2013-2014学年七年级上册数学期中试卷及答案【苏州市高新区】

合集下载

2014年江苏省苏州市中考数学模拟试卷及答案

2014年江苏省苏州市中考数学模拟试卷及答案
(2)在这次测试中,学生跳绳次数的众数落在第▲小组内,中位数落在第▲小组内.
(3)若次数在110以上(含110次)为达标,试估计该校初三毕业生中达标的人数约为多少人.
25.(6分)如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7米,求树高.(精确到0.1m)
三、解答题
19.(5分)计算
20.(5分)解方程: ;
21.(6分)解不等式组,并求出其最小整数解:
22.(6分)如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.
(1)求证:AE=DF
(2)AM⊥DF.
23.(本题满分6分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?
江苏省苏州市2014年中考数学模拟试卷
1. 的值是()
A.±5 B.5 C.–5D.625
2.下列运算正确的是()
A. B. C. D.
3.下列图形中,既是轴对称图形,又是中心对称图形的是()
4.⊙O1和⊙O2的半径分别为3cm、4cm,圆心距O1O2为5cm,则这两圆的位置关系是()
A.内切B.外切C.内含D.相交
③sin∠COA= ;④AC+OB=12 .其中正确的结论有()
A.1个B.2个在“爱心传递”活动中,共捐款37400元,请你将数字37400用科学计数法并保留两个有效数字表示为.
12.函数y= 中,自变量x的取值范围是.
13.分解因式:3 2+6 +3=______________.
(2)点B(m,-2)也在反比例函数 的图象上,连接AB,与x轴交于点C,若AC与x轴正方向的夹角为β,求sinβ的值;

2022-2023学年江苏省苏州高新区第二中学七年级数学第一学期期末学业水平测试试题含解析

2022-2023学年江苏省苏州高新区第二中学七年级数学第一学期期末学业水平测试试题含解析

2022-2023学年七上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程()230x +=的解是( )A .2B .2-C .3D .3-2.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强3.将一副直角三角尺如图装置,若18AOD ∠=︒,则BOC ∠的大小为( )A .162︒B .142︒C .172︒D .150︒4.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)5.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第6个图中共有点的个数是( )A .46B .58C .63D .646.上体育课时,老师检查学生站队是不是在一条直线上,只要看第一个学生就可以了,若还能够看到其他学生,那就不在一条直线上,这一事例体现的基本事实是( )A .两点之间,直线最短B .两点确定一条线段C .两点之间,线段最短D .两点确定一条直线7.数75000000用科学记数法表示为( )A .7.5×107B .7.5×106C .75x 106D .75×1058.如图为成都市部分区县森林覆盖率统计图.其中,森林盖率高于50%的城市有( )A .2个B .3个C .4个D .5个9.已知代数式227a b -=,则24210a b -++的值是( )A .7B .4C .4-D .7-10.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场.A .3B .4C .5D .611.如图,点B C 、在线段AD 上,AC BD =,3BC AB =,那么AC 与CD 的数量关系为( )A .3AC CD =B .4AC CD = C .5AC CD = D .6AC CD =12.3-的绝对值是( )A .3B .3-C .13- D .13二、填空题(每题4分,满分20分,将答案填在答题纸上)13.若13a +与273a -互为相反数,则a=________.14.10518'48"35.285+=_____︒_______,______,,15.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k -=2(x+3)的解互为相反数,则k 的值是_____ 16.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.17.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)某园林局有甲、乙、丙三个植树队,已知甲队植树()35a +棵,乙队植树的棵树比甲队植的棵数的2倍还多8棵,丙队植树的棵数比乙队植的棵数的一半少6棵。

2021-2022学年江苏省苏州市七年级(上)期中数学试卷(解析版)

2021-2022学年江苏省苏州市七年级(上)期中数学试卷(解析版)

