初三中考数学压轴题精选100题
中考数学压轴题100题精选-中考数学压轴题100题及答案

中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?图16②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
历年全国各地中考数学真题压轴题训练——方程与不等式(100题)(解析版)

历年全国各地中考数学真题压轴题训练——方程与不等式(解析版)1.(2010·新疆中考真题)阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为A .26元B .27元C .28元D .29元 【答案】C【解析】根据题意,设电子产品的标价为x 元,按照等量关系“标价×0.9-进价=进价×20%”,列出一元一次方程即可求解.解答:解:设电子产品的标价为x 元, 由题意得:0.9x-21=21×20% 解得:x=28∴这种电子产品的标价为28元. 故选C .2.(2018·重庆中考真题)若数a 使关于x 的不等式组111(1){3223(1)x x x a x -≤--≤-,有且仅有三个整数解,且使关于y 的分式方程31222y a y y++--=1有整数解,则满足条件的所有a 的值之和是( ) A .﹣10 B .﹣12C .﹣16D .﹣18【答案】B 【解析】 【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案. 【详解】()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②, 解①得x≥-3, 解②得x≤35a+, 不等式组的解集是-3≤x≤35a+. ∵仅有三个整数解, ∴-1≤35a+<0 ∴-8≤a <-3,31222y a y y++--=1, 3y-a-12=y-2. ∴y=102a +, ∵y ≠-2, ∴a ≠-6, 又y=102a +有整数解, ∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12, 故选B . 【点睛】本题考查了分式方程的解,利用不等式的解集及方程的解得出a 的值是解题关键.3.(2019·辽宁中考真题)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元【答案】C 【解析】 【分析】设这种衬衫的原价是x 元,根据衬衫的成本不变,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设这种衬衫的原价是x 元, 依题意,得:0.6x+40=0.9x-20, 解得:x=200. 故选:C . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.4.(2019·江苏中考真题)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( ) A .10 B .9 C .8 D .7【答案】B 【解析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可. 【详解】设原计划m 天完成,开工x 天后3人外出培训, 则有15am=2160, 得到am=144,由题意得15ax+12(a+2)(m-x)<2160, 即:ax+4am+8m-8x<720, ∵am=144,∴将其代入得:ax+576+8m-8x<720, 即:ax+8m-8x<144, ∴ax+8m-8x<am , ∴8(m-x)<a(m-x), ∵m>x , ∴m-x>0, ∴a>8, ∴a 至少为9, 故选B. 【点睛】本题考查了一元一次不等式的应用,有一定的难度,解题的关键在于灵活掌握设而不求的解题技巧.5.(2019·重庆中考真题)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6【答案】B 【解析】 【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩… ,再根据其解集是x ≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩„,解得:5x a x ⎧⎨<⎩„ ∵解集是x ≤a , ∴a<5; 由关于的分式方程24111y a y y y---=-- 得得2y-a+y-4=y-1 32ay +∴=又∵非负整数解,∴a ≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1. 故选:B. 【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.6.(2018·山东中考真题)不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤-C .65a -<<-D .65a -≤≤-【答案】B 【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组11132412x x x x a -⎧--⎪⎨⎪-≤-⎩<()(),由13x -﹣12x <﹣1,解得:x >4, 由4(x ﹣1)≤2(x ﹣a ),解得:x ≤2﹣a , 故不等式组的解为:4<x ≤2﹣a ,由关于x 的不等式组11132412x x x x a -⎧--⎪⎨⎪-≤-⎩<()()有3个整数解, 得:7≤2﹣a <8,解得:﹣6<a ≤﹣5. 故选B .点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a 的不等式是解题的关键. 7.(2016·四川中考真题)若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是( ).A .15-B .16-C .15D .16【答案】A 【解析】 【分析】由一元二次方程的系数与根的关系,得到a+b=4,ab=t-2,再由a,b 的非负性及判别式的范围,得到t 的范围,再将要求的式子化为关于t 的二次函数,根据二次函数的性质及t 的范围即可求解. 【详解】由题意可知,此方程有两个非负实数根,故Δ=16-4(t-2)≥0,解得t≤6, 又根据根与系数关系得:a+b=4,ab=t-2, ∵t-2≥0,即t≥2,∴t 的取值范围是2≤t≤6,∴22(1)(1)a b --=22221a b a b --+=2222()1a b a b -++=()()22[2)]1ab a b ab -+-+=()22[162(2)]1t t ----+=2215t t --,此代数式的值是关于t 的二次函数,其开口向上,对称轴是t=1, 2≤t≤6在对称轴右侧,函数值随t 的增大而增大,因此在t 的取值范围内,当t=2时,其代数式有最小值,为-15, 故本题选A. 【点睛】本题主要考查了一元二次方程根的判别式;一元二次方程根与系数关系;二次函数最值问题.需要注意的是要根据已知条件把t 的范围确定,从而根据二次函数的图像和性质即可求解. 8.(2011·辽宁中考真题)已知a 2+a ﹣3=0,那么a 2(a+4)的值是( ) A .9 B .﹣12C .﹣18D .﹣15【答案】A 【解析】 ∵a 2+a−3=0, ∴a 2=−(a−3),a 2+a=3,a 2(a+4)=−(a−3)(a+4)=−(a 2+a−12)=−(3−12)=9, 故选A.9.(2018·重庆中考真题)若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2-C .1D .2【答案】C 【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a 的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.【详解】解不等式112352x x x x a -+⎧<⎪⎨⎪-≥+⎩,得524x a x <⎧⎪⎨+≥⎪⎩,由于不等式组只有四个整数解,即254a a +≤<只有4个整数解, ∴2014a +<≤, ∴22a -<≤; 解分式方程2211y a ay y++=--,得2y a =-, ∵分式方程的解为非负数,∴20210a a -≥⎧⎨--≠⎩, ∴a≤2且a≠1, ∴22a -<≤且a≠1,∴符合条件的所有整数a 为:-1,0,2, 和为:-1+0+2=1, 故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.10.(2015·四川中考真题)方程(m −2)x 2−√3−mx +14=0有两个实数根,则m 的取值范围( ) A .m >52 B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠2【答案】B 【解析】试题分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到m −2≠0,3−m ≥0,Δ=(−√3−m)2−4(m −2)×14≥0,然后解不等式组即可.解:根据题意得 m −2≠0, 3−m ≥0,Δ=(−√3−m)2−4(m −2)×14≥0,解得m ≤52且m ≠2.故选B .11.(2016·湖南中考真题)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天 B .11天 C .13天 D .22天 【答案】B 【解析】试题分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组,解得x=4,y=11,所以一共有11天,故答案选B . 考点:二元一次方程组的应用.12.(2018·湖南中考真题)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a ba dbc cd =⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是( )A .21732D ==-- B .14x D =- C .27y D =D .方程组的解为23x y =⎧⎨=-⎩【答案】C 【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得. 【详解】A 、D=2132-=2×(-2)-3×1=﹣7,故A 选项正确,不符合题意;B 、D x =11122-=﹣2﹣1×12=﹣14,故B 选项正确,不符合题意;C 、D y =21312=2×12﹣1×3=21,故C 选项不正确,符合题意;D 、方程组的解:x=147x D D -=-=2,y=217y D D =-=﹣3,故D 选项正确,不符合题意, 故选C .【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.13.(2011·湖南中考真题)不等式组⎩⎨⎧+≤3123>x x 的解集在数轴上表示正确的是( )A .B .C .D . 【答案】C 【解析】略⎩⎨⎧+≤3②123>x ①x解:由②式可得:122132φφφx x x -;即由①②得31≤x π所以正确选项为C ;14.(2012·重庆中考真题)已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4 D .5 【答案】D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选:D .15.(2013·辽宁中考真题)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x ++= B .()16040016018x 120%x -++= C .16040016018x 20%x-+= D .()40040016018x 120%x-++=【答案】B 【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。
中考数学压轴题100题精选,多做压轴题,对成绩提升相当有帮助!

中考数学压轴题100题精选,多做压轴题,对成绩提升相当有
帮助!
数学老师一直在说,要学好数学,平常一定要多做题。
但是,到底要做什么题?做什么题才能对自己的数学能力带来真正的好处?这是很多人的疑问,有的人学数学是很努力的,每天一有空就拿出一些练习题来刷刷地写,看起来那是相当认真,然而,每次考试,当大家都以为这人要考出个惊人成绩的时候,他的成绩反而是平平无奇,让人怀疑刷题到底有没有用。
其实,刷题不是说叫你去盲目的刷,有些题我们没必要花费太多的精力去钻研,像一些基础的数学题,你做个几遍,知识点掌握得差不多就行了,你硬是要刷个好几十遍,带来的结果跟你刷几遍是一样的,既浪费时间又没有效率。
而初中阶段,时间相当宝贵,初中不像小学,有六年的时间供大家去学习一些比较简单的知识,初中只有三年,而这三年之中,数学的难度又提升了一个等级。
所以,我们必须得重视效率。
那么,什么样的数学题才适合花时间去钻研呢?显然就是压轴题,压轴题是一张数学试卷上最难的一道题,同时也是最考验学生综合水平的一道题,一道压轴题无论是从结构设计,还是涉及到的知识面,都很具有研究意义。
多做压轴题,对于自己的能力提升那是相当快的。
为此,今天也就给大家整理了100到中考的数学压轴题,大家可以做一做。
100道初中数学中考模拟选择压轴题

