浙教版九年级上数学
2024年浙教版数学九年级上册2.1《事件的可能性》教学设计

2024年浙教版数学九年级上册2.1《事件的可能性》教学设计一. 教材分析《事件的可能性》是浙教版数学九年级上册2.1的内容,本节课主要让学生了解随机事件的定义以及如何运用概率来描述事件的可能性。
教材通过实例引导学生理解概率的概念,让学生在实际问题中体会数学的应用价值。
二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于随机事件的概率概念可能较为陌生。
因此,在教学过程中,教师需要注重从学生已有的知识基础出发,通过实例和活动引导学生理解和掌握概率的概念。
三. 教学目标1.知识与技能:让学生理解随机事件的定义,学会运用概率来描述事件的可能性。
2.过程与方法:通过实例和活动,培养学生的观察、分析和解决问题的能力。
3.情感态度与价值观:让学生感受数学在生活中的应用,培养学生的数学兴趣。
四. 教学重难点1.重点:随机事件的定义,概率的概念。
2.难点:如何运用概率来描述事件的可能性。
五. 教学方法1.情境教学法:通过实例和活动,引导学生理解和掌握概率的概念。
2.问题驱动法:提出问题,激发学生的思考,培养学生解决问题的能力。
3.合作学习法:小组讨论,培养学生交流和合作的能力。
六. 教学准备1.教学课件:制作课件,展示实例和活动。
2.教学素材:准备相关实例和活动材料。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用课件展示一个实例:抛硬币实验。
让学生观察并思考:在抛硬币的过程中,正面朝上和反面朝上的可能性是否相等?2.呈现(10分钟)展示教材中的相关实例,让学生观察并回答问题:什么是随机事件?随机事件的可能性如何描述?3.操练(15分钟)开展小组活动,让学生实际操作,观察并记录不同随机事件的可能性。
教师引导学生总结规律,得出概率的定义。
4.巩固(10分钟)利用课件展示一些实际问题,让学生运用概率的知识解决问题。
教师引导学生总结解题方法。
5.拓展(10分钟)提出一些拓展问题,让学生思考:如何求复杂事件的概率?教师引导学生探讨解决方法。
浙教版数学九年级(上)及参考答案

一、选择题(每小题3分,共30分. 每小题给出的四个选项中, 只有一个是正确的). 1.下列函数中,图象经过点(-2,1)的反比例函数解析式是( ) A .1y x=B .1y x-= C .2y x= D .2y x-=2.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π 3.如图,AB 和CD 都是⊙O 的直径,∠AOC=52°,则∠C 的度数是( ) A .22° B .26° C .38° D .48°4.已知⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,O 1O 2长为3cm ,则⊙O 1和⊙O 2的位置关系是( ) A .内切 B .外切 C .相交 D .内含5.把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h (米)与时间t (秒),满足关系 h =20t -5t 2,当小球达到最高点时,小球的运动时间为( )A .1秒B . 2秒C .4秒D .20秒6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( ) A .160° B .130° C .120° D .100°8.如图,已知△ABC ,P 是边AB 上的一点,连结CP ,以下条件中不能..确定△ACP 与△ABC 相似的是( ) A .∠ACP=∠B B .∠APC=∠ACBC .AC 2=AP·ABD .BCAB CPAC =9.如图,在□ABCD 中,AB ∶ AD = 3∶2,∠ADB=60°,那么cos A的值等于( )A.6 B.6233+ C.663+ D.610.若二次函数c bx ax y ++=2的顶点在第一象限,且经过点(0,1)、(-1,0),则Y c b a ++= 的取值范围是( )A .Y >1B .-1<Y <1C .0<Y <2D .1<Y <2 二、填空题(每小题4分,共24分. 结果中保留根号或π)11.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交⊙O 于D .在图中有许多相等的量,例如OA =OB ,请再写出两个等式(用原有字母表示): .12.已知二次函m x x y +--=22的部分图象如图所示,则关于x 的一元二次方程022=+--m x x 的解13.如图,从P 点引⊙O 的两条切线PA 、PB ,A 、B 为切点,已知⊙O 的半径为1,∠P =60°,则图中阴影部分的面积为 .14.如图,小明晚上由路灯A 下的B 处走到C 处时,测得影子CD •的长为1米,从C 处继续往前走2米到达E 处时,测得影子EF 的长为2米,B、C、D、E、F在同一条直线上,已知小明的身高是1.6米,那么路灯A 的高度等于 米.15.如图,在直角坐标系中,已知点P 0的坐标为(1,0),进行如下操作: 将线段OP 0按逆时针方向旋转45 ,再将其长度伸长为OP 0的2倍,得到线段OP 1 ;又将线段OP 1按逆时针方向旋转45 ,长度伸长为OP 1的2倍,得到线段OP 2,如此重复操作下去,得到线段OP 3,OP 4, , 则:(1)点P 5的坐标为 ;(2)落在x 轴正半轴上的点P n 坐标是 ,其中n 满足的条件是 .16.如图,正方形ABCD 的中心为O ,面积为1856cm 2,P 为正方形内的一点,且∠OPB=45 ,连结PA 、PB ,若PA ∶PB=3∶7,则PB= cm.三、解答题(共8个小题,66分,解答题应写出必要的演算步骤或推理过程,凡题目中没有要求取精确值的,结果中应保留根号或π) 17.(6分)求下列各式的值:(1)︒-︒30cos 245sin 2+2)60tan 1(︒- (2)已知32=yx ,求yx y x 22+-的值.18.(6分)如图,陈华同学从学校的东大门A 处沿北偏西54°方向走100m 到达图书馆B 处,再从B 处向正南方向走200m 到达操场旗杆下C 处,计算从旗杆下C 到东大门A 的距离是多少?(精确到0.1)19.(6分)已知在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线, 以AD 为弦作⊙O ,使圆心O 在AB 上.