2021-2022学年江苏省苏州市七年级第一学期期中数学试卷一.选择题(本大题共10小题,每小题2分,共20分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.﹣2021的绝对值是()A.﹣2021B.2021C.D.﹣2.2021年7月24日,中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,为贯彻落实“双减政策”,各地出台了相关措施,据基础教育“双减”工作监测平台数据显示,截至9月22日,全国有10.8万义务教育学校已填报课后服务信息,10.8万用科学记数法可表示为()A.1.08×104B.1.08×105C.10.8×104D.10.8×1053.下列人或物中,质量最接近1吨的是()A.1000枚1元硬币B.25名小学生C.5000个鸡蛋D.10辆家用轿车4.下列说法错误的是()A.﹣的倒数是﹣3B.无限不循环小数叫做无理数C.a2+b2表示a、b两数和的平方D.πr2是2次单项式5.甲、乙、丙三人分一筐梨,准备按3:2:5或1:2:3分配,这两种分法中分得梨一样多的人是()A.甲B.乙C.丙D.甲和丙6.下列问题情境,不能用加法算式﹣3+10表示的是()A.数轴上表示﹣3与10的两个点之间的距离B.某日最低气温为﹣3℃,温差为10℃,该日最高气温C.用10元纸币购买3元文具后找回的零钱D.水位先下降3cm,再上升10cm后的水位变化情况7.如图,正方体的6个面上分别标有字母A,B,C,D,E,F,将该正方体按图示方式转动,根据图形可得,与字母F相对的是()A.字母A B.字母B C.字母C D.字母E8.下列图形中,三角形ABC和平行四边形ABDE面积相等的是()A.②③B.③④C.②③④D.①②③④9.如果|a+3|+(b﹣2)2=0,那么代数式(a+b)2021的值是()A.﹣2021B.2021C.﹣1D.110.小赵是一位自行车运动爱好者,小赵在一次秋游时的路程与时间变化情况如图所示,从图中可以看出平均车速为每小时10千米的时段是()A.前3小时B.第3至5小时C.最后1小时D.后3小时二、填空题(本大题共8小题,每小题2分,共16分不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.2020年我国对“一带一路”沿线国家的直接投资额达八千一百零八亿二千万元,横线上的数改写成用“亿”作单位的数是亿.12.比较大小(用“>”“=”“<”连接):﹣(﹣2)﹣|﹣3|.13.写出一个含字母x的代数式,使得当x=4时,该代数式的值为﹣9,这个代数式可以是.(本题答案不唯一,填一个正确的即可)14.华为是中国大陆首个进入“最佳全球品牌”排行榜单的企业,拥有全球最领先的自动化生产线.如果该自动化生产线在手机电路板上插入1个某种零件的时间为0.01秒,那么1分钟可以插入该种零件个.15.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.16.若m2+mn=1,n2﹣2mn=10,则代数式m2+5mn﹣2n2的值为.17.幻方是中国古代传统游戏,多见于官府、学堂.如图,有一个类似于幻方的“幻圆”,将﹣2,﹣4,﹣6,0,3,5,7,9分别填入图中的圆圈内,使横、竖,以及内、外两圈上的4个数字之和都相等.现已完成了部分填数,则图中x+y的值为.18.学校举行“请党放心,强国有我”主题朗诵比赛.张老师准备为同学们购买某种奖品,她观察如下价格表后发现,购买奖品的份数越多,每份奖品的平均价格就越便宜.如果以这种方式购买8份奖品,那么总价是元.数量(份)12345总价(元)8.5016.5024.0031.0037.50三、解答题(本大题共10小题,共64分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:72×+72÷1.5.20.计算:23÷(﹣4)2×3.2﹣|1﹣|.21.先化简,再求值:5(3a2b﹣ab2)﹣2(﹣ab2+3a2b),其中a=﹣2,b=﹣3.22.为庆祝建党一百周年,电影公司举行“学党史,悟初心”有奖观影活动.公司拟从5种观影代金券中挑选3种作为奖品,奖品总价值不超过1000元.5种观影代金券分别是:A券499元/张,B券399元/张,C券299元/张,D券99元/张,E券19元/张.活动设一等奖1名,二等奖5名,三等奖10名.试确定三个等级奖品的名称,并简要说明理由.23.如图,正方形与等腰直角三角形的一边在同一条水平直线上,现保持三角形不动,正方形以2厘米/秒的速度向右匀速运动.(1)在图中画出第8秒时,正方形所在的位置;(2)计算第11秒时,正方形与等腰直角三角形重叠部分的面积.24.如图,数轴上的点A,B,C分别表示有理数a,b,c.(1)比较大小:a b,b﹣1(填“>”、“<”或“=”);(2)化简:|﹣a|+|b﹣a|﹣|a+c|.25.用长方形和三角形按图示排列规律组成一连串图形.(1)当某个图形中长方形个数为5时,三角形个数为;(2)设某个图形中长方形个数为x,三角形个数为y.①y与x的数量关系为y=(用含x的代数式表示);②若某个图形中长方形与三角形个数之和为28,求该图中长方形个数.26.如表是苏州市地铁收费标准:分段乘坐里程(公里)单程票票价10<里程≤62元26<里程≤113元311<里程≤164元416<里程≤235元523<里程≤306元6里程20公里以上,每9公里分段加1元备注:普通乘客刷卡乘车可享受单程票票价9.5折优惠小明的妈妈每天乘坐地铁上下班,单程12公里,每月按22天上下班计算.(1)求小明的妈妈刷卡乘车一个月的地铁交通费;(2)地铁公司有三种计次月票可供选择,A月票60元/20次,B月票85元/30次,C月票130元/50次.月票仅限当月使用,每次不限里程,月底清零,小明的妈妈每月用于上下班的地铁交通费最少是多少元?请说明理由.27.规定一种“⊕”运算:a⊕b=ab+a+b+1,如3⊕4=3×4+3+4+1=20.(1)①计算:(﹣5)⊕3=,3⊕(﹣5)=;②说明“⊕”运算具有交换律;(2)①计算:(﹣3)⊕(4⊕2)=,[(﹣3)⊕4]⊕2=;②由计算结果可得“⊕”运算结合律(填“具有”或“不具有”).28.【操作感知】如图①,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A 与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A'处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点M与表示数b的点N重合,则折痕与数轴交点表示的数为(用含a,b的代数式表示).【问题解决】(1)若C,D,E为数轴上不同的三点,点C表示的数为﹣4,点D表示的数为2,如果C,D,E三点中的一点到其余两点的距离相等,求点E表示的数;(2)如图②,若AB是周长为l的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动2周,点A落在数轴上的点Q处;将圆从原点出发沿数轴负方向滚动1周,点A落在数轴上的点P处.将此长方形透明纸沿P,Q剪开,将点P,Q之间一段透明纸对折,使其左、右两端重合,这样连续对折n次后,再将其展开,求最右端折痕与数轴交点表示的数.参考答案一.选择题(本大题共10小题,每小题2分,共20分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.﹣2021的绝对值是()A.﹣2021B.2021C.D.﹣【分析】根据绝对值的定义即可得出答案.解:﹣2021的绝对值为2021,故选:B.2.2021年7月24日,中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,为贯彻落实“双减政策”,各地出台了相关措施,据基础教育“双减”工作监测平台数据显示,截至9月22日,全国有10.8万义务教育学校已填报课后服务信息,10.8万用科学记数法可表示为()A.1.08×104B.1.08×105C.10.8×104D.10.8×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:10.8万=108000=1.08×105.故选:B.3.下列人或物中,质量最接近1吨的是()A.1000枚1元硬币B.25名小学生C.5000个鸡蛋D.10辆家用轿车【分析】质量单位有:吨、千克、克,本题中结合实际情况选择合适的计量单位即可判断出答案.例如:1名六年级的学生大约重40kg,求出25名学生的重量;1个鸡蛋大约50g,求出5000个鸡蛋的重量等等.解:1吨=1000千克,A、1元硬币1个大约6g,1000×6g=6000g=6kg,故此选项不符合题意;B、六年级的学生体重大约40kg,25×40kg=1000kg,故此选项符合题意;C、1个鸡蛋大约50g,5000×50g=250000g=250kg,故此选项不符合题意;D、1辆家用轿车大约2000kg,10×2000kg=20000kg,故此选项不符合题意.故选:B.4.下列说法错误的是()A.﹣的倒数是﹣3B.无限不循环小数叫做无理数C.a2+b2表示a、b两数和的平方D.πr2是2次单项式【分析】根据倒数、无理数、代数式表示的意义与单项式的定义分别对每一项进行分析,即可得出答案.解:A、﹣的倒数是﹣3,正确,不符合题意;B、无限不循环小数叫做无理数,正确,不符合题意;C、a2+b2表示a、b两数的平方和,故原说法错误,符合题意;D、πr2是2次单项式,正确,不符合题意;故选:C.5.甲、乙、丙三人分一筐梨,准备按3:2:5或1:2:3分配,这两种分法中分得梨一样多的人是()A.甲B.乙C.丙D.甲和丙【分析】根据题意可知,这一筐梨为单位“1”不变,只是分的份数不同,因此求出每个人两次分得这筐梨的几分之几,分率一样的即可判断分得一样多.解:按3:2:5分配时,甲分得整筐梨的,乙分得整筐梨的,丙分得整筐梨的,按1:2:3分配时,甲分得整筐梨的,乙分得整筐梨的,丙分得整筐梨的,∴这两种分法中分得梨一样多的人是丙,故选:C.6.下列问题情境,不能用加法算式﹣3+10表示的是()A.数轴上表示﹣3与10的两个点之间的距离B.某日最低气温为﹣3℃,温差为10℃,该日最高气温C.用10元纸币购买3元文具后找回的零钱D.水位先下降3cm,再上升10cm后的水位变化情况【分析】根据有理数的加减法的意义判断即可.解:A.数轴上﹣3与10的两个点之间的距离是10﹣(﹣3),故本选项符合题意;B.﹣3+10可以表示某日最低气温为﹣3℃,温差为10℃,该日最高气温,故本选项不合题意;C.﹣3+10可以表示用10元纸币购买3元文具后找回的零钱,故本选项不合题意;D.水位先下降3cm,再上升10cm后的水位变化情况,能用加法算式﹣3+10表示,故本选项不合题意.故选:A.7.如图,正方体的6个面上分别标有字母A,B,C,D,E,F,将该正方体按图示方式转动,根据图形可得,与字母F相对的是()A.字母A B.字母B C.字母C D.字母E【分析】由此正方体的不同放置可知:D与E相对,F相对的是C,由此得出答案.解:由此正方体的不同放置可知:与字母F相对的是字母C.故选:C.8.下列图形中,三角形ABC和平行四边形ABDE面积相等的是()A.②③B.③④C.②③④D.①②③④【分析】根据三角形的面积公式和平行四边形的面积公式解答即可.解:①三角形ABC的面积=,平行四边形ABDE的面积=4×2=8,不相等;②三角形ABC的面积=,平行四边形ABDE的面积=4×2=8,相等;③三角形ABC的面积=,平行四边形ABDE的面积=4×2=8,相等;④三角形ABC的面积=,平行四边形ABDE的面积=4×2=8,相等;故选:C.9.如果|a+3|+(b﹣2)2=0,那么代数式(a+b)2021的值是()A.﹣2021B.2021C.﹣1D.1【分析】先求出a、b的值,再代入计算即可.解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,∴a=﹣3,b=2,∴(a+b)2021=(﹣3+2)2021=(﹣1)2021=﹣1,故选:C.10.小赵是一位自行车运动爱好者,小赵在一次秋游时的路程与时间变化情况如图所示,从图中可以看出平均车速为每小时10千米的时段是()A.前3小时B.第3至5小时C.最后1小时D.后3小时【分析】根据题意和函数图象中的数据,利用“速度=路程÷时间”解答即可.解:前3小时的平均速度为:40÷3=(千米/时);第3至5小时的平均速度为:(50﹣40)÷2=5(千米/时);最后1小时的平均速度为:(70﹣50)÷1=20(千米/时);后3小时的平均速度为:(70﹣40)÷3=10(千米/时);故选:D.二、填空题(本大题共8小题,每小题2分,共16分不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.2020年我国对“一带一路”沿线国家的直接投资额达八千一百零八亿二千万元,横线上的数改写成用“亿”作单位的数是8108.2亿.【分析】改写成用“亿”作单位的数在亿位的右下角点上小数点,再写上亿即可求解.解:八千一百零八亿二千万元,横线上的数改写成用“亿”作单位的数是8108.2亿.