正切三角恒等式正弦、余弦和正切是最基本的三角函数之一,它们之间有许多重要的恒等式。

其中最基本的是正弦和余弦的平方和等于1,即sin^2θ + cos^2θ = 1。

这一恒等式被称为“三角恒等式之母”,它表明了正弦和余弦函数在单位圆上的关系。

同时,我们还可以通过这个恒等式推导出其他的三角恒等式。

2. 倍角和半角恒等式在三角函数的学习中,学习和掌握倍角和半角恒等式是非常重要的。

倍角恒等式描述了两个角的和或差与三角函数之间的关系,它们形式上的表示为:sin2θ = 2sinθcosθ,cos2θ = cos^2θ - sin^2θ,tan2θ =2tanθ/ (1 - tan^2θ)。

这些恒等式在解决实际问题时起到了关键的作用,可以简化计算,并提供了更多的数学工具。

半角恒等式则是倍角恒等式的逆过程,它描述了一个角的正弦、余弦、正切与另一个角的关系。

其中最为常用的是正弦半角恒等式:sin(θ/2) = ±√[(1 - cosθ) / 2],其中的正负号根据θ所处的象限来确定。

3. 和差恒等式和差恒等式描述了两个角的和或差与三角函数之间的关系。

三角函数的和差恒等式分为正弦和余弦的和差恒等式,以及正切的和差恒等式。

最常用的是正弦和余弦的和差恒等式:sin(θ ±φ) = sinθcosφ ±cosθsinφ,cos(θ ±φ) = cosθcosφ ∓ sinθsinφ。

这些和差恒等式在解决三角函数的运算问题时,提供了简化计算的方法,并方便进一步化简表达式。

4. 导数和积分恒等式在微积分中,也存在一些与三角恒等式相关的导数和积分恒等式。

高一年级数学三角函数三角恒等变换知识点总结

高一年级数学三角函数三角恒等变换知识点总结

高中数学苏教版必修4 三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点;始边在x 轴的正半轴上;角的终边在第几象限;就说过角是第几象限的角。

若角的终边在坐标轴上;就说这个角不属于任何象限;它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限;通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数;负角的弧度数为负数;零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α;其中l 为以角α作为圆心角时所对圆弧的长;r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点;始边为x 轴正半轴建立直角坐标系;在角α的终边上任取一个异于原点的点),(y x P ;点P 到原点的距离记为r ;则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -;则=+ααsin 2cos 。

三角函数与三角恒等变换

三角函数与三角恒等变换

三角函数与三角恒等变换三角函数是数学中的一个重要分支,它研究的是与三角形内角或者圆周上的角度之间的关系。

三角函数包括正弦函数、余弦函数和正切函数等。

正弦函数(sin)是一个周期为2π的周期函数,定义为直角三角形中对边与斜边的比值。

余弦函数(cos)也是一个周期为2π的周期函数,定义为直角三角形的邻边与斜边的比值。

正切函数(tan)是一个以π为周期的函数,定义为直角三角形的对边与邻边的比值。

在三角函数的研究中,常常会用到三角恒等变换。

三角恒等变换是指等式两边含有三角函数的等式,在一些条件下能够相互转换的变换关系。

以下是一些常见的三角恒等变换:1.度与弧度的转换:弧度=度数*π/180度数=弧度*180/π2.正弦函数的基本关系:sin²θ + cos²θ = 13.余弦函数的基本关系:1 + tan²θ = sec²θ1 + cot²θ = csc²θ4.正弦函数的正负关系:sin(-θ) = -sin(θ)5.余弦函数的正负关系:cos(-θ) = cos(θ)6.正切函数的正负关系:tan(-θ) = -tan(θ)7.三角函数的周期性:sin(θ + 2π) = sin(θ)cos(θ + 2π) = cos(θ)tan(θ + π) = tan(θ)此外,还有许多其他的三角恒等变换,包括和差公式、倍角公式、半角公式等等。