(1)用直尺和圆规在图中作出⊙O (不写作法,保留作图痕迹) ; (2)求证:BC 为⊙O 的切线.20.(8分)如图,已知点A(-4,2)、B( n ,-4)是一次函数b kx y +=的图象与反比例函数xm y =图象的两个交点.(1) 求此反比例函数的解析式和点B 的坐标;(2) 根据图象写出使一次函数的值小于反比例函数值的x 的取值范围.21.(8分)如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90 的扇形BAC .(1)求这个扇形的面积;(2)若将扇形BAC 围成一个圆锥的侧面,这个圆锥的底面直径是多少? 能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.22.(10分)如图,在矩形ABCD 中,AB =4,AD =10.一把三角尺的直角顶点P 在AD 上滑动时(点P 与A 、D 不重合),一直角边始终经过点C ,另一直角边与AB 交于点E .(1)证明△DPC ∽△AEP ;(2)当∠CPD =30°时,求AE 的长; (3)是否存在这样的点P ,使△DPC 的周长等于△AEP 周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.23.(10分)如图,抛物线y =-21x 2+25x -2与x 轴相交于点A 、B ,与y 轴相交于点C .(1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D .若点P 在线段AB 上以每秒1个单位的速度由点A 向点B 运动,同时点Q 在线段CD 上以每秒1.5个单位的速度由点D 向点C 运动,问:经过几秒后,PQ =AC .24.(12分)如图,等边△ABC 的边长为6,BC 在x 轴上,BC 边上的高线AO 在y 轴上,直线l 绕点A 转动(与线段BC 没有交点). 设与AB 、l 、x 轴相切的⊙O 1的半径为1r ,与AC 、l 、x 轴相切的⊙O 2半径为2r . (1)求两圆的半径之和;(2)探索直线l 绕点A 转动到什么位置时两圆的面积之和最小?最小值是多少? (3)若321=-r r ,求经过点O 1、O 2的一次函数解析式.数学参考答案(评分意见)一、选择题(每小题3分,共30分.DCBAB CBDAC二、填空题(每小题4分,共24分)11.答案不唯一,写出正确的一个得2分,两个得4分. 12.3,121-==x x 13.33π- 14.4.815.(1))216,216(--; (2))0,2(n, ),2,1,0(8 ==k k n [2分、1分、1分] 16.282三、解答题(共8个小题,66分) 17. (6分)(1)︒-︒30cos 245sin 2+2)60tan 1(︒-=1-3+3-1=0 --------3分 (2)由已知得y x 32=,代入yx y x 22+- 得8123234=+-y y y y -------------------------3分(以上两题如结论错,过程有部分对可得1分)18. (6分)过A 作AD ⊥BC ,∵∠BAD =90°-54°=36°-------1分∴BD =100sin36°≈58.8 -------1分 AD =100cos36°≈80.9 -------1分 CD =200-58.8=141.2 -------1分∴AC =222.1419.80+≈162.7(m ) -------2分19. (6分)(1)作图有垂直平分线痕迹,圆心是AB 与垂直平分线的交点-----3分 (2)连结OD, ∵AD 是∠CAB 的平分线,∴∠1=∠2=∠3, ∠4=∠2+∠3=∠1+∠2=∠CAB -------1分, ∠C =∠ODB------1分 ∴△BOD ∽△BAC-------1分 ∴OD ⊥BC ,BC 为⊙O 的切线.-------1分20. (8分)(1)反比例函数的解析式为xy 8-=,------2分,点B (2,-4)------2分(2)一次函数的值小于反比例函数值的x 的取值范围是: -4<x <0或x >2(两个解集各2分,共4分 ) 21. (8分)(1)∵∠A 为直角,BC =2,∴扇形半径为2------2分 ∴S 扇=2360)2(902ππ=------2分(2)设围成圆锥的底面半径为r ,则2πr =22π⇒222=r -------2分延长AO 分别交弧BC 和⊙O 于E 、F ,而EF =22- <22 ---------1分∴不能从最大的余料③中剪出一个圆做该圆锥的底面. ------------------1分 22. (10分)(1)在△DPC 、△AEP 中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3 --------1分又∠A =∠D =Rt ∠,------1分, ∴△DPC ∽△AEP ---------1分(2)∵∠2=30°,CD =4,∴PC =8,------1分,PD =34 ------1分,由(1)得:=⇒=⇒=-AE AE CDAP PDAE4341034103-12 ------------2分(3)存在这样的点P ,使△DPC 的周长等于△AEP 周长的2倍, -------1分 ∵相似三角形周长的比等于相似比,设DPAPDC -=104=2,解得DP =8 -------2分23. (10分)(1)A (1,0)、B (4,0)、C (0,-2)、S △ABC =3 -------各1分(共4分)(2)设运动时间t 秒后PQ =AC =5,--------1分, 由CD//x 轴解得D(-2,5)-------1分则由(CQ -OP )2+22=5 得()225 1.5(1)25t t --++= -------2分 解得t 56=或t=2 ---------2分,所以经过56 秒或2秒PQ =AC24. (12分)(1)设切点分别为M 、N 、E 、F 、P 、Q ,由切线定义,可得AM=AP ,AN=AQ ,EB=BP ,FC=CQ ,MN=EF ,∴MN +EF=18,MN=EF ,∴EF=9,∴EB +FC=9-6=3 ∵∠EBP =120°,∴∠E B O 1=60°,∴r 1=3EB , 同理r 2=3CF ,∴r 1+r 2=3(EB+FC )=33解法2:∵∠EBP =120°,∴∠E B O 1=60°,∴EB =PB =133r ,同理CF =CQ =233r ,∴由EF =MN 得:133r +6+233r =(6-133r )+(6-233r ) ∴r 1+r 2=33评分参考:①利用Rt △解得r 与切线关系-----2分;②得出结果r 1+r 2=33-----2分(2)两圆面积之和S =222271114)2[(]r r r πππ+=-+---------------------2分∴当2331=r 时,面积之和最小,这时21r r =,直线l ∥x 轴, --------------1分面积和的最小值为π227 -------------------------------------------------------------1分 (3)由r 1+r 2=33,r 1-r 2=3 解得)32,5(1-O ,)3,4(2O --------2分直线21O O 解析式为931393+-=x y ---------------------------------------------2分。