故答案为:8108.2.12.比较大小(用“>”“=”“<”连接):﹣(﹣2)>﹣|﹣3|.【分析】先化简,再比较两个数的大小即可解:∵﹣(﹣2)=2,﹣|﹣3|=﹣3,∴﹣(﹣2)>﹣|﹣3|.故答案为:>.13.写出一个含字母x的代数式,使得当x=4时,该代数式的值为﹣9,这个代数式可以是x﹣13.(本题答案不唯一,填一个正确的即可)【分析】利用题意写出一个简单的代数式即可.解:∵4﹣13=﹣9,∴这个代数式为:x﹣13.故答案为:x﹣13(答案不唯一).14.华为是中国大陆首个进入“最佳全球品牌”排行榜单的企业,拥有全球最领先的自动化生产线.如果该自动化生产线在手机电路板上插入1个某种零件的时间为0.01秒,那么1分钟可以插入该种零件6000个.【分析】先把1分钟化成60秒,再根据插入1个某种零件的时间为0.01秒,即可得出1分钟可以插入该种零件的个数.解:1分钟=60秒,60÷0.01=6000(个),答:1分钟可以插入该种零件6000个.故答案为:6000.15.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为(8,6).【分析】根据平行四边形的性质:对边平行且相等,解答即可.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),∴点D坐标为(8,6);故答案为:(8,6).16.若m2+mn=1,n2﹣2mn=10,则代数式m2+5mn﹣2n2的值为﹣19.【分析】根据整式的加减运算法则即可求出答案.解:∵m2+mn=1,n2﹣2mn=10,∴原式=m2+mn+4mn﹣2n2=(m2+mn)﹣2(n2﹣2mn)=1﹣2×10=1﹣20=﹣19,故答案为:﹣19.17.幻方是中国古代传统游戏,多见于官府、学堂.如图,有一个类似于幻方的“幻圆”,将﹣2,﹣4,﹣6,0,3,5,7,9分别填入图中的圆圈内,使横、竖,以及内、外两圈上的4个数字之和都相等.现已完成了部分填数,则图中x+y的值为﹣10或5.【分析】由于八个数的和是12,所以需满足两个圈的和是6,横、竖的和也是6.列等式可得结论.解:设小圈上的数为c,大圈上的数为d,﹣2+(﹣4)+(﹣6)+0+3+5+7+9=12,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是6,横、竖的和也是6,则0+c+5+3=6,得c=﹣2,﹣2+7+5+y=6,得y=﹣4,x+(﹣4)+7+d=6,x+d=3,∵当x=﹣6时,d=9,则x+y=﹣6+(﹣4)=﹣10,当x=9时,d=﹣6,则x+y=9+(﹣4)=5.故答案为:﹣10或5.18.学校举行“请党放心,强国有我”主题朗诵比赛.张老师准备为同学们购买某种奖品,她观察如下价格表后发现,购买奖品的份数越多,每份奖品的平均价格就越便宜.如果以这种方式购买8份奖品,那么总价是54元.数量(份)12345总价(元)8.5016.5024.0031.0037.50【分析】根据表格中的数量与总价的关系确定出所求即可.解:根据题意得:37.5+6+5.5+5=54(元),则以这种方式购买8份奖品,那么总价是54元.三、解答题(本大题共10小题,共64分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:72×+72÷1.5.【分析】原式变形后,逆用乘法分配律计算即可求出值.解:原式=72×+72×=72×(+)=72×=64.20.计算:23÷(﹣4)2×3.2﹣|1﹣|.【分析】原式先计算乘方及绝对值,再计算乘除,最后算加减即可求出值.解:原式=8÷16×3.2﹣|﹣|=×3.2﹣1.6=1.6﹣1.6=0.21.先化简,再求值:5(3a2b﹣ab2)﹣2(﹣ab2+3a2b),其中a=﹣2,b=﹣3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=15a2b﹣5ab2+2ab2﹣6a2b=9a2b﹣3ab2,当a=﹣2,b=﹣3时,原式=9×(﹣2)2×(﹣3)﹣3×(﹣2)×(﹣3)2=﹣108+54=﹣54.22.为庆祝建党一百周年,电影公司举行“学党史,悟初心”有奖观影活动.公司拟从5种观影代金券中挑选3种作为奖品,奖品总价值不超过1000元.5种观影代金券分别是:A券499元/张,B券399元/张,C券299元/张,D券99元/张,E券19元/张.活动设一等奖1名,二等奖5名,三等奖10名.试确定三个等级奖品的名称,并简要说明理由.【分析】根据题意,可以先算出价值最低的情况,然后再观察奖券的价值,即可得到三个等级奖品的名称,并说明理由.解:一等奖为C券,二等奖为D券,三等奖为E券,理由:当一等奖为C券,二等奖为D券,三等奖为E券时,总的价值为:299×1+99×5+19×10=984(元),∵984<1000,∴当一等奖为C券,二等奖为D券,三等奖为E券时,符合题意;很显然,当其他情况时总价值都大于1000元,故一等奖为C券,二等奖为D券,三等奖为E券.23.如图,正方形与等腰直角三角形的一边在同一条水平直线上,现保持三角形不动,正方形以2厘米/秒的速度向右匀速运动.(1)在图中画出第8秒时,正方形所在的位置;(2)计算第11秒时,正方形与等腰直角三角形重叠部分的面积.【分析】(1)先计算8秒的运动距离,然后画出第8秒时正方形的位置;(2)先计算11秒的运动距离,画出第11秒时的位置,然后求得重叠部分的面积.解:(1)正方形运动8秒时,运动的距离为8×2=16(cm),∴第8秒时正方形的位置如图1所示.(2)正方形运动11秒时,运动的距离为11×2=22(cm),∴第11秒时正方形的位置如图2所示,记正方形ABCD与等腰直角三角形的交点分别为E、F,∴△EBF为等腰直角三角形,且EB=22﹣16=6(cm),∴BF=6(cm),∴S△EBF==×6×6=18(cm2),∴重叠部分的面积为18cm2.24.如图,数轴上的点A,B,C分别表示有理数a,b,c.(1)比较大小:a<b,b<﹣1(填“>”、“<”或“=”);(2)化简:|﹣a|+|b﹣a|﹣|a+c|.【分析】(1)根据当数轴方向朝右时,右边的数总比左边的数大判断即可;(2)根据题意判断出b﹣a和a+c的符号,再绝对值性质去绝对值符号化简可得.解:(1)由题意可知,a<b,b<﹣1;故答案为:<;<;(2)由题意可知a<0,b﹣a>0,a+c<0,∴|﹣a|+|b﹣a|﹣|a+c|=﹣a+b﹣a﹣(﹣a﹣c)=﹣a+b﹣a+a+c=﹣a+b+c.25.用长方形和三角形按图示排列规律组成一连串图形.(1)当某个图形中长方形个数为5时,三角形个数为8;(2)设某个图形中长方形个数为x,三角形个数为y.①y与x的数量关系为y=2(x﹣1)(用含x的代数式表示);②若某个图形中长方形与三角形个数之和为28,求该图中长方形个数.【分析】(1)根据图形直接可得;(2)①由图可知每个图形中三角形的个数为长方形个数与1的差的2倍,据此可得;②根据①中所得结果,求出x的值即可.解:(1)∵长方形个数为2时,三角形个数为2个,即2=2×1=2;长方形个数为3时,三角形个数为4个,即4=2×2=4;长方形个数为4时,三角形个数为6个,即6=3×2=6.∴当某个图形中长方形个数为5时,三角形个数为4×2=8,故答案为:8;(2)①∵长方形个数为2时,三角形个数为2个,即2=2×1=2;长方形个数为3时,三角形个数为4个,即4=2×2=4;长方形个数为4时,三角形个数为6个,即6=3×2=6.…∴长方形个数为x,三角形个数为y时,y与x的数量关系为y=2(x﹣1)(用含x的代数式表示);故答案为:2(x﹣1);②当x+y=28时,2(x﹣1)+x=28,解得:x=10,答:该图中长方形个数为10.26.如表是苏州市地铁收费标准:分段乘坐里程(公里)单程票票价10<里程≤62元26<里程≤113元311<里程≤164元416<里程≤235元523<里程≤306元6里程20公里以上,每9公里分段加1元备注:普通乘客刷卡乘车可享受单程票票价9.5折优惠小明的妈妈每天乘坐地铁上下班,单程12公里,每月按22天上下班计算.(1)求小明的妈妈刷卡乘车一个月的地铁交通费;(2)地铁公司有三种计次月票可供选择,A月票60元/20次,B月票85元/30次,C月票130元/50次.月票仅限当月使用,每次不限里程,月底清零,小明的妈妈每月用于上下班的地铁交通费最少是多少元?请说明理由.【分析】(1)根据题意和表格中的数据,可以计算出小明的妈妈刷卡乘车一个月的地铁交通费;(2)根据题意,利用分类讨论的方法,分别求出购买各种月票的较低费用,然后比较大小即可.解:(1)由表格可知,小明的妈妈每次单程票票价为4元,故小明的妈妈刷卡乘车一个月的地铁交通费为:4×2×22×0.95=167.2(元),即小明的妈妈刷卡乘车一个月的地铁交通费是167.2元;(2)小明的妈妈每月用于上下班的地铁交通费最少是130元,理由:∵小明妈妈一个月需要坐地铁22×2=44(次),∴当选择A月票时较低的费用为:60×2+4×4×0.95=135.2(元),当选择B月票时较低的费用为:85+(44﹣30)×4×0.95=138.2(元),当选择C月票时的费用为130元;∵130<135.2<138.2,∴小明的妈妈每月用于上下班的地铁交通费最少是130元.27.规定一种“⊕”运算:a⊕b=ab+a+b+1,如3⊕4=3×4+3+4+1=20.(1)①计算:(﹣5)⊕3=﹣16,3⊕(﹣5)=﹣16;②说明“⊕”运算具有交换律;(2)①计算:(﹣3)⊕(4⊕2)=﹣32,[(﹣3)⊕4]⊕2=﹣27;②由计算结果可得“⊕”运算不具有结合律(填“具有”或“不具有”).【分析】(1)①根据a⊕b=ab+a+b+1,可以计算出所求式子的值;②根据a⊕b=ab+a+b+1,可以写出b⊕a=ab+a+b+1,然后即可说明;(2)①根据a⊕b=ab+a+b+1,可以计算出所求式子的值;②根据①中的结果可以得到“⊕”运算是否具有结合律.解:(1)①∵a⊕b=ab+a+b+1,∴(﹣5)⊕3=(﹣5)×3+(﹣5)+3+1=(﹣15)+(﹣5)+3+1=﹣16;3⊕(﹣5)=3×(﹣5)+3+(﹣5)+1=﹣15+3+(﹣5)+1=﹣16;故答案为:﹣16,﹣16;②∵a⊕b=ab+a+b+1,b⊕a=ab+a+b+1,∴a⊕b=b⊕a,∴“⊕”运算具有交换律;(2)①(﹣3)⊕(4⊕2)=(﹣3)⊕(4×2+4+2+1)=(﹣3)⊕(8+4+2+1)=(﹣3)⊕15=(﹣3)×15+(﹣3)+15+1=﹣45+(﹣3)+15+1=﹣32;[(﹣3)⊕4]⊕2=[(﹣3)×4+(﹣3)+4+1]⊕2=[(﹣12)+(﹣3)+4+1]⊕2=(﹣10)⊕2=(﹣10)×2+(﹣10)+2+1=﹣20+(﹣10)+2+1=﹣27;故答案为:﹣32,﹣27;②由计算结果可得“⊕”运算不具有结合律,故答案为:不具有.28.【操作感知】如图①,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A 与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A'处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为1.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点M与表示数b的点N重合,则折痕与数轴交点表示的数为(用含a,b的代数式表示).【问题解决】(1)若C,D,E为数轴上不同的三点,点C表示的数为﹣4,点D表示的数为2,如果C,D,E三点中的一点到其余两点的距离相等,求点E表示的数;(2)如图②,若AB是周长为l的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动2周,点A落在数轴上的点Q处;将圆从原点出发沿数轴负方向滚动1周,点A落在数轴上的点P处.将此长方形透明纸沿P,Q剪开,将点P,Q之间一段透明纸对折,使其左、右两端重合,这样连续对折n次后,再将其展开,求最右端折痕与数轴交点表示的数.【分析】【操作感知】由已知得出A'、B'表示的数,再求出A'B'中点即可得答案;【建立模型】求出MN的中点表示的数即可得到答案;【问题解决】(1)分三种情况分别列出方程,即可得答案;(2)先求出PQ的长度,再根据每两条相邻折痕间的距离为,即可得最右端的折痕与数轴的交点表示的数.解:【操作感知】由已知得A'表示的数是4,B'表示的数是﹣2,∵折叠长方形透明纸,使数轴上的点A′与点B′重合,∴A′与点B′关于折痕对称,即A'B'中点为折痕与数轴的交点,而A'B'中点表示的数为=1,故答案为:1;【建立模型】∵MN关于折痕对称,∴MN的中点即是折痕与数轴交点,而MN的中点表示的数是,∴折痕与数轴交点表示的数为,故答案为:;【问题解决】(1)设点E表示的数是x,当E到C、D距离相等,即E是CD中点时,x==﹣1,当C到E、D距离相等,即C是ED中点时,﹣4=,解得x=﹣10,当D是C、E距离相等,即D是CE中点时,2=,解得x=8,综上所述,点E表示的数为﹣1或﹣10或8;(2)由已知得Q表示的数是2,P表示的是﹣1,∴PQ=3,而对折n次后,每两条相邻折痕间的距离相等,这个距离是,∴最右端的折痕与数轴的交点表示的数为2﹣.。