ABCG A BA BC100道选择压轴题1、(2015年,广东)如图,已知正ABC ∆的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE BF CG ==,设EFG ∆的面积为y ,AE x =,则y 关于x 的函数图像大致是( )xyxyA 、B 、xyxyC 、D 、2、(2015年,广东深圳)如图,已知正方形ABCD 的边长为12,BE EC =,将正方形边CD 沿着DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下四个结论: ①ADG ∆≌FDG ∆ ②2GB AG = ③GDE ∆∽BEF ∆ ④725BEF S ∆=在以上四个结论中,正确的有( )个 A 、1B 、2C 、3D 、43、(2016年,安徽)如图,Rt ABC ∆中,AB BC ⊥,P 是Rt ABC ∆内部一动点,且满足PAB PBC ∠=∠,6AB =,4BC =,则PC 的最小值为( )A 、32B、2 CDCAGFEPDAB4、(初中数学竞赛试题)如果方程2(1)(2)0x x x m--+=的三个根可作为一个三角形的三边之长,则实数m的取值范围是()1A m≤≤、034B m≥、314C m≤≤、314D m<≤、5、(初中数学竞赛试题)若方程22430x ax a-+-=的两根均大于1,则实数a的取值范围是()13或A a a≤≥、3B a<≤、 13C a≤、3D a≥、6、(2015年浙江衢州)如图,已知等腰ABC∆,AB BC=,以AB为直径的圆交AC于点D,过点D的Oe的切线交BC于点E,若5CD=,4CE=,则Oe的半径是()A、3B、4C、256D、2587、(2016年,安徽中考检测卷)如图,在正方形ABCD中,CD=AD上方有一点P,满足1PD=,且90BPD∠=︒,则点A到BP的距离为()A BC D、条件不足,无法计算8、(2015年,浙江温州)如图,C是以AB为直径的半圆O上一点,连接AC、BC,分别以AC、BC为边向外作正方形ACDE、BCFG,DE、FG、»AC、»BC的中点分别是M、N、P、Q,若14MP NQ+=,18AC BC+=,则AB=( )A、B、907C、13D、16xyFCDACBA9、(2015年浙江台州)某班有20同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14”;乙说:“两项都参加的人数小于5”,对于甲、乙两人的说法,有下列四个命题,其中真命题是( )A 、若甲对,则乙对B 、若乙对,则甲对C 、若乙错,则甲错D 、若甲错,则乙对10、(2016年,安徽中考检测卷)二次函数2y ax bx c =++的图像如图所示,有下列结论:①0abc > ②0a b +< ③240b ac -< ④0a b c ++> ⑤其关于x 轴对称的函数图像对应的解析式是2y ax bx c =-+-A 、②③④B 、③④⑤C 、②③⑤D 、①②③④⑤11、(2016年,安徽中考检测卷)如图,在ABCD Y 中,90ADB ∠=︒,点E 、F 分别为AB 、CD 中点,连接EF ,交BD 于点G ,连接CE ,交BD 于H ,若3tan 4A =,则tan FEC ∠=( )A、13BC 、3D 、1412、(2016年,安徽中考检测卷)如图,圆的弦AB 与CD相交于点E ,且6AC =,BE =,3CE DE ==,则»BD是长度是( )ABCD 、x yx yxyA BC13、(2016年,安徽中考检测卷)某种重型货车除了装备减震钢板外,还装备有减震螺旋压缩弹簧,设货车装载货物x 吨时,弹簧长度为y 厘米,现将一组实验数据列表如下xyxyA 、B 、C 、D 、14、(2016年,安徽中考检测卷)如图,抛物线2y x bx c =++与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若3AB =,则点M 到直线l 的距离为( )A 、52B 、94C 、2D 、7415、(2016年,华语中考信息卷)将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,在顺次连接这个六边形的各边中点,又形成一个新正六边形,则这个新正六边形的面积等于( )A 、24cmB 、28cm C 2 D 、28F ABxyxyxy16、(2016年,华语中考信息卷改编)如图所示,已知直角坐标系中四个点(2,4)A -,(2,0)B -,(2,3)C -,(2,0)D ,若点P 在x 轴上,且PA 、PB 、AB 所围成的三角形与PC 、PD 、CD 所围成的三角形相似,则所有符合上述条件的点P 的横坐标的积为( )A 、64B 、448C 、448-D 、64-17、(2016年,华语中考信息卷)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径与x 轴围成的面积为( ) A 、122π+B 、12π+C 、1π+D 、12π+18、(2016年,华语中考信息卷)如图所示,已知正方形ABCD 的边长为4, E 是BC 边上的一个动点,AE EF ⊥,EF 交DC 于点F ,设BE x =,FC y =,则点E 从点B ,运动到点C 时,y 关于x 的函数图像是( )xyxyxyxyA 、B 、C 、D 、19、(2016年,华语中考信息卷)抛物线2y ax bx c =++的顶点为(1,2)D -,与x 轴的一个交点在点(3,0)-和(2,0)-之间,其部分图像如图所示,则以下结论:①240b ac -< ②0a b c ++<③2c a -= ④方程220ax bx c ++-=其中正确的结论个数为( )个A 、1B 、2ABCDBCADPOC C 、3D 、420、(原创)如图,已知AC 是O e 的直径,PA AC ⊥,连接OP ,弦//CB OP ,直线PB 交直线AC 于点D ,若2BD PA =,则sin OPA ∠=()A、3 B、5C D 、3521、(原创)已知ABC ∆∽111A B C ∆,如图,将O e 放在ABC ∆的边上沿C A B C →→→作无滑动滚动,当O e 的圆心回到原来位置时,O e 滚动的圈数为n (为正整数),若将O e 放在111A B C ∆的边上沿1111C A B C →→→作无滑动滚动,当O e 的圆心回到原来位置时,O e 滚动的圈数为m (为正整数),则下列判断正确的是( ) A 、ABC ∆的周长与111A B C ∆的周长比为:n m B 、ABC ∆的周长与111A B C ∆的周长比为(1):(1)n m ++ C 、ABC ∆的面积与111A B C ∆的面积比为22:n m D 、ABC ∆的面积与111A B C ∆的面积比为22(1):(1)n m -- 22、(初中数学奥林匹克解法大全)如图,DT 且O e 于T ,DO 交O e 于点A ,B 在OA 的延长线上,AB AO =,BC DT ⊥于C ,ACB α∠=,则CDA ∠=( )A 、 30α-︒B 、 452α︒-C 、 902α︒-D 、 60α︒-23、(原创)已知ABC ∆为锐角三角形,三边上的高交于点H ,交三边于D 、E 、F ,则下列判断中,错误的个数为( )个①222222AH BC HB AC HC AB +=+=+ ②ABC ∆的外接圆半径与ABH ∆外接圆半径相等 ③H 为DEF ∆的内心④DEF ∆的周长不超过ABC ∆周长的一半ABCE BCADAB⑤ABC ∆的外接圆半径与DEF ∆外接圆直径相等 A 、 3 B 、 2 C 、 1 D 、 0 24、(初中奥数专题突破)在Rt ABC ∆中,90ACB ∠=︒,内切圆I e 切AC 、BC 于点E 、F ,射线BI 、AI 交直线E 、F 于点M 、N ,设1AIB S S ∆=,2MIN S S ∆=,则12S S =( ) A 、 32B 、 2C 、 53D 、 7525、(初中数学竞赛题)如图,已知直角三角形的一直角边为4,以这个直角三角形的三边为直径作三个半圆,已知两个月牙形的面积之和为10,那么以下四个整数中,最接近图中两个弓形面积之和的是( )A 、 6B 、 7C 、 8D 、 9 26、(初中数学竞赛题改编)如图,ABC ∆中,三条中线的长分别为AD a =、CF b =、BE =,则ABC S ∆=( ) A 、ab B 、 23abC 、 43abD 、 34ab27、(初中数学竞赛题改编)已知直线y b =与函数243y x x =-+的图像至少有三个交点,则实数b 的取值范围是( ) A 、01b << B 、01b <<或 23b << C 、01b <≤ D 、1b ≥ 28、(马鞍山成功学习初三数学提高班讲义)如图,在ABC ∆中,90C ∠=︒,D 是AB 上一点,DF AB ⊥交AC 于F ,DE AC ⊥于E ,若:2:1EF CF =,2DE =,BD =,则BC =( )A 、B 、C 、14 D 、 15xABCE 29、(原创)已知a b c 、、是一个三角形的三边长,A 、B 、C 为实数,且444222222222A a b c a b a c b c =++---,那么函数2y Ax Bx C =++的图像( )A 、一定是开口向上的抛物线B 、一定是开口向下的抛物线C 、一定是开口向上的抛物线或是直线D 、一定是开口向下的抛物线或是直线30、(初中奥数专题突破)实数a 使得关于x y 、的方程组2223234x y a b xy b a b -=-⎧⎨=-++⎩对于每一个实数b 总有实数解,则a 的取值范围是( )A 、1a ≤-B 、2a ≥C 、 1a ≤-或2a ≥D 、12a -≤≤31、(原创)已知双曲线11(0)k y k x=>与直线22(0)y k x k =>相交于A 、B 两点,第一象限上的点M (在A 点左侧)是双曲线上的动点,设直线AM BM 、分别与y 轴交于P Q、两点,且MAp MP=,MB q MQ =,则p q -=( ) A 、12k k - B 、 12kk C 、2 D 、 2-32、(2016年,华语中考信息卷)如图,在等腰Rt ABC ∆中,90B ∠=︒,4AB BC ==,P 为AC 中点,E 为AB 边上一动点,F 为BC 边上一动点,且满足条件:45EPF ∠=︒,记四边形PEBF 的面积为1S ,CPF ∆的面积为2S ,CF x =,12S y S =,则y 的极值为 ( )A 、max 23y = B 、min 1y = C 、max 1y = D 、min 23y =E'F'ABCEA FE33、(2016年,华语中考信息卷)上题中,如图,在图中作四边形PEBF 关于AC 的轴对称图形,若它们同时也是关于点P 的中心对称图形,则此时y =( ) A、y =B、1y = C 、2y = D 、y =34、(从课本到奥数)如图,有一“L ”形钢板,工人师傅想用一条直线将其分成面积相等的两部分,则这样的直线有( )条A 、 1B 、 2C 、 3D 、 4 35、(初中数学奥林匹克解法大全)如图,正ABC ∆的高等于O e 的半径,O e 在BC 上滚动,切点为T ,O e 交AC 、AB 分别于M 、N ,则¼MTN将( )A 、在030︒︒:变化 B 、在060︒︒:变化 C 、在6090︒︒:变化 D 、 保持不变36、(2015年,浙江杭州)设二次函数11212()()(0,)y a x x x x a x x =--≠≠的图像与一次函数2y dx e =+的图像交于点1(,0)x ,若函数12y y y =+的图像与x 轴仅有一个交点,则 ( )A 、12()a x x d -= B 、21()a x x d -= C 、 212()a x x d -= D 、212()a x x d +=37、(2015年,浙江金华)如图,正方形ABCD 与等边AEF∆都内接于O e ,EF 交BC 于G ,交CD于H ,则EFGH=( ) A 、 2BxyxxC D 、 238、(2015年,浙江湖州)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数1y x=(0)x <图像上一点, AO 的延长线交函数(0,0ky x k x=>>,k 为常数)的图像于点C 点A 关于y 轴的对称点为'A ,点C 关于x 轴的对称点为'C ,连接'CC ,交x 轴于点B ,连接AB 、'AA 、'A C ,若ABC ∆的面积等于6,则k =( )A 、 3B 、 4C 、 9D 、 1639、上题中,由线段AC 、'CC 、'CA 、'AAA 、8B 、10 C 、D 、40、(2015年,浙江舟山)如图,抛物线221y x x m =-+++交x 轴于点(,0)A a 和(,0)B b ,交y 轴于点C ,抛物线的顶点为点D 。
初中数学试卷中考压轴题精选(含详细答案)

精品基础教育教学资料,仅供参考,需要可下载使用!一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.3.(资阳)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y1=﹣4x+190,y2=5x﹣170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量;(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?4.(哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5.(桂林)如图已知直线L:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x轴、y轴分别相交于A、D两点,点B在y轴上,现将△AOB沿AB翻折180°,使点O刚好落在直线AD的点C处.(1)求BD的长;(2)设点N是线段AD上的一个动点(与点A、D不重合),S△NBD=S1,S△NOA=S2,当点N运动到什么位置时,S1•S2的值最大,并求出此时点N的坐标;(3)在y轴上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标,并选择一个写出其求解过程;若不存在,简述理由.7.(大兴安岭)直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O⇒B⇒A以每秒1个单位长度的速度运动,到达A点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.8.(云南)如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0).(1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式;(2)若过点A和点B的切线分别与半圆相切于点P1和P2(点P1、P2与点O、C不重合),请求P1、P2点的坐标并说明理由.(注:第(2)问可利用备用图作答).9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,点A 在x轴的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2,BM:MO=1:2.