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计

2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。
通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。
但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。
三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。
2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。
3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:简单事件的概率的计算方法。
2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。
同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。
六. 教学准备1.教师准备:准备好相关的例子,制作好课件。
2.学生准备:预习相关的内容,准备好笔记本。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。
3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。
新浙教版数学九上

曾 … -3援5 -3 -2 -1 0
1
2
赠…
01
3 3援5 … …
第 1 章 二次函数
7
2援 建立适当的直角坐 标 系 ,并以表 中各组对应值作为点的坐 标 ,在 直角坐标系中描出相 应的点援
3援 用光滑曲线顺次连结各点援 你得到类似图 1-3 的图象了吗?
赠 16 14 12 10 8 6 4
第 1 章 二次函数
1·1 二次函数
一个长方形温室的占地面积为y(m2),周长为120 m, 一 边 长 为 x(m). 你能得出y关于x的函数关系吗?
用适当的函数表达式表示下列问题中两个变量 赠 与 曾 之间的关系援
(1)圆的面积 赠(糟皂2)与圆的半径 曾(糟皂).
(2) 王师傅存入银行 2 万元,先存一个一年定期,一年后将本息转存
第 1 章 二次函数
有一个窗户形状如图,上部是一个半圆,下部是矩形援 如果制作窗 框的材料总长为远 皂,那么如何设计这个窗户,使透光面积最大?
运动员投篮后,篮球运动的路线是怎样一 条曲线?怎样计算篮球达到最高点时的高度?
上述问题可以通过二次函数的数学模型 来解决援 本章我们将学习二次函数的概念,二 次函数的图象,并通过图象探索二次函数的性 质,以及二次函数的一些简单的实际应用援
3援125
例2 已知二次函数 赠=曾2+b曾+c,当 曾=1 时,函数值是 4;当 曾=2 时, 函数值是-5. 求这个二次函数的表达式援
第 1 章 二次函数
5
解 把 曾=1,赠=4;曾=2,赠=-5 分别代入函数式 赠=曾2+b曾+c,得方
嗓程组
1+b+c=4, 4+2b+c=-5,
嗓 解这个方程组,得
浙教版数学九年级上册3.1《圆》说课稿3

浙教版数学九年级上册3.1《圆》说课稿3一. 教材分析浙教版数学九年级上册3.1《圆》是本册教材中的重要内容,本节课主要介绍了圆的概念、特征以及圆的画法。
学生通过本节课的学习,能够理解圆的基本概念,掌握圆的画法,为后续学习圆的性质和应用打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但是,对于圆的概念和特征,以及圆的画法,可能还存在一定的模糊认识。
因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,深入理解圆的特征,掌握圆的画法。
三. 说教学目标1.知识与技能:理解圆的概念,掌握圆的特征,学会圆的画法。
2.过程与方法:通过观察、思考、实践等方式,培养学生的空间想象能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:圆的概念、特征,圆的画法。
2.教学难点:圆的画法,圆的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、实践操作法等教学方法,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、圆规、直尺等教学手段,直观展示圆的特征和画法,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示生活中的圆形物体,引导学生回顾圆的概念,激发学生的学习兴趣。
2.新课导入:介绍圆的特征,引导学生通过观察、思考、实践等方式,探究圆的画法。
3.知识讲解:讲解圆的画法,引导学生动手实践,加深对圆的画法的理解。
4.巩固练习:布置一些有关圆的练习题,让学生巩固所学知识。
5.课堂小结:总结本节课所学内容,引导学生反思自己的学习过程。
七. 说板书设计板书设计要简洁明了,能够突出圆的概念、特征和画法。
可以设计如下板书:•概念:到定点距离相等的点的集合•特征:圆心、半径、直径•画法:圆规、直尺、针线八. 说教学评价教学评价主要通过以下几个方面进行:1.学生的课堂参与度:观察学生在课堂上的发言、讨论、实践等情况,了解学生的学习状态。
最新浙教版九年级数学上册电子课本课件【全册】

1.3二次函数的性质