人教版七年级上册数学期中检测题 (15)

人教版七年级上册数学期中检测题 (15)

2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5t D.一个有理数不是正数,那它一定是负数4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×106(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()(3分)5.A.1 B.﹣1 C.2017 D.﹣20176.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或78.(3分)(2014•永康市模拟)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76 D.7710.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2 D.n(n+2)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016= .13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n= .15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017= .16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x 的值为2,则输出的值为.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,…,则第n个图形需根火柴棒.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].20.(6分)(2017秋•宿州期中)化简:﹣3(xy﹣2)+2(1﹣2xy)21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣4x2+2x ﹣12)﹣(x﹣1),其中x=﹣1.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?24.(10分)(2017秋•宿州期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形(1)(2)(3)…黑色瓷砖的块数 4 7 …黑白两种瓷砖的总块数15 25 …(2)依上推测,第n个图形中黑色瓷砖的块数为;黑白两种瓷砖的总块数为(都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.2017-2018学年安徽省宿州市十三校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【分析】根据n棱柱的展开图有n个矩形侧面,上下底面是两个n边形,可得答案.【解答】解:三棱柱的侧面是三个矩形,上下底面是三角形,故选:A.【点评】本题考查了几何体的三视图,n棱柱的展开图有n个矩形侧面,上下底面是两个n边形.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5t D.一个有理数不是正数,那它一定是负数【分析】根据有理数的定义和分类以及正负数的意义进行判断即可.【解答】解:有理数包括正有理数、负有理数和零,所以一个有理数不是正数,那它可能是0,也可能是负数,D不正确.故选:D.【点评】本题考查了有理数的定义和分类,牢记有关定义是解题的关键,同时考查了正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:517万=517 0000=5.17×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()(3分)A.1 B.﹣1 C.2017 D.﹣2017【分析】根据倒数定义可得a的值,再根据乘方的意义可得答案.【解答】解:由题意得:a=﹣1,则a2017=﹣1,故选:B.【点评】此题主要考查了倒数,以及乘方,关键是掌握乘积是1的两数互为倒数.6.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a【分析】根据合并同类项、同底数幂的除法、同底数幂的乘法等运算法则求解,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、a2•a=a3,计算正确,故本选项正确;C、a2÷a=a,原式计算错误,故本选项错误;D、(2a)2=4a2,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、同底数幂的除法、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.8.(3分)(2014•永康市模拟)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y【分析】原式去括号合并即可得到结果.【解答】解:原式=x﹣y﹣x﹣y=﹣2y.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76 D.77【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.10.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2 D.n(n+2)【分析】第1个图形是3×1﹣3=1×3,第2个图形是4×3﹣4=2×4,第3个图形是4×5﹣5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数﹣边数=(n+2)(n+1)﹣(n+2)=n(n+2).【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第 n个是n(n+2),故选:D.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.【分析】根据点动成线,线动成面,面动成体填空即可.【解答】解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.【点评】此题主要考查了点线面体,关键是掌握点动成线,线动成面,面动成体.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016= 0 .【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为 3 .【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n= 1 .【分析】根据同类项定义可得m=3,n+7=5,再解即可.【解答】解:由题意得:m=3,n+7=5,解得:m=3,n=﹣2,m+n=3﹣2=1,故答案为:1.【点评】此题主要考查了同类项定义,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017= ﹣1 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣4=0,解得a=﹣5,b=4,所以,(a+b)2017=(﹣5+4)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得﹣28 .【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:=2×(﹣5)﹣3×6=﹣28.故答案为:﹣28.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x 的值为2,则输出的值为20 .【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需9 根火柴棒,…,则第n个图形需2n+1 根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n ﹣1)=2n+1.故答案为:9,2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].【分析】(1)在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(2)有理数混合运算时,先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=﹣7+40=33(2)﹣24﹣×[5﹣(﹣3)2]=﹣16﹣×(5﹣9)=﹣16﹣×(﹣4)=﹣16+2=﹣14【点评】本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)(2017秋•宿州期中)化简:﹣3(xy﹣2)+2(1﹣2xy)【分析】首先去括号,然后再合并同类项即可.【解答】解:原式=﹣3xy+6+2﹣4xy=﹣7xy+8.【点评】此题主要考查了整式的加减,关键是去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣4x2+2x ﹣12)﹣(x﹣1),其中x=﹣1.【分析】根据整式的加减的运算顺序,先去括号,再合并同类项,再将x的值代入求值即可.【解答】解:(﹣4x2+2x﹣12)﹣(x﹣1)=﹣x2+x﹣3﹣x+1=﹣x2﹣2当x=﹣1时,原式=﹣1﹣2=﹣3.【点评】本题主要考查整式的加减的化简求值,解决此类问题时,要注意去括号时符号变化.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.【分析】(1)根据三视图可直接得出这个立体图形是三棱柱;(2)根据直三棱柱的表面积公式进行计算即可.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,同时也考查学生的空间想象能力.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律来简化运算.24.(10分)(2017秋•宿州期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】根据绝对值的性质及倒数的定义,求出a,b的值,再将多项式去括号合并同类项,代入求值即可.【解答】解:根据题意,得:|2b+1|=1,|a|=1,∴b=0或﹣1,a=±1,又∵a,b不为倒数,∴a=﹣1,a=﹣1,∵2(a﹣2b2)﹣(3b2﹣a)=2a﹣2b2﹣b2+=a﹣b2当a=﹣1,b=﹣1时,原式==﹣6.【点评】本题主要考查整式的化简求值及绝对值、倒数、同类项的综合运用,解决此题时,能根据绝对值的性质,判断出a,b 的值可能是多少,再根据a,b倒数,确定a,b的值是关键.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形(1)(2)(3)…黑色瓷砖的块数 4 7 10 …黑白两种瓷砖的总块数15 25 35 …(2)依上推测,第n个图形中黑色瓷砖的块数为3n+1 ;黑白两种瓷砖的总块数为10n+5 (都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【分析】(1)第一个图形有黑色瓷砖4块,黑白两种瓷砖的总块数为15;第二个图形有黑色瓷砖7块,黑白两种瓷砖的总块数为25;第三个图形有黑色瓷砖10块,黑白两种瓷砖的总块数为35;由此填表即可;(2)由(1)可知每一个图形的黑色瓷砖块数比前一个图形多3,总块数多10,由此求得答案即可;(3)利用(2)的规律利用“白色瓷砖的块数可能比黑色瓷砖的块数多2015块”联立方程,求得整数解就能,否则不能.【解答】解:(1)填表如下:图形(1)(2)(3)…黑色瓷砖的块数 4 7 10 …黑白两种瓷砖的总块数15 25 35 …(2)第n个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5;(3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,解得:n=503答:第503个图形.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.关注数学的解题过程数学是一门非常严谨的科目,在平时的学习中,同学们应该养成积极思考、重视细节、严谨计算、活学活用的好习惯,这是学好数学的前提高效学习经验——注重解答过程中考状元XX在中考中仅仅丢掉了6分。

江苏省苏州市六区2024-2025学年上学期七年级数学阳光调研试卷(含答案)

江苏省苏州市六区2024-2025学年上学期七年级数学阳光调研试卷(含答案)

