(完整版)模电数电知识总结
数电模电基础知识总结

数电模电基础知识总结在现代科技的快速发展下,电子技术已经渗透到我们生活的方方面面。
而作为电子技术的基础,数电模电知识的掌握显得尤为重要。
本文将对数电模电基础知识进行总结。
一、数电基础知识1. 二进制二进制是数电领域最为基础的概念之一。
它由0和1组成,是计算机系统中最常用的进位制。
在二进制中,每一位的权值是2的幂,例如1表示2^0,2表示2^1,4表示2^2,以此类推。
二进制在计算机内部用于表示和处理数据,是研究数电和计算机组成原理的基石。
2. 逻辑门逻辑门是计算机系统中基本的电子器件,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门接受两个输入,当两个输入同时为1时,输出为1;否则输出为0。
或门接受两个输入,当两个输入中至少有一个为1时,输出为1;否则输出为0。
非门只有一个输入,当输入为1时,输出为0;当输入为0时,输出为1。
通过组合不同类型的逻辑门,可以实现复杂的逻辑运算。
3. 翻转器和触发器翻转器和触发器是将电路的输出状态保持在某个时间点的器件。
翻转器是一种双稳态电路,有两个互逆的输出状态,常见的翻转器有RS翻转器、JK翻转器等。
触发器是一种带有时钟输入的翻转器,常用于存储和处理数据。
二、模电基础知识1. 电阻、电容和电感电阻、电容和电感是模电领域中最基础的电路元件。
电阻用于限制电流大小,电容用于存储电荷和能量,电感用于存储磁能和抵抗电流变化。
它们在电路中起到不同的作用,对电路性质有重要影响。
2. 放大器放大器是模电领域中常见的电路元件,用于将输入信号放大到一定的幅度。
常见的放大器包括运放放大器、功放等。
运放放大器是一种具有高增益的差模放大器,广泛应用于模拟电路设计中。
功放用于放大音频信号,常见于音响设备中。
3. 滤波器滤波器用于将频率范围内的信号通过,而将其他频率范围内的信号抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器在电子设备中起到重要的作用,例如音频设备中用于剔除噪音和杂音。
数电模电基础知识总结

数电模电基础知识总结在电子技术的领域中,数字电子技术(数电)和模拟电子技术(模电)是两个至关重要的基础分支。
无论是日常生活中的电子设备,还是复杂的工业控制系统,都离不开数电和模电的应用。
接下来,让我们一同走进数电模电的世界,对其基础知识进行一番梳理和总结。
一、模拟电子技术基础知识模拟电子技术主要处理连续变化的电信号,其信号的幅度、频率和相位等参数可以在一定范围内连续取值。
(一)半导体器件半导体是模电的基础材料,常见的半导体器件有二极管、三极管和场效应管等。
二极管具有单向导电性,常用于整流、限幅和钳位等电路。
三极管分为 NPN 型和 PNP 型,它可以实现电流放大作用,是放大器的核心元件。
场效应管则具有输入电阻高、噪声低等优点,在集成电路中应用广泛。
(二)基本放大电路放大电路是模电中的重要内容。
共发射极放大电路、共集电极放大电路和共基极放大电路是常见的三种基本放大电路。
共发射极放大电路具有较大的电压和电流放大倍数,但输入输出电阻适中;共集电极放大电路,又称射极跟随器,其输入电阻高,输出电阻低,电压放大倍数接近于 1,但电流放大倍数较大;共基极放大电路具有较大的频率响应和较宽的通频带。
(三)集成运算放大器集成运放是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
它在信号运算、处理和产生等方面有着广泛的应用。
通过引入负反馈,可以实现加法、减法、积分、微分等运算功能。
(四)反馈电路反馈在模电中起着重要的作用。
正反馈可以使电路产生自激振荡,常用于正弦波振荡器中;负反馈可以改善放大电路的性能,如提高稳定性、改变输入输出电阻、减小非线性失真等。
(五)功率放大电路功率放大电路的主要任务是在保证信号不失真的前提下,尽可能提高输出功率和效率。
常见的功率放大电路有甲类、乙类和甲乙类功放。
(六)直流电源直流电源包括电源变压器、整流电路、滤波电路和稳压电路等部分。