(1)求OB和OM的值;(2)求直线OD所对应的函数关系式;(3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD 的边于点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数关系式.10.(天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(_________,_________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.11.(乐山)如图,在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB 为直径的圆过点C.若点C的坐标为(0,2),AB=5,A,B两点的横坐标x A,x B是关于x的方程x2﹣(m+2)x+n﹣1=0的两根.(1)求m,n的值;(2)若∠ACB平分线所在的直线l交x轴于点D,试求直线l对应的一次函数解析式;(3)过点D任作一直线l′分别交射线CA,CB(点C除外)于点M,N.则的是否为定值?若是,求出该定值;若不是,请说明理由.12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.13.(遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.14.(株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.(1)求A,B,C三点的坐标;(2)若⊙O1,⊙O2分别为△ACD,△BCD的内切圆,求直线O1O2的解析式;(3)若直线O1O2分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明你的结论.15.(镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,a n表示第n个“树型”图中“树枝”的个数.图:表:n 1 2 3 4 …a n 1 3 7 15 …(1)根据“图”、“表”可以归纳出a n关于n的关系式为_________.若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(a n,a n+1)都在直线l1上.(2)设直线l2:y=﹣x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.16.(咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.17.(厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.18.(乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O 内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R 的取值范围.19.(随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A 与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)20.(邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O 按顺时针方向旋转α角(0°<α≤360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH 的面积.22.(衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.23.(黔东南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.25.(梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.27.(佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD 的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.28.(济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.29.(黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA <OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6 (1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC 交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P 的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.答案与评分标准一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?考点:一次函数综合题。
(完整)中考数学压轴题精选含答案

一、解答题1.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >2),P 为CD 中点,以P 为圆心,CP 为半径作半圆P ,交线段AC 于点E ,交线段AD 于点F .(1)当E 为CA 中点时,①求证:E 是弧CF 的中点.②求此时m 的值.(2)连结PF ,若PF 平行△ABC 的某一边时求出满足条件的m 值.(3)连结PE ,将PE 绕着点E 顺时针旋转90°得到EP ',连结AP ',当AP '⊥AC 时,求此时CE 的长.2.如图1,在菱形ABCD 中,∠D =120°,AB =8,点M 从A 开始,以每秒1个单位的速度向点B 运动;点N 从C 出发,沿C →D →A 方向,以每秒2个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒,过点N 作NQ ⊥DC ,交AC 于点Q .(1)当t =2时,求线段NQ 的长;(2)设△AMQ 的面积为S ,直接写出S 与t 的函数关系式及t 的取值范围;(3)在点M 、N 运动过程中,是否存在t 值,使得△AMQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线2y x bx c =-++,与y 轴交于点A 与x 轴交于点E 、B .且点()0,5A ,()5,0B ,点P 为抛物线上的一动点.(1)求二次函数的解析式;(2)如图1,过点A 作AC 平行于x 轴,交抛物线于点C ,若点P 在AC 的上方,作PD 平行于y 轴交AB 于点D ,连接PA ,PC ,当245AOE APCD S S ∆=四边形时,求点P 坐标; (3)设抛物线的对称轴与AB 交于点M ,点Q 在直线AB 上,当以点M 、E 、P 、Q 为顶点的四边形为平行四边形时,请直接写出点Q 的坐标.4.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,OA =1,OB =OC =3.(1)求抛物线的表达式;(2)如图1,点D 为第一象限抛物线上一动点,连接DC ,DB ,BC ,设点D 的横坐标为m ,△BCD 的面积为S ,求S 的最大值;(3)如图2,点P (0,n )是线段OC 上一点(不与点O 、C 重合),连接PB ,将线段PB 以点P 为中心,旋转90°得到线段PQ ,是否存在n 的值,使点Q 落在抛物线上?若存在,请求出满足条件的n 的值,若不存在,请说明理由.5.如图,抛物线223y x x =--+与x 轴交于A 、B 两点,与y 轴交于C 点.(1)在第二象限内的抛物线上确定一点P ,使四边形PBOC 的面积最大.求出点P 的坐标.(2)点M 为抛物线上一动点,x 轴上是否存在一点Q ,使点B 、C 、M 、Q 的顶点的四边形是平行四边形,若存在,请直接写出Q 点的坐标;若不存在,请说明理由.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫ ⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.如图1,直线l 1:y =kx 与直线l 2:y =﹣12x +b 相交于点A (4,3),直线l 2:y =﹣12x +b 与x 轴交于点B ,点E 为线段AB 上一动点,过点E 作EF ∥y 轴交直线l 1于点F ,连接BF .(1)求k、b的值;(2)如图2,若点F坐标为(8,6),∠OFE的角平分线交x轴于点M.①求线段OM的长;②点N在直线l1的上方,当△OFN和△OFM全等时,直接写出点N的坐标.8.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当△PAD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.9.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.10.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB 相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒10个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).11.在平面直角坐标系xOy中,点A(a,b)和点B(c,d).给出如下定义:以AB为边,作等边三角形ABC,按照逆时针方向排列A,B,C三个顶点,则称等边三角形ABC为点A,B的逆序等边三角形.例如,当1,0,3,0a b c d=-===时,点A,B的逆序等边三角形ABC如图①所示.(1)已知点A(-1,0),B(3,0),则点C的坐标为___;请在图①中画出点C,B的逆序等边三角形CBD,点D的坐标为___.(2)图②中,点B(3,0),点A在以点M(-2,0)为圆心1为半径的圆上,求点A,B的逆序等边三角形ABC的顶点C的横坐标取值范围.(3)图③中,点A在以点M(-2,0)为圆心1为半径的圆上,点B在以N(3,0)为圆心2为半径的圆上,且点B的纵坐标0d>,点A,B的逆序等边三角形ABC如图③所示.若点C 恰好落在直线y x t=+上,直接写出t的取值范围.12.已知:如图1,一次函数y=mx+5m的图像与x轴、y轴分别交于点A、B,与函数y=-23x的图像交于点C,点C的横坐标为-3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=2S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规.....作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.13.在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为12≤yM136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,013MN2=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.14.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.15.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12BC=,将ABD△沿着AB翻折得,点H为的中点,连接HA、HC,当周长最小时,请直接写出的值.16.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点P作PM x⊥轴,垂足为I,交圆N于点M,点P在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.17.如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D (﹣2,﹣1)在直线BC 上,点E 为y 轴右侧抛物线上一点,连接BE 、AE ,DE ,若S △BDE =4S △ABE ,求E 点坐标;(3)如图2,在(2)的条件下,P 为射线DB 上一点,作PQ ⊥直线DE 于点Q ,连接AP ,AQ ,PQ ,若△APQ 为直角三角形,请直接写出P 点坐标.18.如图1,点A ,点B 的坐标分别(a ,0),(0,b ),且b =+4,将线段BA 绕点B 逆时针旋转90°得到线段BC .(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求2+ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值.19.如图1,已知抛物线)(3343y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,(1)写出A 、B 、C 三点的坐标.(2)若点P 为OBC 内一点,求OP BP CP ++的最小值.(3)如图2,点Q 为对称轴左侧抛物线上一动点,点()4,0D ,直线DQ 分别与y 轴、直线AC 交于E 、F 两点,当CEF △为等腰三角形时,请直接写出CE 的长.20.已知等边△ABC ,M 在边BC 上,MN ⊥AC 于N ,交AB 于点P .(1)求证:BP =BM ;(2)若MC =2BM ,求证:MP =MN .(3)若E ,F 分别在AB 、AC 上,且△MEF 为等边三角形,当MEF ABC S S ∆∆的值最小时,BM BC= .【参考答案】**科目模拟测试 一、解答题 1.