高中数学不等式习题及详细答案
不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。
高中数学必修第1册配套课后练习题含答案解析 1.3.1不等式性质

1.3.1不等式性质一、单选题1.设a ,b ,c 为实数,且0a b <<,则下列不等式正确的是()A .11a b<B .22ac bc <C .b a a b>D .22a ab b >>2.已知0x a <<,下列不等式一定成立的是()A .220x a <<B .22x ax a >>C .20x ax <<D .22x a ax>>3.若,a b c d >>,则下列关系一定成立的是()A .ac bd >B .ac bc >C .a c b d+>+D .a c b d->-4.若a ,b ,c R ∈,且a b >,则下列不等式一定成立的是()A .a c b c+>-B .22ac bc>C .2c a b>-D .2()0a b c -≥5.若0a b >>,0m <.则下列不等式成立的是()A .a m ab m b->-B .a m ab m b-<-C .1ma b>-D .22am bm <6.若0,10a b <-<<,则下列不等关系一定正确的是()A .a b<B .2a b <C .a b>D .0a b +>7.已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是()A .[]28,B .[]3,8C .[]2,7D .[]5,108.下列结论正确的是()A .若a b >,则ac bc >B .若a b >,则11a b<C .若22ac bc >,则a b >D .若a b >,则22a b >9.下列选项正确的是()A .a 与b 的差不是正数用不等式表示为a -b <0B .a 的绝对值不超过3用不等式表示为a ≤3C .(x -3)2<(x -2)(x -4)D .x 2+y 2+1>2(x +y -1)10.已知a >b >c ,则1a b -+1b c -+1c a-的值()A .为正数B .为非正数C .为非负数D .不确定二、填空题11.已知a ,b 是实数,且a >b ,则-a ________-b (填“>”或“<”).12(填<或>).13.设46,12a b <<<<,则aa b-的取值范围是________(取值范围写成区间形式)14.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 4>b 4;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确的命题序号是_______.三、解答题15.已知54x -<<,23y <<.求(1)2x y -的取值范围;(2)32x y +的取值范围.16.(1)已知,a b c d ><,求证:a c b d ->-;(2)已知,0a b ab >>,求证:11a b<;(3)已知0,0a b c d >><<,求证:a b c d>.参考答案1.D 【分析】对于ABC ,通过举反例判断即可,对于D ,利用不等式的性质判断【详解】解:对于A ,若2,1a b =-=-,则11112a b=->=-,所以A 错误,对于B ,当0c =时,220ac bc ==,所以B 错误,对于C ,若2,1a b =-=-,则1122221b a a b --==<==--,所以C 错误,对于D ,因为0a b <<,所以2a ab >,2ab b >,所以22a ab b >>,所以D 正确,故选:D 2.B 【分析】根据不等式的性质判断.【详解】220,0,0,x a x a x ax ax a <<<<⇒>>,即22x ax a >>故选:B .3.C 【分析】利用基本不等式的性质,对选项进行一一验证,即可得到答案;【详解】对A ,当0,0a b c d ac bd >>>>⇒>,故A 错误;对B ,当0c >时,ac bc >,故B 错误;对C ,同向不等式的可加性,故C 正确;对D ,若2,1,0,31,4a b c d a c b d ====-⇒-=-=,不等式显然不成立,故D 错误;故选:C.4.D 【分析】作差法比较大小,再取值验算.【详解】因为()22a c b c a b c c +--=-+>,当取1,0,2a b c ===-时,1a c +=-,2b c -=,有a c b c +<-.故选项A 错误;因为()2220ac bc a b c -=-≥,20c a b≥-,当取0c =时,22ac bc =,20c a b=-,故选项B 错误,选项C 错误,选项D 正确.故选:D.5.B 【分析】根据已知条件,由作差比较法得0a m ab m b--<-,从而可判断选项B 正确.【详解】解:()()()()()a m ab a m a b m m b a b m b b b m b b m -------=---, 0a b >>,0m <,∴0b a -<,0m ->,()0b b m ->,∴0a m ab m b--<-,即a m ab m b -<-,所以选项A 不正确,选项B 正确;而选项C 、选项D ,由不等式的性质易判断不正确.故选:B .6.B 【分析】根据正负直接选出正确答案.【详解】0a <,20b >,所以2a b <故选:B 7.A 【分析】设()()()()32x y m x y n x y m n x m n y -=+--=-++,利用待定系数法求得,m n ,利用不等式的性质即可求32x y -的取值范围.【详解】设()()()()32x y m x y n x y m n x m n y -=+--=-++,所以32m n m n -=⎧⎨+=-⎩,解得:1252m n ⎧=⎪⎪⎨⎪=-⎪⎩,1532()()22x y x y x y -=+--,因为11x y -≤+≤,13x y ≤-≤,所以[]1532()()2,822x y x y x y -=+--∈,故选:A.8.C 【分析】根据不等式的性质,对四个选项一一验证:对于A :利用不等式的可乘性的性质进行判断;对于B :取1,1a b ==-进行否定;对于C :利用不等式的可乘性的性质进行证明;对于D :取1,1a b ==-进行否定.【详解】对于A :当a b >时,若取0c ≤,则有ac bc ≤.故A 不正确;对于B :当a b >时,取1,1a b ==-时,有11a b>.