2024—2025学年苏州市初一数学阳光测评卷一、选择题(本大题共10小题,每小题2分,共20分).1.的倒数是( )A .3B.C .D .2.下列各数中,比小的数是( )A .B .C .0D .53.单项式的系数、次数分别是( )A .B .C .D .4.2024年9月10日下午,全球首个商用三折叠屏手机非凡大师正式发布.手机还未正式上市时,就吸引了众多市民好奇的目光,自9月7日开启预订,9月20日全面开售.截至9月10日19时45分,华为商城显示,预约人数已突破4350000,并且还在快速增长.数据4350000用科学记数法可表示为( )A .B .C .D .5.七年级(3)班男生有x 人,比女生少2人,则这个班女生人数是( )A .B .C .D .6.下列各组数中,两数互为相反数的是( )A .与B .与C .与D .与7.小慧用计算器计算,她误操作输入了.若想得到正确结果,则小慧接下来应输入( )A .B .C .D .8.如图,在正方形网格中,点分别用数对表示,在图中确定点C ,连接,得到以A 为直角顶点的等腰直角三角形,则表示点C 的数对是( )3-133-13-2-3-1-22a -2,22,2-2,32,3-HUAWEIMateXT 10:08443510⨯543.510⨯64.3510⨯70.43510⨯2x -2x +22x -22x +(2)-+(2)+-(3)--|3|-25-2(5)-34-3(4)-73515÷7355÷3⨯3÷10⨯10÷,A B (2,1),(7,1),,AB BC CAA .B .C .D .9.一个正方体的表面展开图如图所示,将其折叠成正方体时,与点A 重合的是( )A .点B B .点C C .点D D .点E10.思格尔系数是家庭食品支出占家庭消费总支出的百分比,它反映了一个家庭生活水平的高低.小慧家平均每月水电气支出600元,文化消费支出1200元,结合以下信息,小慧家属于( )家庭类型恩格尔系数富裕家庭小于小康家庭温饱家庭贫困家庭大于A .富裕家庭B .小康家庭C .温饱家庭D .贫困家庭二、填空题(本大题共8小题,每小题2分,共16分).11.若一个负整数比大,则这个负整数可以是_______.(只需写出一个符合要求的负整数即可)12.一个不透明的盒子中装有红、蓝两种颜色的小球若干个(小球除颜色外,其余均相同).小慧随机从盒中摸球,每次摸出1个球,记录颜色后放回,共30次,其中摸出红球8次,蓝球22次.根据数据推测,盒子里_______球可能多一些.(填“红”或“蓝”)13.小慧在某平台上按“八五折”的优惠价格购买了4张《志愿军:存亡之战》电影票,若每张电影票的原价是50元,则小慧需支付_______元.14.如图,数轴上点分别表示有理数,则_______0.(填“>”“<”或“=”)15.如图,在长为a ,宽为b 的长方形中,E 为边上一点,则图中阴影部分的两个三角形的面积之和为_______.(用含的代数式表示)(2,5)(2,6)(7,5)(7,6)40%40%50%-50%60%-60%3.1-,A B ,a b 2a b +ABCD CD ,a b16.若,则与的和的值为_______.17.是计算机存储容量的常用单位,其关系为,.1部超高清电影约占存储空间,一个移动硬盘最多可以存储_______部这样的超高消电影.18.如图,图①中有1个三角形,在图①中的三角形内部(不含边界)取一点,连接该点与三角形的3个顶点得到图②,图②中共有4个三角形.若在图②中的一个小三角形内部(不含边界)取一点,连接该点与该小三角形的3个顶点得到图③.在虚线框中画出图③,图③中共有_______个三角形.(写出所有可能的值)三、解答题(本大题共9小题,共64分)19.(本题满分5分)计算:.20.(本题满分5分)计算:.21.(本题满分6分)先化简,再求值:,其中.22.(本题满分6分)为满足21世纪中国的粮食需求,农业部于1996年提出超级杂交水稻培育计划.经过努力,1998年项目亩产量约800公斤,之后不断刷新水稻亩产量高度,到2016年,该项目亩产量约1500公斤.与1998年相比,2016年亩产量提高了百分之几?23.(本题满分8分)如图,用若干个棱长为1厘米的小正方体搭成一个立体图形.320x y -+=52x -61y -,,,,B K M G T 1010121024,121024K B B M K K ====1010121024,121024G M M T G G ====300G 2T 511764310⎛⎫÷+⨯ ⎪⎝⎭237(6)|2(5)|49⎛⎫-⨯-+-+- ⎪⎝⎭222122323a ab ab a a ⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭13,2a b ==-(1)在正方形网格中画出这个立体图形从上往下看到的图形;(2)求这个立体图形的体积与表面积.24.(本题满分8分)某打车软件计价内容含起步价(不超过3公里部分的里程费用)、里程费(超出3公里部分的里程费用)和时长费三部分,计价标准如下:时段起步价里程费单价时长费单价9.00元 1.50元/公里0.40元/分钟其他时段10.00元 2.50元/公里0.45元/分钟(1)张阿姨用这款软件打车回家,里程为5公里,用时15分钟,求张阿姨需要支付的车费;(2)李叔叔用这款软件打车去相距2.8公里的单位,共支付车费14.5元,求李叔叔乘车的时长.25.(本题满分8分)狮山文化广场数字跑道是苏州高新区充分利用数字化创新技术,深度结合狮山区域优美的自然环境与历史文化真赋打造的数字化全民健身场景.数字跑道的外围一圈近似圆形,环绕狮山,全长约,将狮山的一景一色串联起来,奔跑或健走的同时还能一览狮山美景.国庆期间,小慧与妈妈沿狮山文化广场外田圆形跑道健走,已知小慧的速度为每分钟80米,妈妈的速度为每分钟100米.(1)若小慧与妈妈同时从起终点处出发,均按逆时针方向而行,当妈妈行走至处时,请列式计算并判断此时小意是否已走过处.(2)若小慧与妈妈同时从起/终点处出发,妈妈按逆时针方向而行,小慧按顺时针方向而行,两人相约在处汇合,请通过计算说明小慧和妈妈谁先到达处,先到达多少分钟?26.(本题满分8分)【阅读与理解】能被2整除的整数是偶数,不能被2整除的整数是奇数.偶数可以用2表示,奇数可以用表示,其中n 为整数.我们可以用说理的方法说明任意一个偶数与一个奇数的和为奇数,解答过程如下:解:设任意一个偶数为,一个奇数为,其中为整数,则它们的和为5:007:00-9:0023:00-17:008:00 2.5km 0km /2()5km .2km 1.5km 0km /2(.5km)1.5km 1.5km 21n +2m 21n +,m n.因为为整数,所以为整数.所以为奇数,即任意一个偶数与一个奇数的和为奇数.【迁移与应用】仿照上面的方法,试说明三个连续奇数的和为奇数,且能被3整除.27.(本题满分10分)设m 为有理数,数轴上点A 表示有理数a ,给出以下两个定义:定义为点A 向右移动m 个单位长度后得到的点;定义为数轴上的一点从原点出发向右移动个单位长度后得到的点.(说明:向右移动负数个单位长度表示向左移动正数个单位长度.例如,向右移动个单位长度表示向左移动2个单位长度)(1)①若点A 表示有理数,则表示的有理数是_______;②若点分别表示有理数,则与之间的距离为_______.(2)如图,点分别表示有理数.①若与到原点的距离相等,求有理数m ;②试说明与之间的距离为定值,并求出这一定值.2212()1m m m n ++=++,m n m n +2()1m n ++(,)T A m ()2P A m am 2-2-(,5)T A ,A B 2,1.5-(,3)P A (,2)P B -,A B 3,2-(,)T A m (,)P A m (,2)T A m (,)P B m参考答案1.【答案】D2.【答案】A 3.【答案】B 5.【答案】B 6.【答案】C7.【答案】C 8.【答案】B 9.【答案】C 10.【答案】A11.【答案】12.【答案】蓝13.【解析】解:元【答案】170元14.【答案】<15.【答案】16.【解析】解:【答案】817.【解析】解:【答案】618.【解析】解:如图所示;【答案】7或919.【解析】解:原式20.【解析】解:原式21.【解析】解:原式将代入得22.【解析】解:答:2016年亩产量提高了.2-4500.85170⨯⨯=12ab 52612642(3)4448x y x y x y -+-=-++=-++=+=2204820483006248T G =÷=⋯,57761210=÷⨯51276710=⨯⨯1=3736349⎛⎫=⨯-+- ⎪⎝⎭27283=-+-2=-222223a ab ab a a =-+-+ab=13,2a b ==-ab 13322⎛⎫⨯-=- ⎪⎝⎭150080080087.5%-÷=()87.5%23.【解析】解:(1)如图所示(2)体积:,表面积:24.【解析】解:(1)(元)(2)(分钟)25.【解析】解:(1)则:已走过(2)答:小慧先到达2.5分钟.26.【解析】解:设三个奇数分别为三个连续奇数的和是整数,是整数∴三个连续奇数的和为奇数,且能被3整除27.【解析】解:(1)②当A 表示时,当B 表示1.5时,则:与之间的距离为故填①3,②3(2)①I:35cm 2(443)222cm ++⨯=92 1.5041518+⨯+⨯=.14.5100.4510-÷=()2km 2000m=2000100801600m 16km÷⨯==.16km 15km >..1km 1000m 100080125m /min=÷=,.1.5km 1500m 150010015m/min=÷=,1512525min-=..212325m m m +++,,21232569m m m m =+++++=+(69)323m m +÷=+n 23n +253-+=①2-(,3)6P A =-(,2)3P B -=-(,3)P A (,2)P B -3(6)3---=(,)3T A m A m m=+=-+(,)3P B m Am m==-3334m m m -+=-⇒=Ⅱ:②则:与之间的距离为定值,值为3.33(3)02m m m -++-=⇒=-(,2)2T A m A m =+ (,)2P B m m=322|3PT m m =-+-=(,2)T A m (,)P B m。

苏州市高新区2015-2016学年初一上数学期中试卷及答案

苏州市高新区2015-2016学年初一上数学期中试卷及答案

义务教育阶段学业质量测试七年级数学2015.11注意事项:1.本试卷共27小题,满分100分,考试用时100分钟.2.答题前,考生务必将姓名、考点名称、考场号、座位号、考试号填涂在答题卷相应的位置上.3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.4.答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确答案填涂..在答题卷相应的位置)1.下列一组数:-8,0,-32,-(-5.7) 其中负数的个数有A.1个B.2个C.3个D.4个2.已知a、b互为相反数,c、d互为倒数,则代数式2(a + b)-3cd的值为A.2 B.-1 C.-3 D.03.地球与月球的平均距离大约为384000km,则这个平均距离用科学记数法表示为A.384×103 km B.3.84×104 km C.3.84×105 km D.3.84×106 km 4.多项式1+2xy-3xy2的次数及最高次项的系数分别是A.3,-3 B.2,-3 C.5,-3 D.2,35.下列各组中,是同类项的是A.3x2y与3xy2B.3xy与-2xy2C.-2xy2与-2ab2D.0与π6.下列去括号中,正确的是A.a2-(1-2a)=a2-1-2a B.a2+(-1-2a)=a2-l + 2aC.a-[5b-(2c-1)]=a-5b+2c-1 D.-(a + b)+(c-d)=-a-b-c + d7.下列各对数中,相等的一对数是A.-23与-32B.(-2)3与-23C.(-3)2与-32D.-(-2)与-2-8.已知x=4,y=5且x>y,则2x-y的值为A.-13 B.+13 C.-3或+13 D.+3或-139.已知代数式x-2y的值是3,则代数式4y+1-2x的值是A.-7 B.-5 C.-3 D.-110.实数a、b在数轴上的位置如图所示,下列式子错误的是A.a<b B.a>bC.-a<-b D.b-a>0二、填空题(本大题共10小题,每小题2分,共20分,把答案填写在答题卷相应位置上) 11.-2的相反数是▲.12.计算:(-0.91)÷(-0.13)= ▲.13.绝对值不大于2的整数是▲.14.单项式-22x y的系数与次数的积是▲.15.用“>”,“<”,“=”填空:-12▲-23.16.若3a +(b-2)2=0,则a= ▲,b= ▲.17.一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是▲.18.已知x2-3x + 5的值是3,则3x 2-9x-2= ▲.19.为了提倡节约用电,我市实行了峰谷电价,峰时段8:00-21:00以0.55元/千瓦时计费,谷时段21:00—8:00,以0.30元/千瓦时计费.某用户某日峰时段用电a千瓦时,谷时段用电b千瓦时,则该用户当日用电的平均价格为▲.元/千瓦时.20.如图所示的运算程序中,若开始输入的x值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2015次输出的结果为▲.三、解答题(本大题共7题,共60分,请写出必要的计算过程或推演步骤)21.(本题共4小题,每小题4分,共16分)计算:(1) (-8)+3+(-5)+8;(2) (-5)×6+(-125)÷(-5);(3) (834-78-2120÷(-78);(4) -32÷(-3)2-(-1)3×(13-12) .22.(本题共3小题,每小题4分,共12分) 化简:(1) 3y2-1-2y-5+3y-y2;(2) a-(3a-2)+(2a-3);(3) 3x2-2(2x2 + x)+2(x2-3x).23.(本题满分6分) 先化简,再求值:3(4mn-m2)-4mn-2(3mn-m2),其中m=-2, n=12.24.(本题满分6分) 某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1) 写出该厂星期一生产工艺品的数量;(2) 本周产量中最多的一天比最少的一天多生产多少个工艺品?(3) 请求出该工艺厂在本周实际生产工艺品的数量.25.(本题满分6分) 已知:A=ax2 + x-1,B=3x2-2x + 1(a为常数)(1) 若A与B的和中不含x 2项,求a的值;(2) 在(1)的条件下化简:B-2A.26.(本题满分6分) 为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.(1) 如果小红家每月用水15吨,水费是多少? 如果每月用水35吨,水费是多少?(2) 如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示呢?27.(本题满分8分) 探索研究:(1) 比较下列各式的大小 (用“<”或“>”或“=”连接)①2-+323+; ②12-+1123-③6+3-3-. ④0+8-8-(2) 通过以上比较,请你分析、归纳出当a 、b 为有理数时,a +b 与a b +的大小关系.(直接写出结论即可)(3) 根据(2)中得出的结论,当x +2015=2015x -时,则x 的取值范围是 ▲ . 如12a a ++34a a +=15,1234a a a a +++=5,则a 1+a 2= ▲ .。