(1)①见解析;②5m =;(2)m 的值为25或6;(3)25CE =【解析】【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC 45=,由E 为AC 中点得EC 25=,再证明DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2x GE =,45AE x =- 证明PGE EAP '≅得AP GE '=,再证明AP EBAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD 是圆P 的直径,∴∠DEC =90°,即DE ⊥AC∵E 为CA 中点∴AE =CE∴AD =CD∴ADE CDE ∠=∠∴EC EF =∴E 是CF 的中点;②在Rt △ABC 中,∠B =90°,AB =4,BC =8,∴22224845AC AB BC +=+∵E 是AC 的中点∴11452522EC AC ==⨯= ∵AB //CD ,90B ∠=︒∴90B DCB ∠+∠=︒∴90DCB∠=︒,即90DCE BCA∠+∠=︒∵90CDE DCE∠+∠=︒∴CDE BCA∠=∠又90B DEC∠=∠=︒∴DEC CBA∆∆∽∴CE DCAB AC=,即252=445m解得,5m=;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD=,即245PF mm=∴25=PF∴25m=②当PF//BC时,如图,过点A作AH⊥DC,垂足为H,则四边形AHCB是矩形,∴AH//BC,HC=AB=4,AH=BC=8∴PF//AH∵90DCB∠=︒∴90FPD∠=︒∴45PDF PFD∠=∠=︒∴45HAD HDA∠=∠=︒∴DH=AH,即248m-=解得,6m=综上,m的值为256;(3)过点P 作PG AC ⊥于点G ,如图,∵PE =PC ∴1,2GE CE EPG CPG =∠=∠ ∵90PEP '∠=︒∴90P EA PEG '∠+∠=︒又90PEG GPE ∠+∠=︒∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '=∴P AE EPG '∆≅∆∴AP GE '=设CE x =,则45,2x AE x GE AP '=== ∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒∴GPC BCA ∠=∠∴EPG BCP ∠=∠∴P EA BCA '∠=∠又90P AE B '∠=∠=︒∴AP E BAC '∆∆ ∴AP AB AE BC '=42825x = ∴5x =25CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.2.(143;(2)S =()()22330434348t t t ⎧+≤≤⎪⎪⎨⎪≤⎪⎩<;(3)存在,当t =247s 或(32-163)s或163s时,△AMQ为等腰三角形.【解析】【分析】(1)首先求得CN的长,在直角△CNQ中利用三角函数即可求得NQ的长;(2)当0≤t≤4时,N在CD上,首先求得CQ,则AQ长即可求得,再根据△CAB=30°,AM=t,据此即可求得△AMQ的长;当4<t≤8时,利用相似求得AQ的长,进而求得△AMQ的面积,得到函数解析式;(3)分三种情形讨论求解即可.【详解】解:(1)当t=2时,CN=2×2=4,∵在△ACD中,AD=DC,∴∠DCA=1801202︒-︒=30°,在直角△CNQ中,NQ=CN•tan30°=4×33=433;(2)由题意得,AM=t,当0≤t≤4时,CN=2t,∵∠D=120°,AB=CD=8,∴∠DCA=30°,连接BD,与AC相交于点定O,过点Q作QG⊥AB于点G,∴OC=CD•cos30︒3AC3∴在Rt△CNQ中,NQ23t,CQ43t,∴AQ=AC-CQ343,QG=12AQ,∴S=12AM• QG =233t+,当4<t≤8时,延长QN,交AB于G,交CD延长线于H,如图:ND =2t -8,∠HDN =60°,∴HD =12ND =t -4, ∴CH =t -4+8=t +4,∴CQ =23cos303CH =︒(t +4), ∴AQ =AC -CQ =83-233(t +4),QG =12AQ , S =12•AM • QG 234363t t =-+. 综上,S =()()223230433434863t t t t t t ⎧-+≤≤⎪⎪⎨⎪-+≤⎪⎩<; (3)①当0<t ≤4时,只有MA =MQ 符合条件,过点M 作ME ⊥AC 于点E ,则AE =EQ =AM •cos30︒=32t , ∴AQ =3t ,由(2)知AQ 343, 3433, 解得t =247; ②当4<t ≤8时,由(2)知AQ 323t +4),AQ =AM 时,)4t +=t ,解得tAQ =MQ 时,AM ,t )4t ⎤+⎥⎦, 解得t =163.综上所述,当t =247s 或(s 或163s 时,△AMQ 为等腰三角形. 【点睛】本题考查了菱形的性质以及三角函数,正确进行分请情况进行讨论是关键.3.(1)245y x x =-++;(2)1(2,9)P ,2(3,8)P ;(3)1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -【解析】【分析】(1)直接将(0,5)A ,(5,0)B 代入2y x bx c =-++,求解即可;(2)先求出AB 的解析式,设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+,用t 表示出PD ,最后利用245AOE APCD S S ∆=四边形求出结果; (3)分三种情况讨论解答:①当EM 为平行四边形的对角线时;②当EP 为对角线时;③当EQ 为对角线时.【详解】(1)将点(0,5)A ,(5,0)B 分别代入2y x bx c =-++得25505b c c -++=⎧⎨=⎩, 45b c =⎧∴⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)//AC x 轴,点()0,5A ,∴当5y =时,2455x x -++=,10x ∴=,24x =,()4,5C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,将(0,5)A ,(5,0)B 分别代入得505n m n =⎧⎨=+⎩, 解得:1m =-,5n =∴直线AB 的解析式为5y x =-+;设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+()2245(5)5PD t t t t t ∴=-++--+=-+,4AC =,()22114521022APCD S AC PD t t t t ∴=⨯=⨯⨯-+=-+四边形 函数245y x x =-++,当0y =时,有2450x x -++=,11x ∴=-,25x =,(1,0)E ∴-,1OE ∴=,又5OA =,11515222AOE S OE OA ∆∴=⨯⨯=⨯⨯=, 245AOE APCD S S ∆=四边形, 22452101252t t ∴-+=⨯=, 解得:12t =,23t =,∴点1(2,9)P ,2(3,8)P ;(3)∵2(2)9y x =--+,∴当x =2时,y =-2+5=3,∴M (2,3),设P (m ,2(2)9m --+,(,5)Q n n -+,而E (-1,0),①当EM 为平行四边形的对角线时,(平行四边形的对角线互相平分)得:21222(2)950322m n m n +-+⎧=⎪⎪⎨--+-++⎪=⎪⎩, 解得121261,52m m n n ==-⎧⎧⎨⎨=-=⎩⎩ (舍), ∴点Q 的坐标为(-5,10);②当EP 为对角线时,212220(2)93522m m m n -++⎧=⎪⎪⎨--+-+⎪=⎪⎩,解得121223,10m m n n ==⎧⎧⎨⎨=-=⎩⎩, ∴点Q 的坐标为(-1,6)或(0,5);③当EQ 为对角线时,21222053(2)922n m n m -++⎧=⎪⎪⎨-+--+⎪=⎪⎩, 解得121261,92m m n n ==-⎧⎧⎨⎨==⎩⎩(舍), 点Q 的坐标为(9,-4),综上所得:1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -.【点睛】本题考查了待定系数法求函数关系式,平行四边形的性质和判定,解本题的关键是分类思想的运用.4.(1)2y x 2x 3=-++;(2)278;(3)存在,n =1或n 3+33- 【解析】【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF ⊥x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A (-1,0),B (3,0),C (0,3)∴(1)(3)y a x x =+-把C (0,3)代入得,1a =-∴2y x 2x 3=-++(2)作DF ⊥x 轴于点F ,交BC 于点E设直线BC 关系式为y =kx +b ,代入(3,0),(0,3)得k =-1,b =3,∴y =-x +3∵点D 的横坐标为m ,则DF =223m m -++,EF =-m +3∴DE =23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ∵302-<,∴S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N∴1290Q MP Q NP BOP ∠=∠=∠=︒∵1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,∴1PQ M BPO ∠=∠又∵1BP PQ =,∴1Q PM PBO △≌△∴1MQ OP n ==,3MP OB ==,∴1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,∴2Q (-n ,n -3)代入抛物线,得2323n n n =-+-- 解得13+33n -=2333n --=舍去) 综上,存在n 的值,n =1或n 3+33-【点睛】 此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.5.(1)315,24⎛⎫- ⎪⎝⎭;(2)Q 1(-5,0),Q 2(-1,0),Q 3 ()720,,Q 4)720,. 【解析】【分析】(1)分别求出点B 、C 的坐标,连接PB ,PC ,PO ,设点P 坐标为()2,23m m m --+,四边形PBOC 的面积为S ,根据=BOP COP S S S +△△得到S 关于m 的二次函数解析式,根据二次函数的性质即可求解;(2)分点M 在x 轴上方或点M 在x 轴下方两种情况讨论,分别求出点M 的坐标,根据平行四边形的性质即可求出点Q 的坐标. 【详解】解:(1)把0x =代入223y x x =--+得y =3, ∴点C 坐标为(0,3);把y =0代入223y x x =--+得2x 2x 30--+=, 解得123,1x x =-=, ∵点B 在x 轴负半轴上, ∴点B 坐标为(-3,0); 如图1,连接PB ,PC ,PO ,∵点P 在第二象限抛物线223y x x =--+上,∴设点P 坐标为()2,23m m m --+(-3<m <0),设四边形PBOC 的面积为S , ∴=BOP COP S S S +△△2211232m m OB O m C =--++ ()()2332223m m m +=+--- 2399222m m =--+, ∵302-<,∴当322b m a =-=-时,S 有最大值, 此时,215234m m --+=, ∴当点P 坐标为315,24⎛⎫- ⎪⎝⎭时,四边形PBOC 的面积最大;(2)存在,如图2,分点M 在x 轴上方或点M 在x 轴下方两种情况讨论. ①当点M 在x 轴上方时,点M 与点C 纵坐标相等,∴2233x x --+=, 解得122,0x x =-=, ∴CM 1=2,∵四边形BQCM 1是平行四边形, ∴CM =BQ =2,∴满足条件的点Q 有两个,分别是Q 1(-5,0),Q 2(-1,0); ②当点M 在x 轴下方时,点M 与点C 纵坐标互为相反数, ∴2233x x --+=-, 解得1271,71x x =--=-,∴点M 2坐标为()713---,,点M 3坐标为()713--,,由平行四边形的性质得点B 向右平移3个单位,向上平移3个单位得到点C ,∴点M 2向右平移3个单位,向上平移3个单位得到点Q 3,点M 3向右平移3个单位,向上平移3个单位得到点Q 4,∴Q 3的坐标为()720-+,,Q 4的坐标为()720+,;综上所述,满足条件的点Q 的坐标有四个,分别是Q 1(-5,0),Q 2(-1,0),Q 3()720-+,,Q 4()720+,.【点睛】本题为二次函数综合题,难度较大,解决第(1)步,关键是理解函数图象上点的坐标特点,将四边形分割为两个三角形,分别表示出三角形面积,得到函数解析式,并利用二次函数性质求解;解决第(2)步关键是理解平行四边形的性质,利用分类讨论思想求解,注意要充分考虑各种情况,不要漏解.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k≠0或56<k<43【解析】【分析】(1)把A(−3,0),B(1,0),52,2C⎛⎫⎪⎝⎭代入y=ax2+bx+c,解方程组即可;(2)把C点坐标代入直线CD,得2k+b=52,分两种情况:①若AB为平行四边形的边时,②若AB为平行四边形的对角线时,得关于k、b的方程组,解方程组即可求解;(3)分两种情况:①当E点在x轴上方时,②E点在x轴下方时,根据当α=β时,列方程,可求出k的值,进而求出k的取值范围.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(−3,0),B(1,0),C(2,52)三点,∴9305 422a b ca b ca b c⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132abc⎧⎪⎪⎨⎪⎪-⎩===,∴抛物线的解析式为y=12x2+x−32;(2)如图1所示,将C点坐标代入直线CD,得2k+b=52,当x=−1时,y=−k+b,即E(−1,−k+b).