最新浙教版九年级数学上册电子课 本课件【全册】
1.4二次函数的应用
最新浙教版九年级数学上册电子课 本课件【全册】
第2章 简单是件的概率
最新浙教版九年级数学上册电子 课本课件【全册】目录
0002页 0091页 0134页 0153页 0186页 0188页 0235页 0283页 0316页 0353页 0377页 0411页 0461页图像 1.4二次函数的应用 2.1事件的可能性 2.3用频率估计概率 第3章 圆的基本性质 3.2圆形的旋转 3.4圆心角 3.6圆内接四边形 3.8弧长及扇形的面积 4.1比例线段 4.3相似三角形 4.5相似三角形的性质及其应用 4.7图形的位似
最新浙教版九年级数学上册电子课 本课件【全册】
2.1事件的可能性
最新浙教版九年级数学上册电子课 本课件【全册】
2.2简单事件的概率
最新浙教版九年级数学上册电子课 本课件【全册】
2.3用频率估计概率
最新浙教版九年级数学上册电子课 本课件【全册】
第1章 二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.1二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.2二次函数的图像
浙教版初中数学九年级上册专题50题(含答案)
浙教版初中数学九年级上册专题50题含答案一、单选题是圆心角的是()1.下图中ACBA.B.C.D.【答案】B【分析】根据圆心角的定义判断即可.【详解】顶点在圆心上,角的两边与圆周相交的角叫圆心角.如图,∠AOB的顶点O是圆O的圆心,OA、OB交圆O于A、B两点,则∠AOB是圆心角.故选B.【点睛】本题考查圆心角的定义,关键在于熟记定义.2.通常温度降到0∠以下,纯净的水结冰.这个事件是()A.必然事件B.不可能事件C.随机事件D.确定性事件【答案】A【分析】根据随机事件的定义即可得出答案.【详解】解:∠通常温度降到0∠以下,纯净的水会结冰,∠这个事件是必然事件.故选:A.【点睛】本题考查的是必然事件,不可能事件,随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()B.1.5C D.1A【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.4.已知(0,y1),y 2),(3,y 3)是抛物线y =ax 2﹣4ax +1(a 是常数,且a <0)上的点,则( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1 C .y 2>y 3>y 1 D .y 2>y 1>y 35.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA CA ⊥交DB 的延长线于点E ,过点B 作BH AC ⊥于点H ,若3AB =,4BC =,则ACAE的值为( )A .712B .512C .1 D6.平移抛物线y=(x+3)(x-1)后得到抛物线y=(x+1)(x-3),则()A.向左平移2个单位B.向右平移2个单位C.向左平移4个单位D.向右平移4个单位【答案】B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+3)(x-1)=(x+1)2-4,顶点坐标是(-1,-4).y=(x+1)(x-3)=(x-1)2-4,顶点坐标是(1,-4).所以将抛物线y=(x+3)(x-1)向右平移2个单位长度得到抛物线y=(x+1)(x-3),故选:B.【点睛】此题主要考查了二次函数图象与几何变换,属于基础题,熟练掌握平移的规律是解题关键.7.随机投掷标有1至6点的骰子一次,落地后,骰子朝上一面的点数为奇数的概率是()A.16B.13C.12D.238.如图,AB为∠O的直径,C,D为∠O上两点,若∠CAB=30°,则∠D等于()A.30°B.60°C.120°D.150°【答案】B【分析】根据圆周角定理得到∠ACB=90°,∠D=∠B,然后利用互余计算出∠B即可.【详解】解:∠AB为∠O的直径,∠∠ACB=90°,∠∠CAB=30°,∠∠B=90°﹣∠CAB=60°,∠∠D=∠B=60°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.如图,在∠ABC中,∠C=90°,点D,E分别在边AC,AB上,若∠B=∠ADE,下列说法:∠∠AED=90°;∠∠A与∠ADE互为余角;∠BC=BE;∠∠CDE与∠B互为补角,其中说法正确的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据∠C=90°,可知∠A与∠B互余,根据∠B=∠ADE,再结合公共角∠A,可证~△△,则有∠AED=∠C=90°,∠B=∠ADE,在四边形BCDE中有ACB AED∠B+∠ADE=180°=∠C+∠DEB,即可求解.【详解】∠∠C=90°,∠∠A与∠B互余,∠∠B=∠ADE,∠A=∠A,∠ACB AED△△,~∠∠AED=∠C=90°,∠B=∠ADE,即①正确,∠∠ADE与∠A互余,∠BED=90°,即②正确,∠∠B=∠ADE,∠∠B+∠CDE=180°,即④正确,根据已有的条件无法判断BC=BE,故③错误,则说法正确的个数为3个, 故选:C .【点睛】本题考查了相似三角形的判定和性质,余角、补角的概念等知识,根据已有的角相等条件证得ACB AED ~△△是解答本题的关键.10.如图,点A 、C 、B 在∠O 上,已知∠AOB =∠ACB =α,则α的值为( )A .135°B .100°C .110°D .120°【答案】D【分析】根据圆周角定理得出优弧所对的圆心角为2α,利用周角为360度求解即可 【详解】解:∠∠ACB =α ∠优弧所对的圆心角为2α ∠2α+α=360° ∠α=120°. 故选D .【点睛】题目主要考查圆周角定理,结合图形,熟练运用圆周角定理是解题关键. 11.如图,Rt ABC 中,90C ∠=︒,5cm AB =,4cm AC =,点P 从点A 出发,以1cm/s 的速度沿A C →向点C 运动,同时点Q 从点A 出发,以2cm/s 的速度沿A B C →→向点C 运动,直到它们都到达点C 为止.线段PQ 的长度为y (cm ),点P 的运动时间为t (s ),则y 与t 的函数图象是( )A .B .C.D.12.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数a b cyx-+=在同一坐标系内的图象大致为()A.B.C.D.