江苏省苏州市吴江、吴中、相城、新区四区2023-2024学年七年级下学期期中考试数学试卷(含答案)

数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟.注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B铅笔画出图形,再用0.5毫米黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上.)1.下列长度(单位:)的三根小木棒,能搭成为三角形的是()A.3,4,8B.5,6,11C.5,6,10D.8,8,162.已知正多边形的一个外角等于,则该正多边形的边数为()A.3B.4C.5D.63.如图,在一个弯形管道中,测得,后,就可以知道管道,其依据的定理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两直线平行4.计算的结果正确的是()A. B. C. D.5.如图,木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的和).这样做的依据是()A.矩形的对称性B.三角形的稳定性C.两点之间线段最短D.垂线段最短6.如图,直线,将一块含的直角三角板按如图方式放置,其中A,C两点分别落在直线a,b上,若,则的度数为()A. B. C. D.7.如图,将沿方向平移到,若A,D之间的距离为2,,则等于()A.6B.7C.8D.98.如图,在数学兴趣活动中,小吴将两根长度相同的铁丝,分别做成甲、乙两个长方形,面积分别为,,则的值是()A. B. C.27 D.3二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.已知,,则________.10.如图,直线a,b被直线c所截,添加一个条件________,使.11.分解因式:________.12.如果,那么m的值为________13.如图,在三角形纸片中,,,将纸片的一角折叠,使点C落在内,若,则_________.14.一辆汽车在公路上行驶,经过两次向右拐弯后(第一次拐弯后,行驶了一段路程再第二次拐弯),行驶方向仍与原来的行驶方向平行.已知这辆汽车在这三段公路上都是沿直线行驶,且第一次是向右拐弯,那么第二次向右拐弯的最小度数是________.15.如图,将长为6,宽为4的长方形先向右平移2,再向下平移1,得到长方形,则阴影部分的面积为________.16.在平面内有n个点,其中每三个点都能构成等腰三角形,我们把具有这样性质的n个点构成的点集称为爱尔特希点集.如图,四边形的四个顶点构成爱尔特希点集,若平面内存在一个点P与A,B,C,D 也构成爱尔特希点集,则________.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)17.(本题6分)计算:(1)(2)18.(本题6分)已知,,,,先计算,再比较a、b、c,d的大小,并用“”号连接起来.19.(本题6分)如图,.(1)若,求的度数;(2)若,求证:.20.(本题6分)把下列各式因式分解:(1);(2).21.(本题6分)规定.(1)求;(2)若,求x的值.22.(本题6分)如图,点E在上,点F在上,、分别交于点G、H,已知,.(1)与平行吗?请说明理由;(2)若,且,求的度数。

2013-2014学年华师大版七年级数学上第3章整式的加减单元目标检测试卷及答案点拨

数学华师版七年级上第3章整式的加减单元检测参考完成时间:120分钟实际完成时间:______分钟总分:120分得分:______一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的)1.某省今年七年级的学生约有100万人,其中男生约有a万人,则女生约有().A.(100+a)万人B.100a万人C.(100-a)万人D.100a万人2.下列代数式书写规范的是().A.a3 B.1 32a -C.(a+b)÷c D.3a(x+1)3.当x=-1时,代数式x2+2x+1的值是().A.-2 B.-1 C.0 D.4 4.下列说法中,正确的是().A.3是单项式B.32abc-的系数是-3,次数是3C.24m n不是整式D.多项式2x2y-xy是五次二项式5.下列两项中,属于同类项的是().A.62与x2B.4ab与4abcC.0.2x2y与0.2xy2D.nm和-mn6.下列各式从左到右正确的是().A.-(3x+2)=-3x+2 B.-(-2x-7)=-2x+7C.-(3x-2)=-3x+2 D.-(-2x-7)=2x-77.计算8x2-(2x2-5)正确的结果是().A.6x2-5 B.10x2+5C.6x2+5 D.10x2-58.一个多项式与x2+2x+1的和是3x-2,则这个多项式为().A.x2-5x+3 B.-x2+x-3C.-x2+5x-3 D.x2-5x-139.若M=4x2-5x+11,N=3x2-5x+10,则M与N的大小关系是().A.M>N B.M=NC.M<N D.无法确定10.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为().A.5n B.5n-1C.6n-1 D.2n2+1二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.用代数式表示“a、b两数的平方和”,结果为__________.12.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是__________.13.如果单项式x a +1y 3与2x 3y b 是同类项,那么a b=__________.14.已知x -y =5,xy =-3,则3xy -7x +7y =__________.15.多项式ab 3-3a 2b -a 3b -3按字母a 降幂排列是__________.16.把3+[3a -2(a -1)]化简得__________.17.已知A =a 2-ab ,B =ab +b 2,则A +B =__________,A -B =__________,3A -2B =__________.18.小宇同学在一次手工制作活动中,先把一张长方形纸片按图①方式进行折叠,使折痕的左侧部分比右侧部分短1 cm ;展开后按图②的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1 cm ,再展开后,在纸上形成的两条折痕之间的距离是__________cm.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分6分)在2x 2y ,-2xy 2,3x 2y ,-xy 四个代数式中,找出两个同类项,并合并这两个同类项.20.(本题满分10分)如图是一个圆环,外圆与内圆的半径分别是R 和r .(1)用代数式表示圆环的面积;(2)当R =5 cm ,r =3 cm 时,圆环的面积是多少(π取3.14)?21.(本题满分16分)先化简,再求值:(1)(4a 2-3a )-(1-4a +4a 2),其中a =-2; (2)3x +2(x 2-y )-21323x x y ⎛⎫+- ⎪⎝⎭,其中x =12,y =-3; (3)1115(23)(23)(23)(23)3263x y x y x y x y -+-----,其中x =2,y =1; (4)已知a +b =-2,ab =3,求2[ab +(-3a )]-3(2b -ab )的值.22.(本题满分10分)数学老师在黑板上抄写了一道题目“当a =2,b =-2时,求多项式332332233221113423244a b a b b a b a b b a b a b b ⎛⎫⎛⎫-+---++-+ ⎪ ⎪⎝⎭⎝⎭的值”,甲同学做题时把a =2抄错成a =-2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢?23.(本题满分12分)观察下列各式:21-12=9;75-57=18;96-69=27;84-48=36;45-54=-9;27-72=-45;19-91=-72;…(1)请用文字补全上述规律:把一个两位数的十位和个位交换位置,新的两位数与原来两位数的差等于__________;(2)请用含a,b的等式表示上述规律?并说明理由.24.(本题满分12分)某公司在A,B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.(1)设从A(2)当从A参考答案1答案:C2答案:D 点拨:A ,B ,C 中代数式应分别记作3a 、72a -、a b c +. 3答案:C 点拨:当x =-1时,x 2+2x +1=(-1)2+2×(-1)+1=1-2+1=0. 4答案:A 点拨:32abc -的系数是32-,故B 错误;24m n 是单项式,所以也是整式,故C 错误;多项式2x 2y -xy 的次数是3,所以它是三次二项式,故D 错误. 5答案:D6答案:C 点拨:-(3x +2)=-3x -2,故A 错误;-(-2x -7)=-2x -7,故B 错误;-(-2x -7)=2x +7,故D 错误.7答案:C 点拨:8x 2-(2x 2-5)=8x 2-2x 2+5=6x 2+5.8答案:B 点拨:(3x -2)-(x 2+2x +1)=3x -2-x 2-2x -1=-x 2+x -3.9答案:A 点拨:M -N =4x 2-5x +11-(3x 2-5x +10)=4x 2-5x +11-3x 2+5x -10=x 2+1.因为x 2+1>0,所以M >N .10答案:C 点拨:观察图形,可知摆第1个“小屋子”需要5个棋子,摆第2个“小屋子”需要11个棋子,摆第3个“小屋子”需要17个棋子.将1、2、3分别代入6n -1得5、11、17,由此可知C 正确.11答案:a 2+b 212答案:2122ab b π- 点拨:能射进阳光部分的面积=长方形的面积-直径为2b 的半圆的面积.13答案:8 点拨:因为单项式x a +1y 3与2x 3y b 是同类项,所以a +1=3,b =3,解得a=2,b =3,则a b =23=8.14答案:-44 点拨:3xy -7x +7y =3xy -7(x -y )=3×(-3)-7×5=-9-35=-44. 15答案:-a 3b -3a 2b +ab 3-316答案:a +5 点拨:原式=3+(3a -2a +2)=3+3a -2a +2=a +5.17答案:a 2+b 2 a 2-2ab -b 2 3a 2-5ab -2b 2点拨:A +B =a 2-ab +ab +b 2=a 2+b 2;A -B =a 2-ab -(ab +b 2)=a 2-ab -ab -b 2=a 2-2ab -b 2;3A -2B =3(a 2-ab )-2(ab +b 2)=3a 2-3ab -2ab -2b 2=3a 2-5ab -2b 2. 18答案:119解:同类项是:2x 2y,3x 2y ,合并同类项得:2x 2y +3x 2y =5x 2y . 20解:(1)πR 2-πr 2;(2)当R =5 cm ,r =3 cm ,π=3.14时,πR 2-πr 2=π(R 2-r 2)=3.14×(52-32)=3.14×16=50.24(cm 2),即圆环的面积是50.24 cm 2.21解:(1)原式=4a 2-3a -1+4a -4a 2=a -1,当a =-2时,a -1=-2-1=-3;(2)原式=3x +2x 2-2y -6x 2-3x +y =-4x 2-y ,当x =12,y =-3时,原式=-4×212⎛⎫ ⎪⎝⎭-(-3)=2. (3)原式=1115(23)3263x y ⎛⎫+--- ⎪⎝⎭=-(2x -3y )=-2x +3y ,当x =2,y =1时,原式=-2×2+3×1=-1;(4)原式=2ab -6a -6b +3ab =5ab -6a -6b =5ab -6(a +b ),当a +b =-2,ab =3时,原式=5×3-6×(-2)=27.22解:因为3a 3b 3-233223*********a b b a b a b b a b a b ⎛⎫⎛⎫+---++ ⎪ ⎪⎝⎭⎝⎭-2b 2+3=3a 3b 3-212a b +b -4a 3b 3+214a b +b 2+a 3b 3+214a b -2b 2+3=-b 2+b +3,即这个多项式的值只与b 的取值有关,与a 的取值大小无关.无论甲同学怎么抄错a ,都不会影响最后的计算结果.23解:(1)这个两位数的十位与个位的差的9倍;(2)设原来两位数的十位数为a ,个位数为b ,则新两位数为(10b +a ),原两位数为(10a +b ),则(10b +a )-(10a +b )=10b +a -10a -b =9b -9a =9(b -a ).即新两位数与原两位数的差等于这个两位数的十位与个位的差的9倍.24解:(1)A 地运往乙地:16-x ,B 地运往甲地:15-x ,B 地运往乙地:13-(16-x ); 总费用:500x +400(16-x )+300(15-x )+600[13-(16-x )]=500x +400(16-x )+300(15-x )+600(13-16+x )=500x +400(16-x )+300(15-x )+600(-3+x )=500x +6 400-400x +4 500-300x -1 800+600x=(500-400-300+600)x +(6 400+4 500-1 800)=400x +9 100(元);(2)当x =3时,400x +9 100=400×3+9 100=10 300(元),即运这批挖掘机的总费用是10 300元.。