①若AB为平行四边形的边时,则F(-1+4,−k+b)或F(-1-4,−k+b),即:F(3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E 点在x 轴上方时,如图2所示,当α=β时,∵∠EHA =90°, ∴∠AEC =90°, ∴∠AEH =∠EGH , ∵∠AHF =∠FHG =90°, ∴AHF FHG ∽, ∴AE AHEG EH=, ∵A (−3,0),E (−1,−k +b ),G (bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k<56且k≠0时,α>β;②E点在x轴下方时,如图4所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,根据①可得此时k=43(k=−12舍去),随着E点向下移动,∠CEH的度数越来越小,∠EAH的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)34k =,5b =;(2)①OM =5;②()3,6N 或724,55N ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)分别将将(4,3)A 代入y kx =和12y x b =-+中,求解即可;(2)①设直线AB 与y 轴交与点C ,与FM 交于点D ,证明△AFD ≌△EFD ,得到AD =ED ,利用中点坐标公式求得点D 坐标,用待定系数法求得直线FD 的函数表达式,令0y =,即可求得点M 的坐标,从而求得OM ;②点N 在直线l 1的上方,当△OFN 和△OFM 全等时,满足题意的点N 有两个,分别画出相关的图形,分类讨论求解即可. 【详解】解:(1)∵直线l 1:y kx =和直线l 2:12y x b =-+相交于点A∴将(4,3)A 代入y kx =中,得:43k = 解得:34k =∴将(4,3)A 代入12y x b =-+中,得:1432b -⨯+=解得:5b =∴3,54k b == (2)① 设直线AB 与y 轴交与点C ,与FM 交于点D ,如下图:∵34k =,5b = ∴直线l 1的函数表达式为34y x =,直线l 2的函数表达式为152y x =-+∵(4,3)A ∴22345OA +设直线AB 与y 轴交与点C ,与FM 交于点D 则()0,5C ∴5OC = ∴5OA OC == ∴∠OCA =∠OAC ∵//FE y 轴 ∴∠OCA =∠FEA 又∵∠OAC =∠FAE ∴∠FAE =∠FEA ∴FA =FE又∵FM 是∠OFE 的角平分线 ∴∠AFM =∠EFM 又∵FD =FD ∴△AFD ≌△EFD ∴AD =ED ∴点D 为AE 的中点 ∵//FE y 轴∴点F 和点E 的横坐标相同 将8x =代入152y x =-+中,得1y =∴()8,1E ∵(4,3)A ,()8,1E ∴()6,2D设线段FM 所在的直线函数表达式为()0y ax b a =+≠将()()8,6,6,2F D 代入y ax b =+中,得:8662k b k b +=⎧⎨+=⎩解得:210k b =⎧⎨=-⎩∴线段FM 所在的直线函数表达式为210y x =- 令0y =,得2100x -= 解得:5x = ∴()5,0M ∴OM =5② 当,OFN FOM 全等时,有两种情况,情况一,如下图所示:∵OFN FOM ≅△△∴∠OFN =∠FOM ,FN =OM ,ON =FM ∴//FN OM ∵OM =5 ∴FN =5,8F x =∴853N x =-=,6N F y y == ∴()3,6N情况二,当△OMF 和△ONF 关于直线l 1对称时,如下图所示:∵OFN FOM ≅△△∴ON =OM =5,∠NOF =∠MOF ∵OP =OP ∴△NOP ≌△MOP ∴PN =PM ∵()8,6F∴10OF 又∵1122OMFF SOM y OF PM =⋅=⋅ ∴F OM y OF PM ⋅=⋅ ∴56==310PM ⨯∴MN =2PM =6,OP 4 ∵1122OMN N S MN OP OM y =⋅=⋅△ ∴642455N y ⨯==∴75N x ==∴724,55N ⎛⎫⎪⎝⎭综上所述,满足题意点有两个,分别是:()3,6N 或724,55N ⎛⎫⎪⎝⎭【点睛】本题考查用待定系数法求一次函数表达式,三角形全等的性质和证明,两条直角交点的求法以及三角形的等面积法等知识点,牢记相关内容并能灵活应用数形结合思想解题是本题的关键.8.(1)y 14=-x 2+x +3;y 12=x +1;(2)△PAD 的面积的最大值为274,P (1,154);(3)点Q 的坐标为(0,133)或(0,﹣9) 【解析】 【分析】(1)由A (﹣2,0)、B (6,0)设抛物线的解析式为y =a (x +2)(x ﹣6),把D (4,3)的代入解析式解方程即可,再利用待定系数法求解一次函数的解析式; (2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T(m,12m+1),再利用面积列函数关系式,再利用二次函数的性质求解最值即可;(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,再求解直线DT的解析式为y13=-x133+,作点T关于AD的对称点T′(1,﹣6),求解直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,从而可得答案.【详解】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,∴设抛物线的解析式为y=a(x+2)(x﹣6),∵D(4,3)在抛物线上,∴3=a(4+2)×(4﹣6),解得a14 =-,∴抛物线的解析式为y14=-(x+2)(x﹣6)14=-x2+x+3,∵直线l经过A(﹣2,0)、D(4,3),设直线l的解析式为y=kx+m(k≠0),则2043k mk m-+=⎧⎨+=⎩,解得,121km⎧=⎪⎨⎪=⎩,∴直线l的解析式为y12=x+1;(2)如图1中,过点P作PT y∥轴交AD于点T.设P(m,14-m2+m+3),则T(m,12m+1).∵S△PAD12=•(xD﹣xA)•PT=3PT,∴PT的值最大值时,△PAD的面积最大,∵PT14=-m2+m+312-m﹣114=-m212+m+214=-(m﹣1)294+,∵14-<0,抛物线开口向下,∴m=1时,PT的值最大,最大值为94,此时△PAD的面积的最大值为274,P(1,154).(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,过D作DM x⊥轴于,M过T作TN x轴于,N90,,TNA AMD TAD AD AT90,TAN ATN TAN DAM,ATN DAM,ATN DAM≌6,3,235,TN AM AN DM ON∴T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,∵D(4,3),∴直线DT的解析式为y13=-x133+,∴Q(0,133),作点T关于AD的对称点T',同理可得T'(1,﹣6),则直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,∴Q′(0,﹣9),综上所述,满足条件的点Q的坐标为(0,133)或(0,﹣9).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.二次函数综合题中面积问题的解题通法:(1)直角坐标系中图形面积的求法,以“S三角形=12×水平底×铅直高”为基础求解.(2)图形面积的数量关系:①找出所求图形的顶点,其中动点的坐标根据函数关系式用含未知数的代数式表示出来;②结合图形作辅助线,并将关键线段的长度用含未知数的代数式表示出来;③利用面积公式用含未知数的代数式表示出图形的面积;④列方程求解.(3)图形面积的最值,解题思路跟(1)中的前三步相同,然后利用函数的增减性求解.9.(1)证明见解析;(2)证明见解析,(3)15714BF=.【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE =EC ,AE ⊥BC ,∴BM =MC ,∴∠MBC =∠MCB ,∵BG ⊥AC ,AE ⊥BC ,∴∠EAC +∠ACE =90°,∠HBC +∠ACE =90°,∴EAC HBC MCB α∠=∠=∠=,∴2CMG MBC MCB α∠=∠+∠=,∵BC BC =,∴2G BAC α∠=∠=,∴∠G =∠CMG ,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC ,∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==, ∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH中,BH == ∵BAH G ∠=∠,AHB GHC ∠=∠, ∴AHB GHC △△,∴AH BH HG CH = 即:AH HC BHHG =, 51544=⨯, ∴HG =, 由(2)得BF =2HG ,∴BF = 【点睛】 本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)291515404y x x =+-,y =﹣34x ﹣15;(2)面积最大值225,C (﹣10,﹣30);(3)S =﹣2553t +160t ﹣240. 【解析】【分析】(1)利用待定系数法将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 即可求出抛物线的函数表达式;设AB 的函数表达式是y =kx +b ,然后利用待定系数法将点A (﹣20,0),B (0,﹣15)代入y =kx +b 即可求出直线AB 的函数表达式;(2)作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15),根据题意表示出CF 的长度,进而表示出ABC S ∆,然后利用二次函数的性质求解即可;(3)作AN ⊥OD 于N ,AD 与FG 交于点I ,首先根据题意求出OC 的解析式,然后联立33154y x y x =⎧⎪⎨=--⎪⎩求出点D 的坐标,然后求出AD OD =,利用等腰三角形三线合一性质求出ON 的长度,进而利用勾股定理求出AN 的长度,表示出S △AON ,然后证明出△GFI ∽△OGH ∽△ANO ,利用相似三角形的性质表示出S △IJF =803(t ﹣3)2,S △GOH =253t ,最后利用面积之间的关系即可求出S 与t 之间的函数关系式.【详解】解:(1)由题意得,将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 得, 21515(20)(20)04c a c =-⎧⎪⎨-+⨯-+=⎪⎩, ∴15940c a =-⎧⎪⎨=⎪⎩, ∴291515404y x x =+-, 设AB 的函数表达式是y =kx +b ,将点A (﹣20,0),B (0,﹣15)代入y =kx +b 得,∴15200b k b =-⎧⎨-+=⎩, ∴1534b k =-⎧⎪⎨=-⎪⎩, ∴y =﹣34x ﹣15; (2)如图1,作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15), ∴FC =(﹣315)4a -﹣(2940a +154a ﹣15)=﹣2940a ﹣92a , ∴ABC S ∆=12CF •AO =12(﹣2940a ﹣92a )×20=﹣94(a +10)2+225, ∴当a =﹣10时,ABC S ∆=225, 当a =﹣10时,y =29(10)40⨯-+()15104⨯-﹣15=﹣30, ∴C (﹣10,﹣30);(3)如图2,作AN ⊥OD 于N ,∵C (﹣10,﹣30),∴OC 的解析式是:y =3x ,由33154y x y x =⎧⎪⎨=--⎪⎩得, 412x y =-⎧⎨=-⎩, ∴D (﹣4,﹣12),∵A (﹣20,0),OD 22412+10∴AD ()2220412-++=20,∴AD OD=,又∵AN⊥OD,∴ON=12OD=AN=S△AON=1160 22AN ON=⨯=,∵OE,OD=,∴DE=,∴JE=3(),∴FJ=EF﹣JEt﹣3(t)=(t﹣3),∵OG AN FJ∥∥,∴GOH OAN DAN AJF∠=∠=∠=∠,又∵90G ANO F∠=∠=∠=︒,∴△GFI∽△OGH∽△ANO,∴IJFAONSS∆∆=(FJAN)2=2,GOHAONSS∆∆=(OGAN)2)2,∴S△IJF=803(t﹣3)2,S△GOH=253t,∴S=S正方形OEFG﹣S△IJF﹣S△GOH=10t2﹣53t2﹣803(t﹣3)2=﹣2553t+160t﹣240,故答案是:S=﹣2553t+160t﹣240.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数与一次函数综合问题,相似三角形的性质和判定,二次函数中最大面积问题等知识,解题的关键是正确分析题目中的条件,设出点的坐标,根据相似三角形的性质以及勾股定理表示出相应的线段和面积.11.(1)(1,,图见解析(2)1322Cx-≤≤1122t<≤【解析】【分析】(1)根据等边三角形的性质,勾股定理求解即可;(2)根据题意以MB为边作等边三角形MM B',以M'为圆心1为半径作M',根据线段中点坐标公式求解即可;(3)在(2)的基础上,先求得最小值,再确定2个圆心,第1个是A 点运动点C 对应的圆心P ',第2个是点B 的运动时点C 轨迹的对应的圆心P ,进而根据线段和最大,当,,P P Q '共线时候,t 最大,根据(2)的方法求解即可.(1)过点C 作CE x ⊥轴于点E ,作出点C ,B 的逆序等边三角形CBD ,如图1,()()1,03,0A B -,,ABC 是等边三角形()1131222AE BE AB ∴===--=,33CE AE ==()1,0E ∴,(1,3C ,ABC BCD 是等边三角形∴60DCB ABC ∠=∠=︒,AB AC BC CD BD ====,CD AB CD AB ∴=∥(5,23D ∴ 故答案为:(1,23,(5,23(2)如图2,以MB 为边作等边三角形MM B ',以M '为圆心1为半径作M ', 点B (3,0),点A 在以点M (-2,0)为圆心1为半径的圆上, ∴点A ,B 的逆序等边三角形ABC 的顶点C 在M '23122M x '-+∴== M '的半径为1∴111122C x -≤≤+ 即1322C x -≤≤(3)如图3,设N 与x 轴交于点G ,以GM 为边向上作等边三角形MGH ,以点H 为圆心1为半径,作H ,设直线y x =为1l ,y x t =+为2l ,过点H 作1HJ l ⊥,交x 轴于点J ,交1l 于点S ,交2l 于点L ,过点H ,作HI x ⊥轴于点I ,设2l 与x 轴的交点为T ,则OT t =根据题意,当C 点在第二象限时,能找到t 的最小值,根据定义可知,B 点与G 点重合时,A 点在M 上运动,则C 点在H 上运动,当2l 与H 相切时,t 最小, ()2,0M -,()3,0N ,M 的半径为1,N 的半径为2, 2,321OM OG ∴==-=3MG ∴=33HI ∴=1322MI MG == 1,02I ⎛⎫∴- ⎪⎝⎭ 1332H ⎛∴- ⎝⎭1l 与x 轴的夹角为45°,1HJ l ⊥,HI x ⊥轴, HIJ ∴是等腰直角三角形 HI IJ ∴=HJ ∴===12OI =12OJ ∴1,02J ⎫∴⎪⎪⎝⎭1LJ HJ HL ∴=-=12l l ∥ LTJ ∴是等腰直角三角形1TJ ∴===⎝3122OJ =1122TO TJ JO ⎫=-==⎪⎪⎝⎭即t 12, B 的纵坐标0d >,则12t > 如图4,作,M N 的逆序等边三角形MNP ',以P '为圆心,1为半径作P ',则1PP AM '==,连接,AM PP ',ANP MNP '是等边三角形,,,60AN NP MN NP ANP MNP ''∴==∠=∠=︒PNP ANM '∴∠=∠PP N AMN '≌∴当,,P P Q '共线时候,t 最大以P 为圆心,2为半径作半圆P ,当直线y x t =+与半圆P 相切时,设切点为Q ,当C 点与Q 点重合时,即可取得t 的最大值,最大值即为T O '的长,()()2,0,3,0M N - ∴1532P ⎛' ⎝⎭过点P '作P P x '''⊥轴于点P '',如图,。