这些三角恒等变换在解决三角函数相关问题时非常有用,可以简化计算过程,拓宽解题思路。

三角函数与三角恒等变换在数学中有着广泛的应用,例如在解决三角方程、证明恒等式、描绘周期函数的图像等方面。

同时,它们也在物理学、工程学等应用科学中扮演着重要角色,如在振动、波动、电磁学等领域的研究中都会用到三角函数的知识。

总之,三角函数与三角恒等变换是数学中的重要知识点,它们的研究有助于我们更深入地理解角度与三角形之间的关系,并在实际问题中灵活运用这些知识。

三角函数的三角恒等式总结

三角函数的三角恒等式总结

三角函数的三角恒等式总结三角函数是数学中重要的概念之一,广泛应用于几何、物理学等领域。

三角恒等式是指一类等式,其中包含三角函数的关系,它们在解决三角函数相关问题中起到重要的作用。

本文旨在对常见的三角恒等式进行总结,以帮助读者更好地理解和应用三角函数。

一、正弦函数的三角恒等式1. 反正弦函数的三角恒等式:arcsin(x) + arccos(x) = π/22. 正弦函数的平方和的三角恒等式:sin²(x) + cos²(x) = 13. 正弦函数的和差角三角恒等式:sin(x + y) = sin(x)cos(y) + cos(x)sin(y)sin(x - y) = sin(x)cos(y) - cos(x)sin(y)二、余弦函数的三角恒等式1. 反余弦函数的三角恒等式:arccos(x) + arcsin(x) = π/22. 余弦函数的平方和的三角恒等式:cos²(x) + sin²(x) = 13. 余弦函数的和差角三角恒等式:cos(x + y) = cos(x)cos(y) - sin(x)sin(y)cos(x - y) = cos(x)cos(y) + sin(x)sin(y)三、正切函数的三角恒等式1. 反正切函数的三角恒等式:arctan(1/x) + arctan(x) = π/22. 正切函数的平方和的三角恒等式:tan²(x) + 1 = sec²(x)3. 正切函数的和差角三角恒等式:tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))四、其他三角恒等式1. 余切函数和正切函数的恒等式:csc²(x) = 1 + cot²(x)2. 正割函数和余割函数的恒等式:sec²(x) = 1 + tan²(x)综上所述,三角函数的三角恒等式是解决三角函数相关问题的有力工具。

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是数学中的一个重要概念,它可以帮助我们简化三角函数的复杂表达式,以及解决与三角函数相关的问题。

本文将介绍三角恒等变换的定义、常见的三角恒等变换公式,以及使用恒等变换解决问题的实例。

一、定义三角恒等变换是指通过等式变换将一个三角函数变换为具有相同函数值的其他三角函数的过程。

这种变换可以帮助我们简化三角函数的表达式,使其更易于计算和处理。

二、常见的三角恒等变换公式在三角恒等变换中,常见的公式包括以下几种:1. 余弦函数恒等变换:a) $\cos^2(x)+\sin^2(x)=1$ :这是最基本的三角恒等变换公式,称为余弦函数的平方与正弦函数的平方之和等于1。

b) $\cos(-x)=\cos(x)$ :余弦函数具有对称性质,关于y轴对称。

c) $\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ :余弦函数与正弦函数的关系,通过将自变量进行变换,可以转化为正弦函数。

2. 正弦函数恒等变换:a) $\sin(-x)=-\sin(x)$ :正弦函数具有奇函数的性质,关于原点对称。

b) $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$ :正弦函数与余弦函数的关系,通过将自变量进行变换,可以转化为余弦函数。

3. 三角函数的和差化积:a) $\sin(x \pm y)=\sin(x)\cos(y) \pm \cos(x)\sin(y)$ :正弦函数的和差化积公式。

b) $\cos(x \pm y)=\cos(x)\cos(y) \mp \sin(x)\sin(y)$ :余弦函数的和差化积公式。

4. 二倍角公式:a) $\sin(2x)=2\sin(x)\cos(x)$ :正弦函数的二倍角公式。

b) $\cos(2x)=\cos^2(x)-\sin^2(x)=2\cos^2(x)-1=1-2\sin^2(x)$ :余弦函数的二倍角公式。

三角函数的恒等变换总结

三角函数的恒等变换总结

三角函数的恒等变换总结三角函数的恒等变换,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变换成另一个与它等价的表达式.三角恒等变换是代数式恒等变换的推广和发展,进行三角恒等变换,除了要熟练运用代数恒等变换的各种方祛,还要抓住三角本身的特点,领会和掌握下列最基本最常见的变换:(1)公式变换三角公式是三角恒等变换的基础,必须深刻理解公式、抓住公式的特点,熟练地将三角公式正向、逆向、变形和综合使用。

①正确理解公式中和、差、倍的相对性例如单角可以看成是和角的差,又可以看成与角的和,可以看成是的半角,又可以看成是的倍角这样我们在三角恒等变换的过程中,就能整体地把握角之间的关系,灵活使用公式。