江苏省无锡市天一实验学校七年级(上)期中数学试卷

2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2012•厦门)﹣2的相反数是()A.2 B.﹣2 C.±2 D.2.(2分)(2015秋•江阴市期中)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.3.(2分)(2014秋•石家庄期末)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|4.(2分)(2015秋•宜兴市校级期中)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个B.5 个 C.4 个 D.3个5.(2分)(2015秋•禹城市期中)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)26.(2分)(2015秋•无锡校级期中)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣107.(2分)(2015秋•无锡校级期中)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个B.2个C.3个D.4个8.(2分)(2013秋•涉县期末)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k9.(2分)(2015秋•无锡校级期中)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣110.(2分)(2015秋•蚌埠期中)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点 B.B点C.C点D.D点二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)(2015秋•东台市期中)如果向南走20米记为是﹣20米,那么向北走70米记为______.12.(2分)(2008•莆田)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为______公顷.13.(2分)(2015秋•无锡校级期中)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高______℃.14.(2分)(2015秋•无锡校级期中)单项式﹣的系数是______,次数是______.15.(2分)(2013秋•商水县期中)比较大小:﹣(+8)______﹣|﹣9|;______(填“>”、“<”、或“=”符号).16.(2分)(2015秋•无锡校级期中)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=______,n=______.17.(2分)(2014秋•南京期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为______.18.(2分)(2013秋•松滋市校级期末)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=______.19.(2分)(2013秋•沙湾区期末)若a﹣b=1,则代数式a﹣(b﹣2)=______;若a+b=﹣1,则代数式5﹣a﹣b=______.20.(4分)(2014秋•滨湖区期中)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为______(用含a的代数式表示).三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.22.(4分)(2011秋•东台市校级期中)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,23.(16分)(2015秋•无锡校级期中)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].24.(6分)(2015秋•无锡校级期中)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.25.(4分)(2015秋•无锡校级期中)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.26.(6分)(2014秋•栾城县期末)观察图形,解答问题:27.(4分)(2009秋•石景山区期末)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)当时,求此时“囧”的面积.28.(4分)(2015秋•无锡校级期中)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.29.(6分)(2015秋•姜堰市期中)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C表示的数是______数(填“无理”或“有理”),这个数是______;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是______;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?30.(4分)(2015秋•无锡校级期中)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2012•厦门)﹣2的相反数是()A.2 B.﹣2 C.±2 D.【分析】根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2分)(2015秋•江阴市期中)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.【分析】利用代数式书写格式判定即可【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式.3.(2分)(2014秋•石家庄期末)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|【分析】根据相反数定义,有理数的乘方,绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、﹣(﹣3)=3,是正数,故本选项错误;B、(﹣3)2=9,是正数,故本选项错误;C、|﹣3|=3,是正数,故本选项错误;D、﹣|﹣3|=﹣3,是负数,故本选项正确.故选D.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方,绝对值的性质,熟记概念与性质并准确化简是解题的关键.4.(2分)(2015秋•宜兴市校级期中)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个B.5 个 C.4 个 D.3个【分析】数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,由此可作出判断.【解答】解:所给式子中单项式有:a,﹣2ab,﹣1,ab2c3 ,共,4个.故选C.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义.5.(2分)(2015秋•禹城市期中)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2【分析】认真读题,表示出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平方,于是答案可得.【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选A.【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平方与平方差的区别,做题时注意体会.6.(2分)(2015秋•无锡校级期中)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣10【分析】把x=3代入2x﹣k+4=0可得关于k的方程,再解方程即可.【解答】解:把x=3代入2x﹣k+4=0得:6﹣k+4=0,解得:k=10,故选:B.【点评】此题主要考查了一元一次方程的解,关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.7.(2分)(2015秋•无锡校级期中)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个B.2个C.3个D.4个【分析】根据相反数的定义,绝对值的性质“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”来分析.还根据多项式的定义分析即可.【解答】解:①﹣a表示负数,当a是负数时,﹣a就是正数,所以①不对;②若|x|=﹣x,x一定为负数或0,则x≤0,所以②不对;③根据绝对值的定义绝对值最小的有理数是0,对;④﹣3x2y+4x﹣1是关于x,y的三次三项式,对.正确的有2个.故选:B.【点评】此题主要考查了相反数,绝对值,多项式,解决本题的关键是熟记相反数、绝对值、多项式的定义.8.(2分)(2013秋•涉县期末)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k【分析】由数轴可知:k>1,所以可知:k>0,1﹣k<0.计算绝对值再化简即可.【解答】解:由数轴可知:k>1,∴k>0,1﹣k<0.∴|k|+|1﹣k|=k﹣1+k=2k﹣1.故选B.【点评】此题主要考查了绝对值的定义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.除此之外还考查了数轴的概念和整式的加减.9.(2分)(2015秋•无锡校级期中)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣1【分析】根据向右平移加求出点N表示的数,再分点E在点N的左边和右边两种情况讨论求解.【解答】解:∵点M表示有理数﹣3,点M向右平移2个单位长度到达点N,∴点N表示﹣3+2=﹣1,点E在点N的左边时,﹣1﹣4=﹣5,点E在点N的右边时,﹣1+4=3.综上所述,点E表示的有理数是﹣5或3.故选:B.【点评】本题考查了数轴,是基础题,主要利用了向右平移加,难点在于分情况讨论.10.(2分)(2015秋•蚌埠期中)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点 B.B点C.C点D.D点【分析】本题可根据数轴,设出B点坐标,则A点坐标可表示出,然后再与b﹣2a=7联立,即可求得结果.【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选C.【点评】本题考查数轴的基本概念,结合题中条件,进行分析,得出a,b之间的关系即可.二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)(2015秋•东台市期中)如果向南走20米记为是﹣20米,那么向北走70米记为+70米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵向南走20米记为是﹣20米,∴向北走70米记为+70米.故答案为:+70米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(2分)(2008•莆田)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 1.5×107公顷.【分析】科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数,n为整数.【解答】解:15 000 000=1.5×107.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分|a|是>或等于1,而<10,n 为整数.13.(2分)(2015秋•无锡校级期中)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高21℃.【分析】认真阅读列出正确的算式,用最高气温减去最低气温,列式计算.【解答】解:根据题意,得:11﹣(﹣10)=21(℃),故答案为:21.【点评】本题考查了有理数的减法,有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.14.(2分)(2015秋•无锡校级期中)单项式﹣的系数是﹣,次数是7.【分析】根据单项式的系数是数字因数,次数是字母指数和,可得答案.【解答】解:单项式﹣的系数是﹣,次数是7,故答案为:﹣,7.【点评】本题考查了单项式,单项式的系数是数字因数,次数是字母指数和,注意π是常数不是字母.15.(2分)(2013秋•商水县期中)比较大小:﹣(+8)>﹣|﹣9|;>(填“>”、“<”、或“=”符号).【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小;①首先化简,然后比较出即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出.【解答】解:①∵﹣(+8)=﹣8,﹣|9|=﹣9,﹣8>﹣9,∴﹣(+8)>﹣|9|;②∵|﹣|==,|﹣|==,<,∴﹣>﹣.故答案为:>;>.【点评】本题主要考查了有理数大小比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.(2分)(2015秋•无锡校级期中)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=3,n=2.【分析】根据同类项的定义中相同字母的指数相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由题意,得,解得.即m=3,n=2.故答案为3,2.【点评】本题考查了同类项的定义及二元一次方程组的解法.所含字母相同且相同字母的指数也相同的项是同类项.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.17.(2分)(2014秋•南京期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为5.【分析】根据数轴得出算式x﹣(﹣3)=8﹣0,求出即可.【解答】解:根据数轴可知:x﹣(﹣3)=8﹣0,解得x=5.故答案为:5.【点评】本题考查了数轴的应用,关键是能根据题意得出算式.18.(2分)(2013秋•松滋市校级期末)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m= 1.【分析】根据一元一次方程的定义可得|m﹣2|=1,且2m﹣6≠0,再解即可.【解答】解:由题意得:|m﹣2|=1,且2m﹣6≠0,解得:m=1,故答案为:1.【点评】此题主要考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.19.(2分)(2013秋•沙湾区期末)若a﹣b=1,则代数式a﹣(b﹣2)=3;若a+b=﹣1,则代数式5﹣a﹣b=6.【分析】把a﹣b和a+b的值整体代入代数式计算解答即可.【解答】解:∵a﹣b=1,∴原式=a﹣(b﹣2)=a﹣b+2=1+2=3;∵a+b=﹣1,∴原式=5﹣a﹣b=5﹣(a+b)=5+1=6;故答案为:3;6【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.20.(4分)(2014秋•滨湖区期中)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为a+50(用含a的代数式表示).【分析】(1)观察图象可知,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解即可;(2)设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【解答】解:(1)(2)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.【点评】本题是对数字变化规律的考查,仔细观察图形,观察出前两行的数与两位数的十位和个位上的数字的关系是解题的关键.三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【分析】(1)根据正数的定义选出即可;(2)根据负数的意义选出即可;(3)根据整数的定义选出即可;(4)根据无理数的定义选出即可.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.【点评】本题考查了对正数,负数,整数,无理数的定义的应用,主要考查学生的理解能力和辨析能力.22.(4分)(2011秋•东台市校级期中)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,【分析】先分别把各数化简为:3,1,﹣1.5,0,﹣2,,再把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由小到大的顺序用“<”连接起来.【解答】解:按照从小到大的顺序排列:<﹣2<﹣1.5<0<1<3.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.(16分)(2015秋•无锡校级期中)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].【分析】(1)先化简绝对,把减法改为加法,再算加法;(2)先确定运算符号,再把除法改为乘法计算即可;(3)先算乘方,再算乘法,最后算减法;(4)利用乘法分配律简算;(5)(6)先去括号,再进一步合并得出答案即可.【解答】解:(1)原式=2+2=4;(2)原式=﹣×××=﹣;(3)原式=﹣1﹣×[3﹣9]=﹣1+1=0;(4)原式=(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×=18﹣4+15=29;(5)原式=5x+5y﹣12x+8y+6x﹣3y=﹣x+10y;(6)原式=6ab2﹣[a2b+2a2b﹣6ab2]=6ab2﹣a2b﹣2a2b+6ab2=12ab2﹣3a2b.【点评】此题考查有理数的混合运算与整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.24.(6分)(2015秋•无锡校级期中)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:5x=5,解得:x=1;(2)去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4.【点评】此题考查了解一元一次方程,掌握运算法则是解本题的关键.25.(4分)(2015秋•无锡校级期中)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.【分析】(1)根据整式的加减,可得答案;(2)根据非负数的和为零,可得a,b的值,根据代数式求值,可得答案.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣4a2﹣4ab=﹣a2﹣8ab;(2)由|a+1|+(2﹣b)2=0,得a=1,b=2.A﹣2B=﹣a2﹣8ab=﹣1﹣16=﹣17.【点评】本题考查了整式的加减,(1)多项式加减多项式,要先加括号,再去括号,合并同类项,(2)利用了非负数的性质.26.(6分)(2014秋•栾城县期末)观察图形,解答问题:【分析】(1)根据图形和表中已填写的形式,即可求出表中的空格;(2)根据图①②③可知,中间的数是三个角上的数字的乘积与和的商,列出方程,即可求出x的值.【解答】解:(1)②(﹣12)×5=﹣60③(﹣2)×17×(﹣5)=170(﹣2)+17+(﹣5)=1010×17=170(2)[5+(﹣8)+(﹣9)]x=5×(﹣8)×(﹣9)解得,x=﹣30.【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.27.(4分)(2009秋•石景山区期末)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)当时,求此时“囧”的面积.【分析】(1)“囧”的面积等于边长为20的正方形的面积﹣小三角形的面积×2﹣长方形的面积,据此列代数式并化简;(2)由y=x=4,求出x、y的值,再代入(1)列出的代数式即求出此时“囧”的面积.【解答】解:(1)由已知得“囧”的面积为:20×20﹣xy×2﹣xy=400﹣2xy;(2)当时,x=8,y=4,S=400﹣2×8×4=336,所以此时“囧”的面积为336.【点评】此题考查的知识点是列代数式及代数式求值,关键是根据已知先列出代数式,再代入求值.28.(4分)(2015秋•无锡校级期中)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.【分析】(1)把x=﹣1代入代数式求出m的值,将m与y的值代入已知方程求出n的值即可;(2)把m与n的值代入原式中计算得到结果,利用题中的新定义计算即可.【解答】解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=10﹣2n,解得:n=2;(2)把m=1,n=2代入得:m+n=1+3.5=4.5,则[m+n]=[4.5]=4.【点评】此题考查了一元一次方程的解,代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.29.(6分)(2015秋•姜堰市期中)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣π;故答案为:无理,﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.30.(4分)(2015秋•无锡校级期中)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【分析】(1)(2)可以直接根据题意,在数轴上包含这个点用实心圆点,不包含这个点用空心圆圈即可;(3)由于数轴上﹣2到2之间有无数个实数,并且包含1和﹣1,也不大于3小于4,由此即可画出图形.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:【点评】此题考查了数轴,用到的知识点是相反数、倒数、实数与数轴的对应关系,在数轴上包含这个点用实心圆点,不包含这个点用空心圆圈,数轴上的点与实数是一一对应的关系.。