它为电子设备提供稳定的直流电压。
二、数字电子技术基础知识数字电子技术处理的是离散的数字信号,其信号只有高电平和低电平两种状态,分别用“1”和“0”表示。
模拟和数字电路基础知识汇总

模拟和数字电路基础知识汇总作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。
下面我们就来了解一下这两个电路的基本知识。
一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。
其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3.初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。
数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。
电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。
二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。
数电和模电知识点

数电和模电知识点————————————————————————————————作者:————————————————————————————————日期:模电复习资料第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体--在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
58条模拟、数字电路基础知识总结

58条模拟、数字电路基础知识总结1、 HC为COMS电平,HCT为TTL电平2、 LS输入开路为高电平,HC输入不允许开路, HC一般都要求有上下拉电阻来确定输入端无效时的电平。
LS 却没有这个要求3、 LS输出下拉强上拉弱,HC上拉下拉相同4、工作电压:LS只能用5V,而HC一般为2V到6V5、CMOS可以驱动TTL,但反过来是不行的。
TTL电路驱动COMS电路时需要加上拉电阻,将2.4V~3.6V之间的电压上拉起来,让CMOS检测到高电平输入6、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA7、 RS232电平为+12V为逻辑负,-12为逻辑正8、 74系列为商用,54为军用9、 TTL高电平>2.4V,TTL低电平<0.4V, 噪声容限0.4V10、 OC门,即集电极开路门电路(为什么会有OC门?因为要实现“线与”逻辑),OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
并且只能吸收电流,必须外界上拉电阻和电源才才能对外输出电流11、 COMS的输入电流超过1mA,就有可能烧坏COMS12、当接长信号传输线时,在COMS电路端接匹配电阻13、在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平14、如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT的芯片,因为3.3VCMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间15、逻辑门输出为高电平时的负载电流(为拉电流),逻辑门输出为低电平时的负载电流(为灌电流)16、由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
模电数电知识总结
1.模电和数电的主要内容,学习目的。
参考要点:①模电主要讲述对模拟信号进行产生、放大和处理的模拟集成电路;数电主要是通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成及运用。
由于数字电路稳定性高,结果再现性好;易于设计等诸多优点,因此是今后的发展方向。