③抓住公式中角、函数、结构的特点.例如在公式中,角减半则函数次数翻倍.第一种变形便于和因式分解相联系,后两种变形直接地将用的余弦或正弦表示出。

又如在公式中,涉及到、的和与积,这个公式常常和韦达定理联用.③公式的正向使用要特别注意一个三角函数式的多种表达形式和几个三角公式的联用。

例如:④公式的逆向使用.如⑤公式的变形使用.如:,,,(2)角度变换角度变换是三角函数恒等变换的首选方法。

在进行三角恒等变换时,对角之间关系必须进行认真的分析。

①分析角之间的和、差、倍、分关系。

如,,,②在数值角的三角函数式化简中,要特别注意是否能够产生特殊角。

③熟悉两角互余、互补的各种形式,如,,正确使用诱导公式。

④引入辅助角进行角的变换。

如其中辅助角在哪个象限,由、的符号确定,的值由确定。

下列特殊情况必须熟记:;;;(3)函数变换函数变换是指“弦化切”法和“切化弦”法。

在同角三角函数变换中,弦切互化主要是应用公式;在非同角三角变换中,函数变换往往依赖于角度变换。

(4)1的变换。

如:,,,,,(5)幂的变换公式,常用来升幂和降幂,所便根据需要将三角函数式按一定方向进行变形。

三角恒等变换的基本题型三角恒等变换主要包括求值、化简、证明.(1)求值常见的有给用求值、给值求值、给值求角.①给角求值的关键是正确地分析角间关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;③给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.(2)化简化简有两种常见的形式①未指明答案的恒等变形,这时应把结果化为最简形式②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变换、函数变换等各种变换.(3)证明它包括无条件的恒等式和附加条件恒等式的证明.①无条件恒等式的证明.证明时要认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.③有附加条件的恒等式的证明/证明的关键是恰当地利用附加条件,要认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用证明这类恒等式时,还常常用到消元法和基本量方法.消元法即用代入加减、乘除、平方后相加减等手段消去某些量;基本量方法就是适当选择其中可以独立取值的量作为基本量,把其它的量都用基本量表示出来,从而将问题归结为研究这些量之间的关系.。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。

这些恒等变换在解决三角函数相关问题时非常有用。

下面是对一些常见的三角恒等变换进行总结和详解。

1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。

- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。

- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。

2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。

- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。

- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。

3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。

- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。

- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。

4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。

- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。

- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。

在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。

这些等式在解决各种三角函数问题时起到了重要的作用。

1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。

例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。

通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。

2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。

例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。

通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。

3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。

根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。

例如,sin²(x) + cos²(x) = 1就是一个平方和关系。

通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。

4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。

例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。

通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。

5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。

5 三角函数及简单恒等变换(理科)

一、知识要点1、任意角三角函数的定义(1)单位圆定义法:在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:①y叫做α的正弦,记作sinα,即sin α=y;②x叫做α的余弦,记作cosα,即cos α=x;③yx叫做α的正切,记作tanα,即tan α=yx(x≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.(2)终边定义法:设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sin α=yr,cos α=xr,tan α=y x.2、同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan α=sin αcos α(α≠kπ+π2,k∈Z).注意:同角三角函数的基本关系揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin22α+cos22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.(3)辅助角公式:a sinα+b cosα=a2+b2sin(α+φ),其中cosφ=aa2+b2,sinφ=ba2+b2,或tanφ=ba,φ角所在象限与点(a,b)所在象限一致.3、诱导公式(奇变偶不变,符号看象限)(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z. (2)公式二:sin(π+α)= - sin α,cos(π+α)=- cos α,tan(π+α)=tan α. (3)公式三:sin(-α)=- sin α,cos(-α)=cos α,tan(-α)=- tan α. (4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.(5)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六. (6)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4、两角和与差公式(1)sin (α±β)=sin αcos β±cos αsin β (2)cos (α±β)=cos αcos β∓sin αsin β (3)tan (α±β)=tan α±tan β1∓tan αtan β5、二倍角公式(1)sin2α=2sin αcos α(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α(3)tan2α=2tan α1-tan 2α67、函数y =tan x 的性质与图象8、函数()sin y A x ωϕ=+的图象* 由函数y =sin x 的图象经过怎样的变换得到函数y =sin(ωx +φ)(ω>0)的图象? y =sin x 的图象变换成y =sin(ωx +φ)(ω>0)的图象一般有两个途径: 途径一:先相位变换,再周期变换先将y =sin x 的图象向左(φ>0)或向右(φ<0)平移|φ|个单位长度,再将得到的图象上各点的横坐标变为原来的 1ω倍(纵坐标不变),得y =sin(ωx +φ)的图象. 途径二:先周期变换,再相位变换先将y =sin x 的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),再将得到的图象向左(φ>0)或向右(φ<0)平移|φ|ω个单位长度,得y =sin(ωx +φ)的图象. * 函数y =A sin(ωx +φ)+k (A >0,ω>0)的性质(1)y max =A +k ,y min =-A +k ;A =y max -y min 2,k =y max +y min2.(2)ω可由ω=2πT确定,其中周期T 可观察图象获得.(3)由ωx 1+φ=0,ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π中的一个确定φ的值.常考习题一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.02120sin 等于( )A .23±B .23C .23-D .21 3.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( ) A.43- B.34- C.43 D.344.4tan 3cos 2sin 的值( )A.小于0B.大于0C.等于0D.不存在5.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是( ) A .1sin 2y x = B .1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-6.函数)652cos(3π-=x y 的最小正周期是( )A .52π B .25π C .π2 D .π5 7.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中, 最小正周期为π的函数的个数为( ) A .1个 B .2个 C .3个 D .4个二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 。