故B 不正确;对于C :当22ac bc >,两边同乘以21c ,则a b >.故C 正确;对于D :当a b >,取1,1a b ==-时,有22=a b .故D 不正确.故选:C.【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)判断不等式成立的解题思路:①取特殊值进行否定;②利用不等式的性质直接判断.9.D 【分析】用做差法比较大小,即可做出判断.【详解】A.a 与b 的差不是正数用不等式表示为a -b ≤0,故A 错误;B.a 的绝对值不超过3用不等式表示为|a |≤3,故B 错误;C.(x -3)2-(x -2)(x -4)=1>0,所以(x -3)2>(x -2)(x -4),故C 错误;D .x 2+y 2+1-2(x +y -1)=(x -1)2+(y -1)2+1>0,所以x 2+y 2+1>2(x +y -1),故D 正确.故选:D 10.A 【分析】利用不等式的性质判断即可【详解】因为a >b >c ,所以a -b >0,b -c >0,a -c >b -c >0,所以1a b ->0,1b c ->0,1a c-<1b c -,所以1b c -+1c a ->0,所以1a b -+1b c -+1c a ->0,所以1a b -+1b c -+1c a-的值为正数.故选:A 11.<【分析】根据不等式的性质计算可得;【详解】解:因为a b >,所以a b -<-故答案为:<12.<【分析】比较6、6.【详解】6328==Q,6239==,则66<<故答案为:<.13.(0,3)【分析】利用不等式的性质求解即可【详解】解:由12b <<,得1112b<<,所以1112b -<-<-,所以1111112b -<-<-,即11012b <-<,因为46a <<,所以1140(1)62a b ⨯<-<⨯,即03aa b<-<,所以aa b-的取值范围是(0,3),故答案为:(0,3)14.②③【分析】对于①,举反例判断;对于②,利用不等式的性质判断即可;对于②,作差判断;对于④,举反例即可【详解】解:①当c 2=0时不成立.②因为0a b >≥,所以22a b >,即22a b >,所以44a b >,所以②正确③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·22324b a b ⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦>0成立.④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.故答案为:②③15.(1)1120x y -<-<;(2)113218x y -<+<.【分析】利用不等式的基本性质求解.【详解】解:(1)因为23y <<,所以624y -<-<-,所以()()56244x y -+-<-<+-,即1120x y -<-<.(2)因为54x -<<,23y <<,所以15312x -<<,426y <<,所以113218x y -<+<.【点睛】本题考查不等式的基本性质及应用,属于简单题.16.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据c d <不等号左右两边同时乘以一个负数,不等号方向改变得到c d ->-,再用同向可加性法则即可得出结果.(2)根据正数的倒数大于0可得10ab>,再用同向同正可乘性得出结果.(3)因为0c d <<,根据(2)的结论,得110c d>>,再用同向同正可乘性得出结果.【详解】证明:(1)因为,a b c d ><,所以,a b c d >->-.则a c b d ->-.(2)因为0ab >,所以10ab>.又因为a b >,所以1a b ab ab 1⋅>⋅,即11b a >,因此11a b<.(3)因为0c d <<,根据(2)的结论,得110c d>>.又因为0a b >>,则11a b c d⋅>⋅,即a b c d>.【点睛】本题考查不等式的基本性质与不等关系,是基础题.。
高中不等式试题和答案

不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14 15.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中不等式试题及答案解析

高中不等式试题及答案解析试题一:已知不等式 \( ax^2 + bx + c > 0 \),其中 \( a < 0 \),求 x 的取值范围。
答案解析:由于 \( a < 0 \),二次函数 \( ax^2 + bx + c \) 的图像是一个开口向下的抛物线。
不等式 \( ax^2 + bx + c > 0 \) 表示函数值在 x 轴上方的区域。
要找到 x 的取值范围,我们需要找到抛物线的根,即解方程 \( ax^2 + bx + c = 0 \)。
设 \( x_1 \) 和 \( x_2 \) 是方程 \( ax^2 + bx + c = 0 \) 的两个根,根据韦达定理,我们有:\[ x_1 + x_2 = -\frac{b}{a} \]\[ x_1 x_2 = \frac{c}{a} \]由于 \( a < 0 \),\( x_1 \) 和 \( x_2 \) 必定异号,这意味着\( x_1 x_2 < 0 \)。
因此,不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( x \in (x_1, x_2) \)。
试题二:若 \( x > 0 \),求不等式 \( \frac{1}{x} + x \geq 2 \) 成立的条件。
答案解析:我们可以使用 AM-GM 不等式(算术平均数-几何平均数不等式)来解决这个问题。
对于任意正数 \( a \) 和 \( b \),有:\[ \frac{a + b}{2} \geq \sqrt{ab} \]令 \( a = \frac{1}{x} \) 和 \( b = x \),我们得到:\[ \frac{\frac{1}{x} + x}{2} \geq \sqrt{\frac{1}{x} \cdot x} \]\[ \frac{1}{2x} + \frac{x}{2} \geq 1 \]两边乘以 2,得到:\[ \frac{1}{x} + x \geq 2 \]当且仅当 \( a = b \) 时,AM-GM 不等式取等号,即 \( \frac{1}{x} = x \)。