但现实世界中信息都是模拟信息,模电是不可能淘汰的。
单就一个系统而言模电部分可能会减少,理想构成为:模拟输入—AD采样(数字化)--数字处理—DA转换—模拟输出。
②电力专业学生学习模电数电,了解常见的模拟数字集成电路,掌握简单的电路设计,对于以后工作中遇到的弱电控制强电等情况很有帮助。
而且目前我国正在建设智能电网,模电数电的这些知识为电网高速通信网络,智能表计等智能电网核心设备打下了基础。
模电一、模拟信号和数字信号。
在时间上和幅值上均是连续的信号称为模拟信号,时间离散、数值也离散的信号称为数字信号。
随着计算机的广泛应用,绝大多数电子系统都采用计算机来对信号进行处理,由于计算机无法直接处理模拟信号,所以需要将模拟信号转换成数字信号。
二、放大电路的类型和主要性能指标。
①电压放大、电流放大、互阻放大和互导放大。
电压放大电路主要考虑电压增益,电流放大电路主要考虑电流增益,需要将电流信号转换为电压信号可利用互阻放大电路,把电压信号转换成与之相应的电流输出,这种电路为互导放大电路。
这四种放大电路模型可实现相互转换。
②输入电阻、输出电阻、增益、频率响应和非线性失真。
输入电阻等于输入电压与输入电流的比值,它的大小决定了放大电路从信号源吸取信号幅值的大小;输出电阻的大小决定了它带负载的能力,在信号源短路和负载开路情况下,在放大电路输出端加一个测试电压,相应产生一测试电流就能求得输出电阻;增益实际上反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能力;放大电路频率响应指在输入正弦信号情况下,输出随输入信号频率连续变化的稳态响应;由于元器件特性的非线性和放大电路工作电源受有限电压的限制而造成的失真为非线性失真。
数电模电基础知识总结
数电模电基础知识总结电子技术作为现代科学技术的一支重要分支,是现代社会发展的基础和支撑。
数电模电基础知识是电子技术的核心内容,掌握好这些基础知识对于学习和应用电子技术都有着重要的意义。
本文将对数电模电基础知识进行总结,帮助读者加深对这些知识的理解和掌握。
一、数电基础知识1.数字信号与模拟信号数字信号和模拟信号是电子系统中常用的两种信号形式。
数字信号是以离散的、有限个数的数值表示的信号,是通过对连续模拟信号进行采样和量化得到的。
数字信号具有离散性、可编程性、可靠性等特点,广泛应用于计算机和通信系统中。
而模拟信号是连续的,可以取无限个数的数值,用于传输和处理连续的实时信号。
2.二进制系统二进制系统是一种数学计数系统,它只使用两个数字0和1表示数值。
在计算机中,所有的数据和指令都是用二进制数来表示和处理的。
二进制系统有简单、直观、易于计算等优点,是计算机技术的基础。
3.逻辑门电路逻辑门电路是电子系统中常用的一类组合逻辑电路,根据输入信号经过门电路的逻辑运算,最终得到输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
逻辑门电路可以实现布尔代数中的逻辑运算,是数字电路设计中的基础。
4.计数器和寄存器计数器和寄存器是数字电路中常用的存储器件。
计数器是一种能够按照一定规律自动计数的电子装置,广泛应用于时序电路设计和计数问题的解决。
寄存器是一种能够暂时存储二进制数据的电子装置,常用于数据存储、传输和处理等。
二、模电基础知识1.放大器放大器是模拟电路中常用的一种电子器件,用于放大信号的幅度。
放大器可以将弱信号放大为较强的信号,以便于处理和传输。
常见的放大器有分立元件放大器、运算放大器和集成放大器等。
2.滤波器滤波器是模拟电路中常用的一种电子器件,用于改变信号频率的分布特性。
滤波器可以根据信号频率的要求实现对特定频段的放大或衰减。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3.振荡器振荡器是模拟电路中常用的一种电子器件,用于产生稳定的周期性信号。
模电必考知识点总结
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
数电模电基础知识总结
数电模电基础知识总结