【答案】A13.如图,直径为10的∠A经过点C和点O,点B是y轴右侧∠A优弧上一点,∠OBC=30°,则点A的坐标为()A.)B.52)C.(5,52)D.,52)【答案】B【分析】首先设∠O与x轴的交点为D,连接CD,由圆周角定理可得CD是直径,且CD=10,∠ODC=∠OBC=30°,继而求得OC与OD的长,然后可求得答案.【详解】解:如图,14.如图,点(2,A ,()1,0N ,60AON ∠=,点M 为平面直角坐标系内一点,且MO MA =,则MN 的最小值为( )A .1B .32C .3D .2故选B.【点睛】本题考查了相似三角形的判定与性质、坐标与图形性质,涉及到中垂线、线段平行性质等知识点,综合性较强,难度适中.15.在Rt∠ABC中,∠C = 90°,AC = 20 cm,BC = 21 cm,则它的外心与顶点C的距离等于().A.13 cm B.13.5 cm C.14 cm D.14.5 cm【答案】D【分析】此题应根据勾股定理先求出斜边AB的长度为29,要理解外心是这个三角形外接圆的圆心,在直角三角形中,它的外心就是斜边的中点,顶点C与外心的距离即为斜边的中线.【详解】先根据题意画图,知道AB为三角形的斜边求得AB2=AC2+BC2=202+212=841=292,要理解外心是这个三角形外接圆的圆心,要求得该直角三角形的外接圆的圆心,则为AB边的一半,求得AB的一半为14.5,应该选择答案为D.【点睛】本题考查了勾股定理和三角形的外接圆和圆心,解题的关键是要理解外心是这个三角形外接圆的圆心.16.一个密码锁有五位数字组成,每一位数字都是0,1,2,3,4,5,6,7,8,9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为()A.15B.12C.120D.110017.已知二次函数2y ax bx c =++的图象如图所示,给出以下结论: ∠0a b c ++<;∠<0a b c -+;∠ 20b a +<;∠0abc >.其中正确结论的序号是( )A .∠∠B .∠∠C .∠∠D .∠∠∠(4)当x =1时,可以确定y =a +b +c 的值;当x =﹣1时,可以确定y =a ﹣b +c 的值. 18.抛物线的顶点坐标是( ) A .(2,1) B .(-2,1)C .(2,-1)D .(-2,-1)【答案】B【详解】试题分析:根据抛物线的解析式直接可确定它的顶点坐标为(-2,1).故答案选B . 考点:抛物线的顶点坐标.19.已知二次函数y =(x +m -6)(m -x )+3,点A (1x ,1y ),B (2x ,2y )( 1x <2x )是其图象上两点( )A .若1x +2x <6,则1y >2yB .若1x +2x >6,则1y >2yC .若1x +2x >-6,则1y >2yD .若1x +2x <-6,则1y >2y【答案】B【分析】化简二次函数,计算1y -2y ,作差比较,判断即可. 【详解】∠y =(x +m -6)(m -x )+3, ∠y =22663x x m m -++-+,∠1y -2y =22221122(663)(663)x x m m x x m m -++-+--++-+=22211266x x x x -+- =212121()()6()x x x x x x -+-- =(2x -1x )(1x +2x -6), ∠1y >2y ,1x <2x , ∠1x +2x -6>0, 即1x +2x >6, 故选B .【点睛】本题考查了二次函数的增减性,熟练运用作差法解题是解题的关键. 20.如图,长为定值的弦CD 在以AB 为直径的O 上滑动(点C 、D 与点A 、B 不重合),点E 是CD 的中点,过点C 作CF AB ⊥于F ,若3CD =,8AB =,则EF 的最大值是( )A.92B.4C.83D.6二、填空题21.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1_____y2.(填“>”“<”或“=”)22.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借一段墙体(墙体的最大可用长度a=10m),设AB的长为xm,所围的花圃面积为ym2,则y的最大值是__________.23.小明上学途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒,绿灯亮25秒,小明到达路口恰好遇到绿灯的概率是______.24.抛物线222=-与x正半轴的交点坐标为__________.y x x【答案】(1,0)【分析】令y=0,解方程2x2﹣2x=0,求出抛物线与x轴的交点坐标,,然后取正半轴上的点即可.【详解】当y=0时,2x2﹣2x=0,解得:x1=0,x2=1,∠抛物线与x轴的交点坐标为(0,0),(1,0),∠抛物线与x轴正半轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数与坐标轴的交点坐标与一元二次方程解的关系,二次函数与x轴的交点横坐标是ax2+bx+c=0时方程的解,纵坐标是y=0.25.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.∠c1=4,c2=﹣4(舍去),∠线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.26.如图,四边形ABCD中,AC、BD相交于O,若AO DOCO BO=,8AO=,12CO=,15BC=,则AD=______.27.图1是一款由若干条吊链等间距悬挂而成的挂帘,吊链顶端悬挂在水平横梁上,自然下垂时底部呈圆弧形,其中最长吊链为95cm,最短吊链为45cm,挂满后呈轴对称分布.图2是其示意图,其中最长两条吊链AC与BD之间的距离AB为114cm.∠若吊链数量为奇数,则圆弧半径为______cm.∠若吊链数量为偶数,记对称轴右侧最短挂链的底端为点F,当C,F,B三点在同一条直线上时,吊链的数量为______.,设O吊链数量为奇数,=AC BD∴=FM EM设O的半径为在Rt OCM△÷=1146∴共有20故答案为:【点睛】本题考查了勾股定理,轴对称图形的性质,相似三角形的判定与性质,作出辅助线是解决本题的关键.28R(R为半径),则此弓形的面积为_________.90,2AOBS=,扇形AOB 90π360R此弓形的面积为:90,2AOBS=,扇形AOB 270π360R此弓形的面积为:4429.