高中数学不等式题目

高中数学不等式题目一、已知实数a, b, c满足a + b + c = 0,且a2 + b2 + c2 = 1,则下列不等式恒成立的是:A. a2 ≤ 1/3B. b2 ≥ 1/2C. c2 ≤ 2/3D. a2 + b2 ≤ 2/3(答案)D二、设x, y ∈ R,且xy ≠ 0,若|x| ≤ |y|,则下列不等式成立的是:A. x2 + 1/x2 ≥ y2 + 1/y2B. x2 + 1/y2 ≥ 2C. |x| + 1/|x| ≤ |y| + 1/|y|D. |x| + |y| ≥ 2√(|xy|)(答案)D三、对于任意实数x,y,若|x - y| ≤ 1,|x + y| ≤ 1,则下列不等式恒成立的是:A. x2 + y2 ≤ 1B. |x| + |y| ≤ √2C. max{|x|, |y|} ≤ 1D. min{|x|, |y|} ≤ 1/2(答案)D四、已知a, b, c为正实数,且a + b + c = 1,则下列不等式中不成立的是:A. √(ab) + √(bc) + √(ca) ≤ 1/2B. a2 + b2 + c2 ≥ 1/3C. abc ≤ (1/3)3D. 1/(a + b) + 1/(b + c) + 1/(c + a) ≥ 9/2(答案)A五、设x, y ∈ R,且x2 + y2 = 1,则下列不等式恒成立的是:A. |x + y| ≤ √2B. |x - y| ≥ 1C. x2 + 2y2 ≥ 3/4D. √(|x|) + √(|y|) ≥ √2(答案)A六、已知a, b, c为三角形的三边长,则下列不等式中不成立的是:A. a + b > cB. a2 + b2 + c2 ≥ ab + bc + caC. (a + b + c)2 ≥ 3(ab + bc + ca)D. √(ab) + √(bc) + √(ca) ≥ a + b + c(答案)D七、设x, y ∈ R,且|x| ≤ 1,|y| ≤ 1,则下列不等式中恒成立的是:A. |x + y| ≤ 1B. |x - y| ≤ 2C. x2 + y2 ≤ 1D. |x| + |y| ≤ 1(答案)B八、已知a, b, c为正实数,且a + b + c = 3,则下列不等式中成立的是:A. √(ab) + √(bc) + √(ca) ≤ 3B. a2b + b2c + c2a ≥ 3C. (a + b + c)3 ≥ 27abcD. 1/a + 1/b + 1/c ≤ 1(答案)C。
高一不等式考试题及答案
高一不等式考试题及答案一、选择题(每题4分,共40分)1. 若不等式x^2 - 4x + 3 > 0的解集为A,则A中不含元素()A. 0B. 1C. 2D. 3答案:C2. 对于不等式ax^2 + bx + c > 0,若a < 0,则其解集为()A. (-∞, -b/2a) ∪ (-b/2a, +∞)B. (-b/2a, +∞)C. (-∞, -b/2a)D. (-b/2a, -∞)答案:A3. 若不等式x^2 - 6x + 8 < 0的解集为B,则B中包含元素()A. 2B. 3C. 4D. 5答案:B4. 对于不等式x^2 - 5x + 6 ≤ 0,其解集为()A. {x | 2 ≤ x ≤ 3}B. {x | 3 ≤ x ≤ 2}C. {x | 2 < x < 3}D. {x | 3 < x < 2}答案:A5. 若不等式x^2 - 2x - 8 < 0的解集为C,则C中不包含元素()A. -2C. 4D. 5答案:D6. 对于不等式ax^2 + bx + c < 0,若a > 0,b^2 - 4ac < 0,则其解集为()A. ∅B. RC. {x | x < -b/2a}D. {x | x > -b/2a}答案:A7. 若不等式x^2 + 4x + 4 ≥ 0的解集为D,则D中包含元素()A. -2B. 0C. 2答案:B8. 对于不等式x^2 - 8x + 15 ≤ 0,其解集为()A. {x | 3 ≤ x ≤ 5}B. {x | 5 ≤ x ≤ 3}C. {x | 3 < x < 5}D. {x | 5 < x < 3}答案:A9. 若不等式x^2 - 10x + 21 < 0的解集为E,则E中不包含元素()A. 3B. 7C. 9D. 11答案:D10. 对于不等式ax^2 + bx + c > 0,若a < 0,b^2 - 4ac > 0,则其解集为()A. (-b/2a, -b/2a)B. (-∞, -b/2a) ∪ (-b/2a, +∞)C. (-b/2a, -b/2a)D. (-b/2a, +∞) ∪ (-∞, -b/2a)答案:D二、填空题(每题4分,共20分)11. 不等式x^2 - 9x + 14 > 0的解集为______。
高中不等式的试题及答案
高中不等式的试题及答案一、选择题1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),则下列不等式中解集为 \( (-∞, -2) ∪ (1, +∞) \) 的是()。
A. \( 2ax^2 + 2bx + c < 0 \)B. \( 2ax^2 - bx + c < 0 \)C. \( ax^2 - bx + c < 0 \)D. \( 2ax^2 + bx + 2c < 0 \)答案:B解析:已知不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),说明 \( a < 0 \) 且 \( -1 \) 和 \( 2 \) 是方程 \( ax^2 + bx + c = 0 \) 的根。
因此,\( -b/a = -1 + 2 = 1 \) 和 \( c/a = -1 \times 2 = -2 \)。
将这些值代入选项中,只有选项 B 满足条件。
2. 若 \( x^2 - 4x + m < 0 \) 的解集非空,则实数 \( m \) 的取值范围是()。
A. \( m < 4 \)B. \( m > 4 \)C. \( m < 16 \)D. \( m > 16 \)答案:C解析:要使不等式 \( x^2 - 4x + m < 0 \) 的解集非空,需要判别式 \( \Delta = b^2 - 4ac > 0 \),即 \( 16 - 4m > 0 \),解得 \( m < 4 \)。
但因为 \( m \) 必须使得不等式有实数解,所以 \( m \) 必须小于\( x^2 - 4x \) 的最小值,即 \( m < 4 \)。