数电模电基础知识是电子工程领域的重要基础,掌握好这些知识对于电子工程
师来说至关重要。
本文将对数电模电基础知识进行总结,希望能够帮助读者更好地理解和掌握这些知识。
首先,我们来谈谈数电基础知识。
数字电子学是研究数字电子系统的原理、设
计和应用的学科,它主要研究数字电路的设计、分析和应用。
数字电路是由数字信号来控制和处理信息的电路,它主要包括逻辑门电路、触发器电路、计数器电路等。
在数字电子学中,我们需要了解数字信号的特点、布尔代数、半导体存储器、寄存器、移位寄存器等知识。
其次,我们来看看模电基础知识。
模拟电子学是研究模拟电子系统的原理、设
计和应用的学科,它主要研究模拟电路的设计、分析和应用。
模拟电路是由模拟信号来控制和处理信息的电路,它主要包括放大电路、滤波电路、振荡电路等。
在模拟电子学中,我们需要了解模拟信号的特点、放大器、运算放大器、滤波器、振荡器等知识。
在实际应用中,数电和模电的知识经常会相互结合,比如在数字信号处理中需
要用到模拟信号的采集和转换,这就需要用到模数转换器和数模转换器。
因此,掌握好数电模电基础知识对于电子工程师来说非常重要。
总的来说,数电模电基础知识涉及到数字电子学和模拟电子学两个方面,它们
在电子工程领域中起着至关重要的作用。
通过本文的总结,希望读者能够对数电模电基础知识有一个更加清晰的认识,为今后的学习和工作打下良好的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.模电和数电的主要内容,学习目的。
参考要点:①模电主要讲述对模拟信号进行产生、放大和处理的模拟集成电路;数电主要是通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成及运用。
由于数字电路稳定性高,结果再现性好;易于设计等诸多优点,因此是今后的发展方向。
但现实世界中信息都是模拟信息,模电是不可能淘汰的。
单就一个系统而言模电部分可能会减少,理想构成为:模拟输入—AD采样(数字化)--数字处理—DA转换—模拟输出。
②电力专业学生学习模电数电,了解常见的模拟数字集成电路,掌握简单的电路设计,对于以后工作中遇到的弱电控制强电等情况很有帮助。
而且目前我国正在建设智能电网,模电数电的这些知识为电网高速通信网络,智能表计等智能电网核心设备打下了基础。
模电一、模拟信号和数字信号。
在时间上和幅值上均是连续的信号称为模拟信号,时间离散、数值也离散的信号称为数字信号。
随着计算机的广泛应用,绝大多数电子系统都采用计算机来对信号进行处理,由于计算机无法直接处理模拟信号,所以需要将模拟信号转换成数字信号。
二、放大电路的类型和主要性能指标。
①电压放大、电流放大、互阻放大和互导放大。
电压放大电路主要考虑电压增益,电流放大电路主要考虑电流增益,需要将电流信号转换为电压信号可利用互阻放大电路,把电压信号转换成与之相应的电流输出,这种电路为互导放大电路。
这四种放大电路模型可实现相互转换。
②输入电阻、输出电阻、增益、频率响应和非线性失真。
输入电阻等于输入电压与输入电流的比值,它的大小决定了放大电路从信号源吸取信号幅值的大小;输出电阻的大小决定了它带负载的能力,在信号源短路和负载开路情况下,在放大电路输出端加一个测试电压,相应产生一测试电流就能求得输出电阻;增益实际上反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能力;放大电路频率响应指在输入正弦信号情况下,输出随输入信号频率连续变化的稳态响应;由于元器件特性的非线性和放大电路工作电源受有限电压的限制而造成的失真为非线性失真。
三、集成运算放大器简介、组成和工作区域。
①集成运算放大器是一种高增益直接耦合放大器,它作为基本的电子器件,可以实现多种功能电路,如电子电路中的比例、求和、求差、积分和微分等模拟运算电路。
②它由输入级差分放大、中间级电压放大、输出级功率放大和偏置电路四个部分组成。
输入级由差分式放大电路组成,利用它的电路对称性可提高整个电路的性能(抑制温漂和提高共模抑制比);中间电压放大级的主要作用是提高电压增益;输出级的电压增益为1,但能为负载提供一定的功率;电流源电路构成偏置电路和有源负载电路。