三角恒等变换与三角方程

三角恒等变换与三角方程三角恒等变换是解决三角方程的重要工具,它可以将一个复杂的三角方程转化为一个简单的等价方程。

在本文中,我们将介绍三角恒等变换的基本概念和常见形式,并通过几个例子来说明其应用。

一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数表达式变换成与之等价的另一个三角函数表达式的过程。

这些变换可以通过三角函数的基本性质和恒等式来实现。

三角函数的基本性质包括周期性、对称性和奇偶性等,而恒等式则是由三角函数之间的相互关系所确定的等式。

二、常见的三角恒等变换形式1. 万能公式:sin²θ + cos²θ = 1万能公式是三角学中最基本、最重要的恒等式之一。

它表明对于任意实数θ,sin²θ与cos²θ的和总是等于1。

该恒等式可以帮助我们简化复杂的三角方程,将其转化为更易求解的形式。

2. 余弦和差:cos(A ± B) = cosAcosB ∓ sinAsinB余弦和差公式是将两个角的余弦与正弦的乘积相结合,得到一个角的余弦的公式。

通过使用余弦和差公式,我们可以将一个包含两个角的三角方程化简为只包含一个角的方程。

3. 正弦和差:sin(A ± B) = sinAcosB ± cosAsinB正弦和差公式与余弦和差公式类似,但是是将两个角的正弦与余弦的乘积相结合,得到一个角的正弦的公式。

通过使用正弦和差公式,我们可以将包含两个角的三角方程转化为只包含一个角的方程。

4. 二倍角:sin2θ = 2sinθcosθ, cos2θ = cos²θ - sin²θ二倍角公式是将一个角的正弦和余弦的乘积表示为该角的二倍角的形式。

通过使用二倍角公式,我们可以将三角方程中的角度减半,并将其转化为只包含一半角度的方程。

5. 倍角:sin2θ = 2sinθcosθ, cos2θ = cos²θ - sin²θ倍角公式是将一个角的正弦和余弦的乘积表示为该角的二倍角的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的性质及三角恒等变换 温州中学 叶昭蓉

概述:三角函数的基础是平面几何中的相似形与圆,但研究的方法是采用代数中函数的研

究方法和代数运算的方法,于是使三角函数成了联系几何和代数的桥梁,使它在几何和代数中都能有所作为。这无疑使三角函数在复数、立体几何和解析几何中有着广泛的应用。 【考点梳理】 一、考试内容 1.角的概念的推广,弧度制。 2.任意角的三角函数、单位圆中的三角函数、同角三角函数的基本关系、正弦、余弦的诱导公式。 3.两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切。 4.正弦函数、余弦函数的图像和性质、周期函数、函数y=Asin(ωx+)的图像、正切函数的图像和性质、已知三角函数值求角。 5.余弦定理、正弦定理。利用余弦定理、正弦定理解斜三角形。 二、考试要求 1.理解任意角的概念、弧度制的意义,并能正确地进行弧度和角度的换算。 2.掌握任意角的三角函数的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系,掌握正弦、余弦的诱导公式,了解周期函数和最小正周期的意义,了解奇函数、偶函数的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确地运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。5.了解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y= Asin(ωx+)的简图,理解A、ω、的物理意义。