如图,在Rt∠ABC中,∠C 为直角,AC=6,BC=8,现在Rt∠ABC内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放______个在直角∠ABC中,AB==10.1 21 2∠CD==4.8.∠GH 4.82BC 4.8-=,则,解得:DE=356整数部分是:7.则最下边一排是7个正方形.则,解得:GH=,整数部分是5,则第二排是5个正方形;30.已知ABC内接于,O AB AC=,圆心O到BC的距离为2cm,圆的半径为6cm,则腰长AB=_____.31.AB是O的直径,C是O上一点,E是ABC的内心,OE EBAE=ABE的面积为交O 于点F 是O 的直径,可得,证明FEA 是等腰直角三角形,可得2EF ==,根据垂径定理,进而可得ABE 的面积.【详解】解:如下图,延长BE 交O 于点F ,AB 是O 的直径,90AFB C ∴∠=∠=CAB CBA ∴∠+∠E 是ABC 的内心,12EAB CAB ∴∠=∠EAB EBA ∴∠+∠45FEA ∴∠=︒,FEA ∴是等腰直角三角形,2AE AF ∴=22AE =AF EF ∴=OE EB ⊥EF BE ∴=ABE ∴的面积为:故答案为:2.【点睛】本题考查了垂径定理、三角形的内心,勾股定理,圆周角定理,等腰三角形,三角形的外角,解题的关键是作出辅助性构建直角三角形.32.如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:DQ 1=①;PQ 3BQ 2=②;PDQ 1S 8=③;ADQ 2DQP.④∠∠=其中正确的结论是______.(填写序号)【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质、勾股定理等知识,综合性比较强,在几何证明中,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用. 33.∠ABC 是半径为2的圆的内接三角形,若BC=2,则∠A 的度数为_____. 【答案】60°或120°.【详解】试题分析:本题可直接由外接圆半径公式求得.解:由外接圆公式:2R=== 且已知R=2,BC=2所以sin∠A== 因为∠A 为三角形内角,所以∠A 的度数为60°或120°.考点:三角形的外接圆与外心.34.如图∠,1234,,,O O O O 为四个等圆的圆心,,,,A B C D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是___;如图∠,12345,,,,O O O O O 为五个等圆的圆心,,,,,A B C D E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 __.(答案不唯一)【答案】 作图见解析,1O 和3O (答案不唯一) 作图见解析,13O O 与24O O 的交点O 和5O (答案不唯一) 【分析】利用中心对称图形进行分析,对于图∠,过13,O O 的直线即可满足题意;对于图∠过13O O 和24O O 的交点O 和5O 的直线即可满足题意.【详解】解:图∠既是轴对称图形,也是中心对称图形,则只需过它的对称中心任意画一条直线即可,如图所示:如过13,O O 的一条直线(答案不唯一),故答案为:1O 和3O ;图∠它不是中心对称图形,图∠中,直线过图形的对称中心即可;一个圆时,只要过圆心即可,则画一条过13O O 和24O O 的交点O 和5O 的直线即可,如图所示:故答案为:13O O 与24O O 的交点O 和5O .【点睛】本题考查利用对称性质作图,借助图形,准确分析图形的对称特征是解决问题的关键.35.如图,正方形ABCD 的边长为2,分别以点B 、C 为圆心,以正方形的边长为半径的圆相交于点P ,则图中阴影部分的面积为__________.【点睛】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键.36.抛物线形拱门的示意图如图所示,底部宽AB为6米,最高点O距地面5米.现有一辆集装箱车,宽为2.8米,高为4米,此车______(填能或不能)通过拱门.37.已知二次函数2y ax bx c =++的图象如图所示,下列结论:∠<0abc ;∠0a b c ++>;∠0a b c -+>;∠20a b -=;∠80a c +<,其中正确结论的序号为____________.【详解】解:抛物线开口向下,对称轴抛物线的对称轴为2b x a=-2b a ∴=-2a b ∴+=2a b +=3a c ∴+=50a <,80a c∴+<,故∠正确.故答案为:∠∠∠.【点睛】本题考查二次函数的图象与性质,解题的关键在于能结合图象灵活运用二次函数的性质进行求解判断.38.若5m=3n,则+m nm=_____.39.如图,已知正方形ABCD,以AB为腰向正方形内部作等腰∠BAE,其中BE=BA,过点E作EF∠AB于点F,点P是∠BEF的内心,连接CP,若正方形ABCD的边长为2,则CP的最小值为____.【详解】解:EF AB⊥90EBF=︒点Rt ONC中,'=-CP OC OPCP的最小值为故答案为:10【点睛】本题主要考查了最短路径问题,涉及到正方形的性质、三角形的内心、三角40.如图,在ABCD中,E是BC边上的中点,AP CD⊥于点P,将ABE沿AE翻折,点B的对称点B'落在AP上,延长EB'恰好经过点D,若4AB=,则折痕AE的长为________.AEB ∆'是由AE BB ∴⊥EB EC =CB B ∴∠'//CB AE ∴'四边形AB CD ∴=AP CD ⊥AP AB ∴⊥BAP ∴∠由翻折的性质可知,PAE ∴∠=APD ∠=PAD ∴∆∽∴PD PB PD='2(4)m ∴-4m ∴=BJ JB ='12JE CB ∴=2AJ=2∴=AE AJ故答案为:三、解答题41.某校教务处为了解九年级学生“居家学习”的学习能力,随机抽取该年级部分学生,对他们的学习能力进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图(其中学习能力指数级别“1”级,代表学习能力很强;“2”级,代表学习能力较强;“3”级,代表学习能力一般;“4“级,代表学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数人,并将条形统计图补充完整;(2)本次抽查学生“居家学习”能力指数级别的众数为级,中位数为级.