中考数学压轴题100题精选(91-100题)2013

中考数学压轴题100题精选(91-100题)(答案在本人文辑中寻找)【091】已知二次函数y=x2-x+c.(1)若点A(-1,a)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,n)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.【092】已知:直角梯形OABC的四个顶点是O(0,0),A(32,1),B(s,t),C(72,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.(1)求s与t的值,并在直角坐标系中画出..直角梯形OABC;(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.(第24题)【093】已知在平面直角坐标系中,四边形OABC 是矩形,点A 、C 的坐标分别为()3A 0,、()04C ,,点D 的坐标为()D 5-0,,点P 是直线AC 上的一动点,直线DP 与y 轴交于点M .问: (1)当点P 运动到何位置时,直线DP 平分矩形OABC 的面积,请简要说明理由,并求出此时直线DP 的函数解析式;(2)当点P 沿直线AC 移动时,是否存在使DOM △与ABC △相似的点M ,若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P 沿直线AC 移动时,以点P 为圆心、半径长为R (R >0)画圆,所得到的圆称为动圆P .若设动圆P 的直径长为AC ,过点D 作动圆P 的两条切线,切点分别为点E 、F .请探求是否存在四边形DEPF 的最小面积S ,若存在,请求出S 的值;若不存在,请说明理由. 注:第(3)问请用备用图解答.【094】在平面直角坐标系中,已知(40)A -,,(10)B ,,且以AB 为直径的圆交y 轴的正半轴于点(02)C ,,过点C 作圆的切线交x 轴于点D .(1)求过A B C ,,三点的抛物线的解析式(2)求点D 的坐标(3)设平行于x 轴的直线交抛物线于E F ,两点,问:是否存在以线段EF 为直径的圆,恰好与x备用图【095】)如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC . (1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭]图1图2(备用)(第26题)【096】如图12,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图12所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图13所示).① 当t=25时,判断点P 是否在直线ME 上,并说明理由;② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【097】矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34y x =-与BC 边相交于D 点. (1)求点D 的坐标;(2)若抛物线294y ax x =-经过点A ,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标.【098】如图,在平面直角坐标系中,点A (0,6),点B 是x 轴上的一个动点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90o ,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(t ,0).(1)当t =4时,求直线AB 的解析式;(2)当t >0时,用含t 的代数式表示点C 的坐标及△ABC 的面积;(3)是否存在点B ,使△ABD 为等腰三角形?若存在,请求出所有符合条件的点B 的坐标;若不存在,请说明理由.【099】我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提................出相关的概念和问题(或者根据问题构造图形),并加以研究............................ 例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包· yOA x备用图括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1) 如图1,在圆O 所在平面上,放置一条..直线m (m 和圆O 分别交于点A 、B ),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O 所在平面上,请你放置与圆O 都相交且不同时经过圆心.......的两条..直线m 和n (m 与圆O 分别交于点A 、B ,n 与圆O 分别交于点C 、D ). 请你根据所构造的图形提出一个结论,并证明之. (3) 如图3,其中AB 是圆O 的直径,AC 是弦,D 是的中点,弦DE ⊥AB 于点F . 请找出点C 和点E 重合的条件,并说明理由.【100】抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。
(完整)中考数学压轴题精选及答案

一、解答题1.在△ABC中,AB = BC,∠ABC=90°.(1)如图1,已知DE⊥BC,垂足为D,若∠DBE=60°,AC=22,BD=3,求线段AE的长;(2)如图2,若点D在△ABC内部,点F是CD的中点,且∠BAD=∠CBF,求证:∠DBF=45°;(3)如图3,点A与点'A关于直线BC对称,点D是△'A AC内部一动点,∠ADC=90°.若AC=4,则线段'A D的长是否有最小值,如果有,请直接写出这个最小值;如果没有,请说明理由.2.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.3.在等腰Rt ABC中,AB AC∠=︒.=,90BAC(1)如图1,D,E是等腰Rt ABC斜边BC上两动点,且45DAE∠=︒,在等腰Rt ABC 外侧作CAF BAE≅△△,连接DF.问:①DCF∠=__________度.②AED与AFD是否全等?请说明理由;③当3BE=,7CE=时,求DE的长;(2)如图2,点D是等腰Rt ABC斜边BC所在射线CB上的一动点,连接AD,以点A为直角顶点作等腰Rt ADE△(点E在点D的顺时针方向上),当4BD=,12BC=时,直接可出DE的长.4.直线y=﹣x+6与x轴、y轴分别交于点A,点B.点P为线段AB上一动点(与点A,B不重合).过点P作PM⊥OA于点M,以OB,OM为邻边作矩形BOMN.点Q在直线BN上,且PQ⊥OP.(1)如图1,①判断△APM的形状,并说明理由;②求证:△PNQ≌△OMP;③若∠PQN=22.5°,直接写出点P的坐标.(2)作射线OQ交直线AB于点K,∠OPQ的角平分线交边OB于点G.若BGOG=35,①当∠PKQ为钝角时,直接写出线段PK的长;②当∠PKQ为锐角时,直接写出BK2+AP2的值.5.在矩形ABCD中,3OA=,6AB=.分别以OA,OC边所在的直线为x轴,y轴建立如图所示的平面直角坐标系.(1)如图1,将OAC 沿对角线AC 翻折,交AB 于点P ,求点P 的坐标; (2)如图2,已知H 是AB 上一点,且32HBC S =△,OG CH ⊥于点P ,求四边形OAHP 的面积;(3)如图3,点()0,5D ,点E 是OB 上一点,且2OE BE =,M 是直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.6.如图,AB 是ABC 的外接圆O 的直径,点D 在半圆上,DC 与AB 交于点E ,过点C 作CF ⊥DC 交DB 的延长线于点F ,交圆O 于点G .(1)求证:ABC ∽DCF ;(2)当∠1=∠2,DF =105,AE :EC =1:2时,求圆O 的半径.(3)在(2)的条件下,连接DG 交BC 于点M ,则OMB DGF S S =:△△ (直接写出答案).7.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A (4,0)、B (0,4)、C .其对称轴l 交x 轴于点D ,交直线AB 于点F ,交抛物线于点E .(1)求抛物线的解析式;(2)点P为直线l上的动点,求△PBC周长的最小值;(3)点N为直线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.8.如图,在平面直角坐标系xOy中,抛物线与x轴交于两点与y轴交于点C,点M是抛物线的顶点,抛物线的对称轴l与BC交于点D,与x轴交于点E.(1)求抛物线的对称轴及B点的坐标(2)如果,求抛物线的表达式;(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段BC的下方,,求点F的坐标9.如图,四边形ABCD中,AD∥BC,AB=10,CD=45,动点P从点A沿着A-B-C 运动,同时点Q从点D沿着D-A运动,它们同时到达终点,设点P运动的路程为x,AQ的长度为y,且2163y x=-+.(1)求AD,BC的长和四边形ABCD的面积.(2)连接PQ,设△APQ的面积为S,在P,Q的运动过程中,S是否存在最大值,若存在,求出S的最大值;若不存在,请说明理由.(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.10.如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.11.在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1)当点P在线段ED上时(如图1),求证:BE=PD 3;(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PF的长.12.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C (0,﹣3),顶点D 坐标为(1,﹣4).(1)求抛物线的解析式;(2)如图1,抛物线在第四象限的图象上有一点M ,求四边形ABMC 面积的最大值及此时点M 的坐标;(3)如图2,直线CD 交x 轴于点E ,若点P 是线段EC 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC ∆相似.若存在,请直接写出点P 的坐标;若不存在,请说明理由.13.如图,已知抛物线23y ax bx =++经过点1,0A 和点()3,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)若P 是直线BC 下方的抛物线上一个动点,(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D , ①求线段PD 长度的最大值.②若PBD △为直角三角形,求出P 点坐标(3)点E 为y 轴上一动点,连接AE ,BE ,形成AEB ∠,当AEB ∠的度数最大时,求点E 的坐标.14.已知等边△ABC 边长为6,D 为边AB 上一点,E 为直线AC 上一点,连接DE ,将DE 绕点D 顺时针旋转90°得到线段DF .(1)如图1,若∠AED =90°,过点F 作FG ⊥AC 于点G ,求AFFG的值; (2)若AD =x ,AF 的最小值为y , ①若x =4,求y 的值; ②直接写出y 与x 的关系式.15.如图①,Rt ABC 和Rt BDE 重叠放置在一起,∠ABC =∠DBE =90°,且AB =2BC ,BD =2BE .(1)观察猜想:图①中线段AD 与CE 的数量关系是 ,位置关系是 ;(2)探究证明:把BDE 绕点B 顺时针旋转到图②的位置,连接AD ,CE ,判断线段AD 与CE 的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC 5BE =1,当旋转角α=∠ACB 时,请直接写出线段AD 的长度. 16.如图,抛物线与x 轴交于A 、B 两点( 点A 在点B 的左侧),点B 坐标()3,0,抛物线与y 轴交于点()0,3C -,点D 为抛物线顶点,对称轴1x =与x 轴交于点E ,连接BC 、EC .