6.会由已知三角函数值求角,并会用符号arcsin,arccos,arctanxxx表示。 7.掌握余弦定理、正弦定理,并能初步运用它们解斜三角形。 (2005年考纲删减知识点:“能利用计算器解决三角形的计算问题”)

三、知识网络: 【命题研究】 分析近五年的全国高考试题,有关三角函数的内容平均每年有25分,约占17%,浙江省2004年高考试题这部分内容有17分,占总分11.3%。试题的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求植,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是高考命题的一个常考的基础性的题型。其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题。 数学试题的走势,体现了新课标的理念,突出了对创新能力的考查。

如:福建卷的第17题设函数,abfx2cos,1,ax其中向量

cos,3sin2bxx

,.xR113,,33xx若fx且求;

(2)若函数y=2sin2x的图象按向量,2mnmc平移后得到函数y=fx的图象,求实数m、n的值。此题“重视知识拓宽,开辟新领域”,将三角与向量知识交汇。 高考试题联系现行新教材,如全国(2)卷中的第17题:已知锐角三角形ABC中,

,51sin,53sinBABA(1)求证:BAtan2tan;(2)设3AB,求AB边

上的高,就与下列课本习题相接近,课本第一册(下)第四章三角函数的小节与复习例2:

已知51sin,32sin,求tantan的值。 【复习策略】 三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出“和、差、倍角公式”的作用,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,难度以灵活掌握倍角的余弦公式的变式运用为宜。由于三角解答题是基础题、常规题,属于容易题的范畴,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力。 解答三角高考题的一般策略: (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关三角公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的三角公式,促使差异的转化。 三角函数恒等变形的基本策略: (1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=2-2等。 (3)降次,即二倍角公式降次。 (4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。

(5)引入辅助角。asinθ+bcosθ=22basin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=ab确定。

第一课时 【典型例题分析与解答】

例1、化简sinsincoscoscoscos22221222 分析:对三角函数式化简的目标是: (1)次数尽可能低; (2)角尽可能少; (3)三角函数名称尽可能统一; (4)项数尽可能少。 观察欲化简的式子发现: (1)次数为2(有降次的可能); (2)涉及的角有α、β、2α、2β,(需要把2α化为α,2β化为β); (3)函数名称为正弦、余弦(可以利用平方关系进行名称的统一); (4)共有3项(需要减少),由于侧重角度不同,出发点不同,本题化简方法不止一种。

解法一:(复角单角,从“角”入手)

原式sinsincoscos(cos)(cos)222222122121 sinsincoscos(coscoscoscos)22222222124221sinsincoscoscoscos22222212

sinsincossincos2222212

sincos21211212 解法二:(从“名”入手,异名化同名)

原式sinsin(sin)coscoscos222211222

cossin(cossin)coscos22221222 cossincoscoscos2221222 coscos(sincos)222122 1222121222coscossin(sin)

12212212coscos

解法三:(从“幂”入手,利用降幂公式先降次) 原式1221221221221222coscoscoscoscoscos

14122221412222(coscoscoscos)(coscoscoscos) 2cos2cos21

14141

2 解法四:(从“形”入手,利用配方法,先对二次项配方)

原式(sinsincoscos)sinsincoscoscoscos221222

2cos2cos212sin2sin21)(cos2

cos()cos()21222 1)(cos221)(cos22

1

2 [注]在对三角式作变形时,以上四种方法,提供了四种变形的角度,这也是研究其他三角问题时经常要用的变形手法。

例2、已知函数()sincos()fxabxcxxR的图像过点(01)(1)2πAB,,,,且b>0,又

()fx的最大值为221,(1)求函数()fx 的解析式;(2)由函数y=()fx图像经过平移是否能得到一个奇函数y=()gx的图像?若能,请写出平移的过程;若不能,请说明理由。 解:(1)22()sincossin()(tan)cfxabxcxabcxφφb,由题意,可得

2211221acababc



,解得122abc,所以()12sin2cosfxxx;

(2) ()12sin2cos22sin()14πfxxxx,将()fx的图像向上平移1个单位得到函数22sin()4πyx的图像,再向右平移4π单位得到22sinyx的图像,故将()fx的图像先向上平移1个单位,再向右平移4π单位就可以得到奇函数y=()gx的图像。 [注]本题考查的是三角函数的图象和性质等基础知识,其是高考命题的重点内容,应于以重视。

相关文档
最新文档