(3)已知学习能力很强的学生中只有1名女生,现从中随机抽取两人写有关“居家学习”的报告,请用列表或画树状图的方法求所抽查的两位学生中恰好是一男一女的概率.;42.如图所示,O为四边形ABCD上一点,以O为位似中心,将四边形ABCD放大为原来的2倍.【答案】见解析.【分析】根据位似的定义,结合位似变换的方法,可以连接AO并延长到A′,使A′O=2AO,可知A′是A的对应点;用同样的方法确定B,C,D的对应点,顺次连接对应点,可以得到四边形A′B′C′D′;在O 的另一侧,连接OA 并延长到A″,使OA″=2AO ,用同样的方法确定其它三个点的对应点,顺次连接对应点,即可得到四边形A″B″C″D″. 【详解】连接AO 并延长到A′,使A′O=2AO ,A′是A 的对应点;用同样的方法确定B ,C ,D 的对应点,顺次连接对应点,可以得到四边形A′B′C′D′; 在O 的另一侧,连接OA 并延长到A″,使OA″=2AO ,用同样的方法确定其它三个点的对应点,顺次连接对应点,即可得到四边形A″B″C″D″.如图所示,四边形A′B′C′D′和四边形A″B″C″D″为所要求作的四边形.【点睛】本题考查位似变换作图,可以根据位似比,结合定义和性质画出图形. 43.某超市销售一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得1600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)y 与x 之间的函数表达式为2180y x =-+.(2)该天的销售单价应定为50元/千克或70元/千克.(3)当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是1800元.【分析】(1)设y 与x 之间的函数表达式为(0)y kx b k =+≠,再在表中任选两组数据代入计算出k 和b 的值即可.(2)依题意列出关于销售单价x 的方程,然后解一元二次方程组即可.(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】(1)设y 与x 之间的函数表达式为(0)y kx b k =+≠,将表中数据(55,70)、(60,60)代入,得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩. ∠y 与x 之间的函数表达式为2180y x =-+.(2)由题意得:(30)(21801600x x --+=), 解得1250,70x x ==.答:该天的销售单价应定为50元/千克或70元/千克.(3)设当天的销售利润为w 元,则:(30)(2180)w x x =--+222405400x x =-+-,22(60)1800x =--+,∠20-<,∠当60x =时,1800w =最大值.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是1800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,解题的关键是理清题目中的数量关系.44.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是1-”发生的概率;(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.45.如图,AB 是∠O 的一条弦,OD∠AB ,垂足为点C ,交∠O 于点D ,点E 在∠O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3,6OC OA ==,求tan DEB ∠的值.46.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=4x的图象上的概率.47.在四边形ABCD 中,ADC ACB ∠=∠,AC 为对角线,AD CB DC AC ⋅=⋅.(1)如图1,求证:AC 平分DAB ∠;(2)如图1,求8AC =,12AB =,求AD 的长;(3)如图2,若90ADC ACB ∠=∠=︒,E 为AB 的中点,连接CE 、DE ,DE 与AC 交于点F ,6CB =,5CE =,求DF EF 的值.48.已知:在正方形ABCD中,E为对角线BD上一点,过点E作EF BD⊥,交BC于点F,连接DF,G为DF的中点,连接EG,CG.(1)【猜想论证】猜想线段EG与CG的数量关系,并加以证明.(2)【拓展探究】将图1中BEF△绕B点逆时针旋转45°得到图2,取DF中点G,连接EG,CG.你在(1)中得到的结论还成立吗?写出你的猜想并加以证明.质,矩形的判定定理和性质,三角形内角和定理,等角对等边,勾股定理,全等三角形的判定定理和性质,综合应用这些知识点是解题关键.49.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?【答案】(1) y=−5x+600;(2)当销售单价为80元时一周的销售利润最大,最大利润为答:当销售单价为80元时一周的销售利润最大,最大利润为8000元;(3)∠商场购进该T 恤衫的资金不超过6000元,∠y∠6000÷40,即−5x+600∠150,解得:x∠90,∠w=−5(x−80)2+8000中,当x>80时w 随x 的增大而减小,∠当x=90时,w 取得最大值,最大值为7500,答:该商场最大捐款数额是7500元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出函数关系式.50.探究:如图∠,直线123l l l ,点C 在2l 上,以点C 为直角顶点作90ACB ∠=,角的两边分别交1l 于3l 于点A 、B ,连结AB .过点C 作1CD l ⊥于点D ,延长DC 交3l 于点E .求证:ACD CBE ∆∆∽.应用:如图∠,在图1的基础上,设AB 与2l 的交点为F ,若AC BC =,1l 与2l 之间的距离为2,2l 与3l 之间的距离为1,求AF 的长度.90,再由同角的余角相等可得,如此即可证明两个三角形相似;ACD CBE ≅∆13l ,CD ⊥90ADC CEB ∠=∠.90ACD DAC ∠+∠.90ACB ∠=,90ACD ECB ∠+∠.90,90,10AC =123l l ,23AF DC AB DE ==2103AF =. 【点睛】本题考查了相似和全等的关系以及平行线分线段成比例,运用平行线分线段。