(1)求抛物线的解析式;(2)点P 是BC 下方异于点D 的抛物线上一动点,若PBCEBCS S=,求此时点P 的坐标;(3)点Q 是抛物线上一动点,点M 是平面上一点,若以点B 、C 、Q 、M 为顶点的四边形为矩形,直接写出满足条件的点Q 的横坐标.17.如图(1),ABC 中,90ABC ∠=︒,AB BC =,点D 是AC 的中点,点E 在CD 上(点E 不与点D 和点C 重合),AG BE ⊥于点G ,交BD 于点F ,连接DG .(1)求证:ADF BDE △≌△;(2)设GF a =,GE b =,GD c =,证明:2a b c +=;(3)如图(2),延长AG 交BC 于点M ,若点M 是BC 中点,点N 是AB 的中点,请证明点N 、F 、C 三点共线.18.已知,如图1,Rt△ABC 中,AB =AC ,∠BAC =90°,D 为△ABC 外一点,且∠ADC =90°,E 为BC 中点,AF ∥BC ,连接EF 交AD 于点G ,且EF ⊥ED 交AC 于点H ,AF =1.(1)若13AHCH,求EF的长;(2)在(1)的条件下,求CD的值;(3)如图2,连接BD,BG,若BD=AC,求证:BG⊥AD.19.如图1,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,且B(3,0),与y轴交于点C,一次函数y=kx+b的图象l与抛物线在第一象限交于点P.(1)直接写出抛物线的解析式;(2)若∠PCB=∠ACO,求P点的坐标;(3)如图2,若b=1,直线l与抛物线的另一个交点为D,过点D作DE∥y轴交直线PC于E,请说明点E一定在某条确定的直线上运动,求出这条直线的解析式.20.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,求出其值;若不存在,请说明理由.【参考答案】**科目模拟测试一、解答题 1.(1)27 (2)见解析 (3)252- 【解析】 【分析】(1)如图1中,过点E 作EQ AB ⊥,交AB 延长线于点Q ,则四边形BQED 是矩形,解直角三角形求出AQ ,QE 即可解决问题.(2)如图2中,在BF 上取一点M ,使得BM AD =,并且延长MF 至点H ,使MF FH =,连接CM ,DH .利用全等三角形的性质证明H FMC DBH ∠=∠=∠,再证明290DBH ∠=︒即可解决问题.(3)如图3中,取AC 的中点F ,连接A F ',DF ,过点F 作FT AB ⊥于T .解直角三角形求出DF ,FA ',判断出当A ',D ,F 共线时,DA '的值最小于是得到结论. (1)解:如图1中,过点E 作EQ AB ⊥,交AB 延长线于点Q ,则四边形BQED 是矩形,3BD QE ∴==在Rt BQE ∆中,30QBE ∠=︒,223BE BD ∴==,33BQ QE ==,在Rt ABC ∆中,22AB BC ===,5AQ ∴=,在中,;(2)如图2中,在BF 上取一点M ,使得BM AD =,并且延长MF 至点H ,使MF FH =,连接CM ,DH .在和中,,,,,是CD 的中点,,在和中,,,,, ,H FMC DBH ∠=∠=∠,又是的外角,,,,;(3)如图3中,取AC 的中点F ,连接A F ',DF ,过点F 作FT AB ⊥于T .,90ABC∠=︒,4AC=,,,,FT AB⊥,,,,,,,AF CF=,,,,∴当A',D,F共线时,DA'的值最小,此时,故线段的长最小值是52.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.2.(1)证明见解析;(2)证明见解析,(3)157 BF=【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12 PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE=EC,AE⊥BC,∴BM=MC,∴∠MBC=∠MCB,∵BG⊥AC,AE⊥BC,∴∠EAC+∠ACE=90°,∠HBC+∠ACE=90°,∴EAC HBC MCBα∠=∠=∠=,∴2CMG MBC MCBα∠=∠+∠=,∵BC BC=,∴2G BAC α∠=∠=,∴∠G =∠CMG ,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC ,∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==,∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH 中,BH == ∵BAH G ∠=∠,AHB GHC ∠=∠,∴AHB GHC △△, ∴AH BH HG CH = 即:AH HC BH HG =,51544=⨯,∴HG =, 由(2)得BF =2HG ,∴BF = 【点睛】本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.3.(1)①90︒;②全等,证明见解析;③29=7DE ;(2)DE 的值为 【解析】【分析】(1)①先由等腰直角三角形的性质得∠B =∠ACB =45°,再由全等三角形的性质得∠ACF =∠B =45°,即可得出答案; ②先证出∠DAE =∠DAF ,再由DA =DA ,AE =AF ,即可得出结论; ③设DE =x ,则CD =7-x .在Rt △DCF 中,由勾股定理得DF 2=CD 2+CF 2,则x 2=(7-x )2+32,解方程即可;(2)分两种情形:①当点D 在线段BC 上时,连接BE ,由△EAD ≌△ADC ,推出∠ABE =∠C =45°,BE =CD =8,推出∠EBD =90°,由勾股定理即可得出答案; ②当点D 在CB 的延长线上时,同法可得DE 的长.【详解】解:(1)①∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵△CAF ≌△BAE ,∴∠ACF =∠B =45°,∴∠DCF =∠ACB +∠ACF =45°+45°=90°,故答案为:90;②△AED ≌△AFD ,理由如下:∵△CAF≌△BAE,∴AF=AE,∠CAF=∠BAE,∵∠BAC=90°,∴∠CAE+∠BAE=∠CAE+∠CAF=∠BAC=90°,∵∠DAE=45°,∴∠DAF=90°-45°=45°,∴∠DAE=∠DAF,又∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);③∵△CAF≌△BAE,∴CF=BE=3,设DE=x,则CD=7-x,由①得:∠DCF=90°,由②得:△AED≌△AFD,∴DE=DF=x,在Rt△DCF中,由勾股定理得:DF2=CD2+CF2,即x2=(7-x)2+32,∴297x,∴29=7 DE;(2)①当点D在线段BC上时,连接BE,如图2所示:∵△ADE是等腰直角三角形,∠EAD=90°,∴AE=AD,∠BAC=∠EAD,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=45°,BE=CD=BC-BD=12-4=8,∴∠EBD=90°,∴22228445DE BE BD+=+②当点D在CB的延长线上时,连接BE,如图3所示:同①得:△EAB≌△DAC(SAS),∠EBD=90°,∴BE=CD=BC+BD=12+4=16,∴2222164417DE BE BD=++=综上所述,DE的值为45417【点睛】本题是三角形综合题目,考查了等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的判定、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题.4.(1)①等腰直角三角形,理由见解析,②证明见解析,③(63232)-,,(2)52,②225 2【解析】【分析】(1)①求出直线y=﹣x+6与x轴、y轴交点坐标,得出∠BAO=45°即可证明;②由①得出BN=PN=OM,再根据PQ⊥OP得出∠PQB=∠OPM,即可证明△PNQ≌△OMP;③∠PQN=22.5°,可得BQ=PB,设点P坐标为(a,-a+6),列出关于a的方程求解即可;(2)①证△OPG∽△OBP,求出OP长,得出P点坐标,再证△OPB∽△KPO,求出PK 的长即可;②类似①得出P点坐标,求出PK的长即可.【详解】解:(1)①△APM是等腰直角三角形,理由如下:y=﹣x+6与x轴、y轴分别交于点A,点B.当x=0时,y=6,当y=0时,x=6,则点A(6,0)点B(0,6);∴OA =OB ,∴∠BAO =45°,∵PM ⊥OA ,∴∠BAO =∠MPA =45°,∴PM =PA ,∴△APM 是等腰直角三角形;②由①同理可得BN =PN ,∵BN =OM ,∴PN =OM ,∵PQ ⊥OP ,∴∠QPN +∠OPM =90°,∵∠POM +∠OPM =90°,∴∠POM =∠QPN ,∵∠PMO =∠PNQ =90°,∴△PNQ ≌△OMP ;③设点P 坐标为(a ,-a +6),∵∠PQN =22.5°,∠PBN =45°,∴∠PQN =∠BPQ =22.5°,∴BQ =PB ,∵△PNQ ≌△OMP ;∴QN =PM=-a +6,6a a +=-+,解得,6a =-则点P 坐标为(6-;(2)∵BG OG =35,OB =6, ∴94BG =,154OG =, ①∵∠OPQ 的角平分线交边OB 于点G ,∴∠OPG =∠OBA =45°,∵∠PGO =45°+∠BPG ,∠BPO =45°+∠BPG ,∴∠PGO =∠BPO ,∴△OPG ∽△OBP ,∴OP OG OB OP =,即1546OP OP=,解得OP = 设点P 坐标为(a ,-a +6),222(6)a a +-+=,解得,132a =,292a =; 当∠PKQ 为钝角时,92a =,P 坐标为93()22,, 则32AP =,92BP =, ∵∠POK =∠OBA =45°,∠BPO =∠BPO ,∴△OPB ∽△KPO , ∴OP PB KP OP =,即3109222310KP =,解得52KP =;②当∠PKQ 为锐角时,32a =,P 坐标为39()22,, 则92AP =32BP = 由①得,310OP =OP PB KP OP =即3103222310KP ,152KP = 1523262BK == BK 2+AP 2=22922252+=2()).【点睛】本题考查了一次函数与图形,全等三角形的判定与性质,相似三角形的判定与性质,解题关键是熟练运用相关定理进行推理证明.5.(1)153,4P ⎛⎫ ⎪⎝⎭;(2)11110;(3)存在,(125,5N -,()24,8N ,355,2N ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据翻折的性质得出△BCP ≌△O 'AP ,再利用勾股定理得出结论;(2)先求出直线CH 和OG 的解析式,联立解得H 的坐标,再根据OCP OAHP OAHC S S S =-四边形梯形得出结果;(3)分三种情况讨论:①当OD =DM =MN =NO =5时,②当OD =DN =MN =MO =5时,③当OM =MD =DN =NO =5时.【详解】(1)∵四边形OABC 是矩形,∴OA =BC =3,OC =AB =6,由翻折得3OA OA ,∠O '=∠AOC =90°,在△BCP 与△O 'AP 中,∠B =90°,∠BPC =∠O 'PA ,BC =O 'A =2,∴△BCP ≌△O 'AP ,∴BP =O 'P ,设BP =O 'P =x ,则AP =AB -BP =6-x ,在Rt △AP O '中,222O P O A AP ''+=,则2223(6)x x +=-,解得94x =, ∴AP =6-x =6-94=154,则15(3,)4P ; (2)1133222HBCSBC BH BH BH =⋅=⨯⨯=,则3322BH =, ∴BH =1,AH =AB -BH =6-1=5, ∴H (3,5), ∵(0,6),(3,5)C H ,∴设直线CH 为:y mx n =+,过点(0,6),(3,5)C H ,∴6053n m n =+⎧⎨=+⎩,解得:136m n ⎧=-⎪⎨⎪=⎩, ∴直线CH 为:163y x =-+,∵OG ⊥CH ,且13CH K =-,∴3OG K =,∴直线OG 为:3y x =,联立3163y xy x =⎧⎪⎨=-+⎪⎩,解得95x =, 当95x =时,275y = ,∴927(,)55H ,∵33()22OAHC S AH OC OA =+⋅÷=梯形,OCPOAHP OAHC S S S =-四边形梯形,∴33271112510OAHP S =-=四边形;(3)设DM 与AB 交于F ,与x 轴交于H , ∵OD ∥AB ,∴△ODE ∽△BFE , ∴OE ODBE BF =, ∴2=ODBF, ∵D (0,5), ∴OD =5, ∴BF=522OD =, ∴AF =AB -BF =6-52=72, ∴F (3,72); 设直线DF :y kx b =+,过点D (0,5),F (3,72), ∴50732b k b =+⎧⎪⎨=+⎪⎩,解得512b k =⎧⎪⎨=-⎪⎩,∴直线DF :152y x =-+,当OD =DM =MN =NO =5时,如图,作MP ⊥y 轴交于点P ,则MP ∥x 轴, ∴△MPD ∽△FOD , ∴MP PD MDOF OD FD==, 直线DF :152y x =-+,当y =0时,x =10,∴H (10,0),则DH =10,FD =222251055OD DF +=+=,则10555MP PD ==, ∴MP =25,PD =5, ∴(25,55)M -+,∴25N M x x ==-,555N M y y MN =-=+-=5, ∴(25,5)N -;②当OD =DN =MN =MO =5时,如图,延长MN 交x 轴于点P ,则MP ⊥x 轴, ∵M 在152y x =-+上,∴设M (a ,15)2a -+,在Rt △DPM 中,222OP PM OM +=,∴2221(5)52a a +-+=,解得124,0a a ==(舍去),∴M (4,3),∴MP =3+MN =3+5=8, ∴N (4,8);③当OM =MD =DN =NO =5时,如图,连接NM ,交OD 于点P ,则MN 垂直平分OD , ∴52M N y y OP ===,则15522M x -+=, ∴5M x =, ∴5N M x x -=,∴5(5,)2N -;综上所述:N 点的坐标为(25,5)-,(4,8),5(5,)2-.