因此,\( m \) 的取值范围是\( m < 16 \)。
二、填空题3. 若 \( a > 0 \),\( b > 0 \),且 \( a + b = 2 \),则 \( \frac{1}{a} + \frac{1}{b} \) 的最小值为 ______。
高一数学不等式部分经典习题及答案
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
高中数学基本不等式专题50练(含答案)
高中数学基本不等式(含答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 . 【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >时,则353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______. 【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 . 【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【答案】12-【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 . 【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________【答案】8 【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += .【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x 的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 .【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 .【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b+++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______.【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221aba +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a +的取值范围是 .【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________. 【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 . 【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________. 【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________. 【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______.【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________. 【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________. 【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______.【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( )A. 47B. 2233C. 2D. 32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______.【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________.【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22b a ba +-的最大值为___________.【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B 【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯b a b b a a , 则b a 32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有().A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是().A .3B .27C .4D .293.设a >0,b >0则下列不等式中不成立的是(). A .a +b +ab1≥22 B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab +2≥ab4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为().A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为().A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是(). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是().A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是().A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为().A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是().A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧所表示的平面区域的面积是.12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是.13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是. 14.设a ,b 均为正的常数且x >0,y >0,xa+yb=1,则x +y 的最小值为. 15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为. 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为.(x -y +5)(x +y )≥x +2y -3≤0 x +3y -3≥0,(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y9=1,求x +y 的最小值; (3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+xx y y y y x=⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +. ∵x 2+241x ≥22241x x ⋅=1,当且仅当x 2=241x,x =22时取等号;41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; xyy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy ,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得(a +b )(a 1+b1)≥4成立.C :∵a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立. 4.D解析:因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0xx f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x )在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x xcos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵0<x <2π,∴存在x 使tan x =21,这时f (x )min =4.6.B解析:∵a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号. 故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分(第4题)△ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴y D =25, ∴25=k ×21+34,k =37. 8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧.1=, 5=-00y x ∴点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵k AC =1-5522-3=-207, ∴-m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵x >1,∴x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组.⎩⎨⎧ ⎪⎩⎪⎨⎧⇔或⎪⎩⎪⎨⎧ 这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.ab ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ab =a +b +3≥ab 2+3,即ab ≥ab 2+3(当且仅当a =b 时等号成立), ∴(ab )2-ab 2-3≥0,∴(ab -3)(ab +1)≥0,∴ab ≥3,即ab ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx均为正数, ∴x +y =(x +y )(xa +y b )=a +b +x ay +y bx≥a +b +ybx x ay ·2 =a +b +2ab , (x -y +5)(x +y )≥0 0≤x ≤3 x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0x +y ≤0 0≤x ≤3(第11题)即x +y ≥(a +b )2,当且仅当1=+=yb x a y bx x ay 即ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n 2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n mm n 即21=41=n m 时取等号. 16.221p p +.解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p 1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k 2+3.S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0.19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系: 则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤300y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵x <45,∴4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵5-4x +x-451≥x -x -451452)(=2,∴y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.(第18题)(第18题)(2)∵x >0,y >0,x 1+y 9=1, ∴x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2y x x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。