③运算放大器有两个工作区域。
在线性区它放大小信号;输入为大信号时,它工作在非线性区,输出电压扩展至饱和值。
当使运放电路稳定地工作在线性区,均需引入深度负反馈。
四、理想运放的模型。
①输出电压的饱和极限值等于运放的电源电压,即+=和-=。
②运放的开环电压增益很高,以至差分输入电压()的值尽管很小,仍可驱使运放进入饱和区。
③与前述相反,若未达到饱和极限,则差分输入电压()必趋近于0值。
当处于和之间,则运放必将工作在线性区。
④内部的输入电阻的阻值很高,因而可近似认为它为无限大。
⑤内部的输出电阻的阻值很低乃至可近似认为它为零。
五、虚短和虚断。
输出通过负反馈的作用,使自动地跟踪,使,或≈0,这种现象称为虚假短路,简称虚短。
由于同相和反相两输入端之间出现虚短现象,而运放的输入电阻的阻值又很高,因而流经两输入端之间的≈0,这种现象称为虚断。
应当注意的是,虚短是本质的,虚断是派生的。
虚短和虚断概念对分析由运放组成的各种线性应用电路非常重要,用它可求出运放电路输出和输入的函数关系。
六、PN结的形成及特性。
①PN结是半导体二极管和组成其他半导体器件的基础,它是由P型半导体和N型半导体相结合而形成的。
对纯净的半导体(如硅材料)掺入受主杂质或施主杂质,便可制成P型和N型半导体。
空穴参与导电是半导体不同于金属导电的重要特点。
②当PN结外加正向电压(正向偏置)时,耗尽区变窄,有电流流过;而当反加方向电压(反向偏置)时,耗尽区变宽,没有电流流过或电流极小,这就是半导体二极管的单向导电性,也是二极管最重要的特性。
关于半导体和PN结往年面试试题(1-9):1、半导体材料制作电子器件与传统的真空电子器件相比有什么特点?答:频率特性好、体积小、功耗小,便于电路的集成化产品的袖珍化,此外在坚固抗震可靠等方面也特别突出;但是在失真度和稳定性等方面不及真空器件。
2、什么是本征半导体和杂质半导体?答:纯净的半导体就是本征半导体,在元素周期表中它们一般都是中价元素。
在本征半导体中按极小的比例掺入高一价或低一价的杂质元素之后便获得杂质半导体。
3、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。
空穴导电时等电量的电子会沿其反方向运动。
4、制备杂质半导体时一般按什么比例在本征半导体中掺杂?答:按百万分之一数量级的比例掺入。
5、什么是N型半导体?什么是P型半导体?当两种半导体制作在一起时会产生什么现象? 答:多数载子为自由电子的半导体叫N型半导体。
反之,多数载子为空穴的半导体叫P型半导体。
P型半导体与N型半导体接合后便会形成P-N结。
6、PN结最主要的物理特性是什么?答:单向导电能力和较为敏感的温度特性。
7、PN结还有那些名称?答:空间电荷区、阻挡层、耗尽层等。
8、PN结上所加端电压与电流是线性的吗?它为什么具有单向导电性?答:不是线性的,加上正向电压时,P区的空穴与N区的电子在正向电压所建立的电场下相互吸引产生复合现象,导致阻挡层变薄,正向电流随电压的增长按指数规律增长,宏观上呈现导通状态,而加上反向电压时,情况与前述正好相反,阻挡层变厚,电流几乎完全为零,宏观上呈现截止状态。
这就是PN结的单向导电特性。
9、在PN结加反向电压时果真没有电流吗?答:并不是完全没有电流,少数载流子在反向电压的作用下产生极小的反向漏电流。
七、二极管电路的简化模型。
由于二极管是非线性器件,所以通常采用二极管的简化模型来分析设计二极管电路。
这些模型主要有理想模型、恒压降模型、折线模型、小型号模型等。
在分析电路的静态或大信号情况时,根据输入信号的大小,选用不同的模型;只有当信号很微小且有一静态偏置时,才采用小信号模型。
指数模型主要在计算机仿真模型中使用。
理想模型:正向偏置时,管压降为0,反向偏置时,电阻为无穷大,电流为0。
恒压降模型:二极管导通后,其管压降认为是恒定的,且不随电流而变。
折线模型:在恒压降模型的基础上,做一定的修正,即认为二极管的管压降不是恒定的,而是随着电流的增加而增加,在模型中用一个电池和一个电阻来作进一步的近似。