2024新人教版七年级上册数学《有理数》单元测试卷及答案

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

375教育资源网 www.375edu.cn
苏州市高新区2013-2014学年度第一学期期中测试
七年级数学试卷
2013年11月

(满分:100分 考试时间:100分钟)

一、选择题(每小题2分,共20分,请将正确答案填写在下面表格里)
1.-3的相反数是

A.3 B.-3 C.13 D.-13
2.下列比较大小的式子中,正确的是
A.2<-(+5) B.-1>-0.01 C.33 D.-(-5)>+(-7)
3.下列运算正确的是
A、3a+2b=5ab B、3a2b-3ba2=0
C、3x2+2x3=5x5 D、3m4-2m4=1

4.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有
A、1个 B、2个 C、3个 D、4个
5.下列说法不正确的是
A.任何一个有理数的绝对值都是正数 B.0既不是正数也不是负数
C.有理数可以分为正有理数,负有理数和零 D.0的绝对值等于它的相反数
6.如图,数轴的单位长度为1.如果点B、C表示的数的绝对值相等,那么点A表示的数

A.-2 B.-5 C.-4 D.-6
7.数a、b、c在数轴上对应的位置如下图,化简abcb的结果是

A.a+c B.c-a C.-c-a D.a+2b-c
8.若m-n=-1,则(m-n)2-2m+2n的值是
A.3 B.2 C.1 D.-1

9.若a=2,b=a,则a+b为
A.±4 B.0 C.0、±4 D.以上都不对
10.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格
是每千克( )元

A.(1+20%) a B.(1-20%)a C.120%a D.120%a
375教育资源网 www.375edu.cn

二、填空题(每小题2分,共20分)
11.如果“+200元”表示收入200元,那么“-100元”的实际意义是_______.
12.我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为_______

13.写出在-212和1之间的负整数:_______.

14.已知(b+3)2+2a=0,则ba的值是_______.
15.在数轴上,点A表示数-1,距A点2.5个单位长度的点表示的数是_______.
16.如图,是一个简单的数值运算程序,当输入x的值为-4时,则输出的数值为_______.

17.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则2abmcdm的值是_______.
18.当k=_______时,多项式x2+(k-1)xy-3y2-2xy-5中不含xy项.
19.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列
下去,第n个图形中有_______个实心圆.

20.设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______.(填
写所有正确结论的序号)①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;④存
在实数x,使[x)-x=0.5成立。
三、解答题
21.(本题6分)在数轴上把下列各数表示出来,并用“<”连接各数,

3.5
,112,0,122,-(+1),4

22、计算与化简(每题4分,共24分)
(1)11313252442 (2)212582433

(3)111325248666 (4)23412111312342
375教育资源网 www.375edu.cn

(5)323214212xxxx (6)4ab-3b2-[(a2+b2)-(a2-b2)]
23.(本题6分)先化简,再求值:221523243xxyxyxxy,其中x=-2,y
=12.

24.(本题6分)已知多项式A,B,其中A=x2-2x+1,小马在计算A+B时,由于粗心
把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.

25.(本题6分)定义新运算:ab=a2-b,如3(-2)=32-2=9-2=7,
计算下列各式.
(1)(-2)3 (2)5 (-4) (3)(-3) 0(-1))

26.(本题6分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各
种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):

(1)根据记录可知前三天共生产_______辆;
(2)产量最多的一天比产量最少的一天多生产_______辆;
(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,
那么该厂工人这一周的工资总额是多少?
375教育资源网 www.375edu.cn

27.(本题6分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出
600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯
的销售价上涨a元.
(1)试用含a的代数式填空:
①涨价后,每个台灯的销售价为_______元;
②涨价后,每个台灯的利润为_______元;
③涨价后,商场的台灯平均每月的销售量为_______台.
(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基
础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的
基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
375教育资源网 www.375edu.cn

相关文档
最新文档