浙教版数学九年级上册《4.3相似三角形》说课稿
浙教版数学九年级上册《4.3 相似三角形》说课稿一. 教材分析《相似三角形》是浙教版数学九年级上册第四章第三节的内容。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、全等三角形的基础上进行的。
相似三角形是全等三角形的进一步拓展,它不仅巩固了全等三角形的相关知识,也为后续学习相似多边形、函数图象的变换等知识奠定了基础。
本节内容主要包括相似三角形的定义、性质和判定。
相似三角形的定义是指形状相同的三角形,它们的对应边成比例,对应角相等。
相似三角形的性质有:相似三角形的周长比相等,面积比相等,对应高的比相等等。
相似三角形的判定有:AA相似定理、SAS相似定理、SSS相似定理等。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和全等三角形的相关知识有一定的了解。
但是,学生对于相似三角形的理解和运用还需要进一步的引导和培养。
此外,学生对于数学语言的严谨性和逻辑性还需要加强训练。
三. 说教学目标1.知识与技能目标:使学生掌握相似三角形的定义、性质和判定,能运用相似三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的学习信心,培养学生合作学习的精神。
四. 说教学重难点1.教学重点:相似三角形的定义、性质和判定。
2.教学难点:相似三角形的判定定理的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学。
六. 说教学过程1.导入新课:通过展示一些形状相似的物体,引导学生思考什么是相似,从而引入相似三角形的概念。
2.探究相似三角形的性质:让学生通过观察、操作、推理等过程,发现相似三角形的性质。
3.学习相似三角形的判定:引导学生通过实例,理解并掌握AA相似定理、SAS相似定理、SSS相似定理等。
浙教版数学九年级上册3.1《圆》说课稿2
浙教版数学九年级上册3.1《圆》说课稿2一. 教材分析《圆》是浙教版数学九年级上册第三章第一节的内容。
本节内容是在学生已经掌握了线段、射线、直线等基本几何知识的基础上进行学习的。
圆是一种特殊的几何图形,它既有长度,又有宽度,而且它的每个点到圆心的距离都相等。
这一节内容主要让学生了解圆的定义、性质和基本画法。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对于图形的认知也有了一定的理解。
但是,圆的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要教师通过生动形象的比喻和具体的实例,帮助学生理解和掌握圆的概念和性质。
三. 说教学目标1.知识与技能目标:使学生了解圆的定义、性质和基本画法,能够运用圆的知识解决一些实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观目标:激发学生学习圆的兴趣,培养学生的观察能力和创新意识。
四. 说教学重难点1.教学重点:圆的定义、性质和基本画法。
2.教学难点:圆的性质和画法,特别是圆的半径与直径的关系。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法与手段:1.情境教学法:通过生活实例引入圆的概念,让学生感受到圆的存在。
2.直观演示法:利用实物和模型,让学生直观地了解圆的性质和基本画法。
3.小组合作学习法:引导学生分组讨论,共同探究圆的性质和画法。
4.信息技术辅助教学:利用多媒体课件,展示圆的相关图像和实例,帮助学生更好地理解和掌握圆的知识。
六. 说教学过程1.导入新课:通过展示生活中常见的圆的实例,如车轮、地球等,引导学生思考圆的特点,从而引入新课。
2.探究圆的定义与性质:让学生通过观察和动手操作,探究圆的定义和性质。
教师在这个过程中给予适当的引导和指导。
3.学习圆的基本画法:讲解圆的画法,并让学生动手实践,掌握圆的画法。
4.巩固知识:通过一些练习题,让学生运用所学的圆的知识解决问题。
浙教版数学九年级上册全一册优质教案
浙教版数学九年级上册全一册优质教案一、教学内容1. 第一章:二次函数1.1 二次函数的图像与性质1.2 二次函数的顶点式1.3 二次函数的应用2. 第二章:圆2.1 圆的基本概念2.2 圆的方程2.3 圆与直线、圆与圆的位置关系3. 第三章:概率与统计3.1 随机事件与概率3.2 统计量的计算3.3 统计图表的应用二、教学目标1. 理解二次函数、圆的基本概念,掌握其图像、性质及方程求解方法。
2. 能够运用二次函数、圆的方程解决实际问题,提高解决问题的能力。
3. 掌握概率与统计的基本概念,能够运用统计方法分析实际问题。
三、教学难点与重点1. 教学难点:二次函数图像与性质的深入理解圆的方程求解与应用概率与统计在实际问题中的应用2. 教学重点:二次函数、圆的基本概念与性质方程求解方法概率与统计在实际问题中的应用四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何画板等。
2. 学具:教材、练习本、圆规、直尺、计算器等。
五、教学过程1. 实践情景引入通过生活中常见的抛物线、圆形物体等,引出二次函数和圆的学习。
2. 例题讲解二次函数:以实际例题讲解二次函数图像、性质,求解顶点式。
圆:以实际例题讲解圆的方程、圆与直线、圆与圆的位置关系。
概率与统计:通过实例讲解随机事件、概率计算、统计量的计算及图表应用。
3. 随堂练习根据例题,设计相应的随堂练习,巩固所学知识。
4. 知识拓展引导学生探索二次函数、圆的其他性质和应用,提高学生的创新能力。
六、板书设计1. 二次函数图像与性质顶点式求解应用实例2. 圆基本概念方程求解位置关系3. 概率与统计随机事件与概率统计量计算统计图表应用七、作业设计1. 作业题目:二次函数:求解实际问题的二次函数方程,分析图像和性质。
圆:求解实际问题的圆方程,分析圆与直线、圆与圆的位置关系。
概率与统计:分析实际问题的概率计算、统计量计算和图表应用。
2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:引导学生通过互联网、课外阅读等途径,了解更多二次函数、圆的性质和应用,提高学生的学习兴趣和自主学习能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。