小信号模型:一般首先分析电路的静态工作情况,求得静态工作点Q;其次,根据Q点算出微变电阻;再次,根据小信号模型交流电路模型,求出小信号作用下电路的交流电压、电流;最后与静态值叠加,得到完整的结果。
八、BJT。
①双极节型三极管简称BJT,是由两个PN结组成的三端有源器件,分NPN和PNP两种类型,它的三个端子分别称为发射极e、基极b和集电极c。
由于硅材料的热稳定性好,因而硅BJT得到广泛应用。
②表征BJT性能的有输入输出特性,均称之为V-I特性,其中输出特性用得较多。
从输出特性上可以看出,用改变基极电流的方法可以控制集电极电流,因而BJT是一种电流控制器件。
③BJT的电流放大系数是它的主要参数,按电路组态的不同有共射极电流放大系数β和共基极电流放大系数α之分。
为了保证器件的安全运行,还有几项极限参数,如集电极最大允许功率损耗和若干反向击穿电压,如等,使用时应当予以注意。
④BJT在放大电路中有共射、共极和共基三种组态,根据相应的电路输出量与输入量之间的大小和相位的关系,分别将它们称为反向电压放大器、电压跟随器和电流跟随器。
三种组态中的BJT都必须工作在发射结正偏,集电结反偏的状态。
九、放大电路的分析方法。
放大电路的分析方法有图解法和小信号模型分析法,前者是承认电子器件的非线性,后者则是将非线性特性的局部线性化。
通常使用图解法求Q点,而用小信号模型分析法求电压增益、输入电阻和输出电阻。
十、放大电路静态工作点的稳定问题。
放大电路静态工作点不稳定的原因主要是由于受温度的影响。
常用的稳定静态工作点的电路有射极偏置电路等,它是利用反馈原理来实现的。
十一、模拟集成电路种类。
运算放大器、宽频带放大器、功率放大器、模拟乘法器、模拟锁相环、模-数和数-模转换器、稳压电源和音像设备中常用的其他模拟集成电路等。
十二、电流源电路。
电流源电路是模拟集成电路中的基本单元电路,其特点是直流电阻小,动态输出电阻(小信号电阻)很大,并具有温度补偿作用。
常用来作为放大电路的有源负载和决定放大电路各级Q点的偏执电流。
十三、差分式放大电路。
差分式放大电路是模拟集成电路的重要组成单元,特别是作为集成运放的输入级,它既能放大直流信号,又能放大交流信号;它对差模信号具有很强的放大能力,而对共模信号却具有很强的抑制能力。
由于电路输入(双端、单端)、输出(双端、单端)方式的不同组合,共有四种典型电路。
分析这些电路时,要着重分析两边电路输入信号分量的不同,至于具体指标的计算与共射的单级电路基本一致。
差分式放大电路要得到高的(共模抑制比),在电路结构上要求两边电路对称;偏置电流源电路要有髙值的动态输出电阻。
十四、调制和解调。
调制和解调在通信、广播、电视和遥控等领域中得到了广泛的应用。
利用模拟乘法器的功能很容易实现调制和解调功能。
调制现以无线电调幅广播为例来说明调幅原理。
在这种调制过程中,一般情况下,音频信号需用高频信号通过无线方式来运载,这里高频信号称为载波信号,音频信号称为调制信号,将音频信号“装载”于高频信号的过程称为调制。
解调调幅波的解调亦称检波,是调幅的逆过程,即从调幅波提取调制(音频)信号的过程称为解调。
十五、放大电路中的噪声和干扰。
放大电路中噪声和干扰的产生和抑制是电子工程技术中的重要基础知识。
要制作高质量的放大器,不仅需要正确地设计电路,合理地选择元器件,而且对干扰和噪声的抑制应予以足够的重视。
关于二极管、三极管、放大电路往年面试试题(10-47):10、二极管最基本的技术参数是什么?答:最大整流电流。
11、二极管主要用途有哪些?答:整流、检波、稳压等。
12、晶体管是通过什么方式来控制集电极电流的?答:通过电流分配关系。
13、能否用两只二极管相互反接来组成三极管?为什么?答:否;两只二极管相互反接是通过金属电极相接,并没有形成三极管所需要的基区。
14、什么是三极管的穿透电流?它对放大器有什么影响?答:当基极开路时,集电极和发射极之间的电流就是穿透电流,它和集电极-基极反向漏电流都是由少数载流子的运动产生的,所以对温度非常敏感,当温度升高时二者都将急剧增大。