【点睛】本题考查了全等三角形的判定与性质,勾股定理,相似三角形的判定与性质及一次函数的性质,解题的关键是灵活运用这些性质.6.(1)证明见解析;(2)254;(3)544【解析】【分析】(1)证明90ACB DCF,结合,A CDF从而可得答案;(2)连接OD,先证明△AEC∽△DCF,可得DC=10,DE=CE=5,AE=52,设⊙O的半径为r,则OE=52r,OD=r,根据勾股定理列方程可解答;(3)如图,连接BG,根据圆周角定理可得DG是⊙O的直径,根据勾股定理计算CG的长,得FG的长,知FG=DG,根据等腰三角形三线合一的性质得BD=BF,证明△OBM∽△GCM,得OD:OM:MG=11:5:6,根据同高三角形面积的关系可得结论.【详解】(1)证明:∵AB是△ABC的外接圆⊙O的直径,,CF DC∴90,ACB DCF,A CDF∴ABC∽DCF;(2)解:如图,连接OD,∵12,∠=∠∴AD AC=,∴AB⊥CD,∴∠AEC=90°,∵DC⊥CF,∴∠DCF=90°,∴∠AEC=∠DCF,∵∠A=∠ADB,∴△AEC∽△DCF,∴AE CE DC CF,∵AE:EC=1:2,∴DC:CF=1:2,∵DF=52222105,DC DC∴DC=10,(负根舍去)20,CF∵OA⊥CD,∴DE=CE=5,AE=52,设⊙O的半径为r,则OE=52r,OD=r,在Rt△ODE中,由勾股定理得:OD2=DE2+OE2,∴222552r r,解得:254r=,答:圆O的半径为254;(3)解:如图,连接BG,∵∠DCG=90°,∴DG是⊙O的直径,∴∠DBG=90°,由(2)知:CD=10,DG=252,由勾股定理得:222225151022 CG DG CD,∴FG=CF﹣CG=15252022DG,∵90,DCG∴90,DBG∠=︒ BG⊥DF,∴BD=BF,∴S△DBG=S△BGF,∵S △DGF=12FG•CD=12512510222,∴S△DGB=1254,∵∠DEB=∠DCG=90°,∴OB CG∥,∴△OBM ∽△GCM , ∴25541562OM OB MG CG, ∴OD :OM :MG =11:5:6, ∴S △OMB =512562522488, ∴S △OMB :S △DGF =62588:1255244. 故答案为:544. 【点睛】本题考查垂径定理,圆周角定理,相似三角形的性质和判定,三角形面积,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形和等腰三角形解决问题,属于中考常考题型.7.(1)234y x x =-++ (2)(3)存在,(52,)或(,-)或(,-)【解析】 【分析】(1)把点A (4,0)、B (0,4)代入抛物线y =-x 2+bx +c 中,求得b 和c 即可; (2)作点B 关于直线l 的对称轴B ′,连接B ′C 交l 于一点P ,点P 即为使△PBC 周长最小的点,由对称可知,PB ′=PB ,即△PBC 周长的最小值为:BC +CB ′;(3)设M (m ,-m 2+3m +4),①当EF 为边时,则EF ∥MN ,则N (m ,-m +4),所以NM =EF =,即|-m 2+3m +4-(-m +4)|=,求出m 的值,代入即可;②当EF 为对角线时,EF 的中点为(32,),由中点坐标公式可求得点N 的坐标,再由点N 是直线AB上一点,可知-3+m +4=m 2-3m +,解得m 的值即可.(1)解:把点A (4,0)、B (0,4)代入抛物线y =-x 2+bx +c 中, 得,,解得,∴抛物线的解析式为:y =-x 2+3x +4; (2)解:由抛物线解析式可知,对称轴直线l :x =32,∵点A(4,0),∴点C(-1,0),如图,作点B关于直线l的对称轴B′,连接B′C交l于一点P,点P即为使△PBC周长最小的点,此时B′(3,4),设直线B′C的解析式为y=kx+b1,∴,解得:,∴直线B′C的解析式为:y=x+1,把x=32代入得:y=32+1=52,∴P(32,52),∵B(0,4),C(-1,0),B′(3,4),∴BC=,CB′=2∴△PBC周长的最小值为:;(3)解:存在,以点E、F、N、M为顶点的四边形为平行四边形的点M的坐标为(52,)或(,-)或(,-).理由如下:由抛物线解析式可知,E(32,),∵A(4,0)、B(0,4),∴直线AB的解析式为:y=-x+4,∴F(32,52).∴EF=.设M(m,-m2+3m+4),①当EF为边时,则EF∥MN,∴N(m,-m+4),∴NM=EF=,即|-m2+3m+4-(-m+4)|=,解得m=32(舍)或52或或,∴M(52,)或(,-)或(,-).②当EF为对角线时,EF的中点为(32,),∴点N的坐标为(3-m,m2-3m+),∴-3+m+4=m2-3m+,解得m=32(舍),m=52,∴M(52,).综上,满足以点E、F、N、M为顶点的四边形为平行四边形的点M的坐标为(52,)或(,-)或(,-).【点睛】本题主要考查了待定系数法求函数解析式,平行四边形存在性问题,解题过程中注意需要分类讨论.8.(1)对称轴是,B(4,0)(2)y=(3)F(32,-5)【解析】【分析】(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD=158,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.(1)解:∵二次函数y=ax2−3ax−4a,∴对称轴是 ,∵A (−1,0), ∵1+1.5=2.5, ∴1.5+2.5=4, ∴B (4,0); (2)∵二次函数y =ax 2−3ax −4a ,C 在y 轴上,∴C 的横坐标是0,纵坐标是−4a , ∵y 轴平行于对称轴, ∴ , ∴, ∵ , ∵MD =158, ∵M 的纵坐标是+158∵M 的横坐标是对称轴x , ∴ ,∴+158=,解这个方程组得:12a =- ,∴y =ax 2−3ax −4a =12- x 2-3×(12-)x -4×(12-)=;(3)假设F 点在如图所示的位置上,连接AC 、CF 、BF ,CF 与AB 相交于点G ,由(2)可知:AO=1,CO=2,BO=4,∴,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠BCO=∠CAO,∵∠CFB=∠BCO,∴∠CAO=∠CFB,∵∠AGC=∠FGB,∴△AGC∽△FGB,∴,设EF=x,∵BF2=BE2+EF2=,AC2=22+12=5,CO2=22=4,∴=,解这个方程组得:x1=5,x2=-5,∵点F在线段BC的下方,∴x1=5(舍去),∴F(32,-5).【点睛】本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.9.(1)120;(2)存在,最大值为1123;(3)24043x=或487x=或12x=【解析】【分析】(1)当x=0时,当y=0时,分别求解得出对应线段的长度,过点B作BM⊥AD,过点D 作DN⊥BC,求出高,即可求解;(2)分情况讨论(点P在线段AB上、当P在BC上时),得出△APQ的面积的函数表达式,根据函数性质求解即可;(3)分三种情况讨论,利用三角形相似的性质求解即可.【详解】解(1):由题意:∵P,Q两点同时到达终点,所以,当x=0时,y=16,即AD=16;当y=0时,x=24,所以BC=14过点B作BM⊥AD,过点D作DN⊥BC,如下图:又∵AD∥BC,可知四边形BMDN为矩形设AM=m,∴MD=16-m,即BN=16-m,∴CN=m-2,根据BM=DN,可得:102-m2=2(45)-(m-2)2,解得m=6.即BM=8,4CN=∴四边形ABCD的面积为:(16+14)×8÷2=120(2)当点P在线段AB上时,010x<≤,作PE AD⊥,如下图,则//PE BM,∴APE ABM△∽△∴AP PE AEAB BM AM==,即45PE x=,35AE x=21124432(16)2235155 APQS AQ PE x x x x=⨯=-+⨯=-+△对称轴为12x=,0a<又∵010x<≤∴10x=时,APQS最大,为1123当P在BC上时,1024x≤≤,186423APQS AQ BM x=⨯=-+△k<,APQS随x的增大而减小,综上所述,APQS的最大值为1123(3)当PQ AB⊥时,如下图:∴APQ AMB△∽△∴AP AQAM AB=,即2163610xx-+=,解得487x=当PQ BC⊥时,可得BP MQ=,即2101663x x-=-+-解得12x=当PQ CD⊥时,如下图:∵//AD BC,∴C QDH∠=∠又∵90H CND PEQ∠=∠=∠=︒,PQE DQH∠=∠∴PEQ DHQ CND△∽△∽△∴PE CN EQ DN=由(1)(2)得45PE x=,35AE x=,4CN=,8DN=∴231635 EQ x x =-+-∴4452381635xx x=-+-,解得24043x=综上所得24043x=或487x=或12x=【点睛】本题考查了一次函数图象和性质,二次函数最值问题,三角形面积,勾股定理,相似三角形的判定和性质等,是一道关于四边形的综合题,解题关键是熟练掌握并运用二次函数性质、相似三角形的判定和性质等相关知识,并应用数形结合思想、方程思想和分类讨论思想解决问题.10.(1)(2)E(23,53)(3)(﹣2,1)或(﹣2,3)或(﹣2,9)【解析】【分析】(1)由矩形的性质及已知,易得点A的坐标,把A、B两点的坐标代入解析式中可得关于b、c的方程组,解方程组即可;(2)设E(m,﹣34m2﹣32m+3),由题意易得BD、AB的长,则可把△BDE、△ABE的面积表示出来,由S△BDE=4S△ABE得关于m的方程,解方程即可;(3)用待定系数法可求得直线DE的解析式;分三种情况:当P、B重合时,易得△APQ 是等腰直角三角形,从而问题解决;当点P在线段DB的延长线,且AP⊥AQ时,过点Q 作QM⊥AB交BA的延长线于点M,易证△PAB∽△AQM,设P(﹣2,t),由相似三角形的性质可得关于t的方程,解方程即可求得t;当PQ⊥AQ时,易得AP∥DE,则可求得直线AP的解析式,易得点P的坐标.(1)∵B(﹣2,3),矩形OABC,∴A(0,3),∵抛物线y=﹣34x2+bx+c经过点A和点B,∴,∴,∴y=﹣34x2﹣32x+3;(2)∵D(﹣2,﹣1),∴BD=4,设E(m,﹣34m2﹣32m+3),∴S△BDE=12×4×(m+2)=2(m+2),∵AB=2,∴,∵S△BDE=4S△ABE,∴2(m+2)=4(),解得m=﹣2或m=23,∵E点在y轴由侧,∴m=23,∴E;(3)∵E,D(﹣2,﹣1),设直线DE的解析式为y=kx+b,∴,∴,∴y=x+1,∴直线与y轴的交点为(0,1),如图1,当P点与B点重合,Q点为(0,1),此时△APQ为等腰直角三角形,∴P(﹣2,3);如图2,过点Q作QM⊥AB交BA的延长线于点M,∵∠PAQ=90°,∠PBA=90°,∠QME=90°,∴∠PAB=∠AQM,∴△PAB∽△AQM,∴=,设P(﹣2,t),∵直线DE的解析式为y=x+1,PQ⊥DE,∴∠PDQ=45°,∴Q(,),∴PB=t﹣3,AB=2,AM=,QM=﹣3=,∴,∴t =9, ∴P (﹣2,9);如图3,当PQ ⊥AP 时,∵∠PAQ +∠AQP =90°,∠AQP +∠AQE =90°,∴∠APQ =∠AQE ,∴AP //DE ,∴直线AP 的解析式为y =x +3,∴P (﹣2,1);综上所述:P 点的坐标为(﹣2,1)或(﹣2,3)或(﹣2,9).【点睛】本题是二次函数的综合,考查了待定系数法求函数解析式,相似三角形的判定与性质,直角三角形的性质,解一元二次方程,三角形面积等知识,涉及分类讨论思想、方程思想.11.(1)见解析;(2)23y x =-;(3421【解析】【分析】(1)过点E 作EM ⊥QP 垂足为M ;在Rt △EQP 中,易得∠EBD =∠EDB =30°;进而可得PE 3,且BE =DE .故可证得BE =PD 3. (2)点P 从点E 出发沿射线ED 运动,所以分当点P 在线段ED 上时与当点P 在线段ED 的延长线上时两种情况讨论,根据所作的辅助线,可得y 与x 的关系;(3)连接PC 交BD 于点N ,可得∠QPC =90°,进而可得△PNG ∽△QPC ,可得PG PNQC PQ,解可得PG的长,再证明△PNG∽△PFC,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠A=90°,∠ABE=30°,∴∠AEB=60°.∵EB=ED,∴∠EBD=∠EDB=30°.∵PQ∥BD,∴∠EQP=∠EBD.∠EPQ=∠EDB.∴∠EPQ=∠EQP=30°,∴EQ=EP.过点E作EM⊥QP垂足为M.则PQ=2PM.∵∠EPM=30°,∴PM=3PE,PE=3PQ.∵BE=DE=PD+PE,∴BE=PD+3PQ.(2)解:由题意知AE=12BE,∴DE=BE=2AE.∵AD=BC=6,∴2AE=DE=BE=4.当点P在线段ED上时(如图1),过点Q作QH⊥AD于点H,则QH=12PQ=12x.由(1)得PD=BE 3,即PD3.∴y=12PD•QH=−32+x.当点P在线段ED的延长线上时(如图2),过点Q作QH′⊥DA交DA延长线于点H′,∴QH′=12x.过点E作EM′⊥PQ于点M′,同理可得EP=EQ=3PQ,∴BE=3PQ-PD,∴PD=3x-4,∴y=12PD•QH′=3x2−x.(3)解:连接PC交BD于点N(如图3).∵点P是线段ED中点,∴EP=PD=2,PQ3∵DC=AB=AE•tan3∴PC22PD DC+.∴cos∠DPC=12 PDPC=.∴∠DPC=60°.∴∠QPC=180°-∠EPQ-∠DPC=90°.∵PQ∥BD,∴∠PND=∠QPC=90°.∴PN=12PD=1.QC22PQ PC+7.∵∠PGN=90°-∠FPC,∠PCF=90°-∠FPC,∴∠PGN=∠PCF.∵∠PNG=∠QPC=90°,∴△PNG ∽△QPC , ∴PG PN QC PQ=, ∴PG∵∠PNG =∠PFC =90°,∠NPG =∠FPC ,∴△PNG ∽△PFC , ∴PF PC PN PG =,即1PF =, ∴PF【点睛】本题考查相似三角形的判定和性质,解直角三角形,注意某个图形无法解答时,常常放到其他图形中,利用图形间的角、边关系求解.12.(1)抛物线表达式为:2(1)4y x =--;(2)点M 坐标3(2,15)4时,四边形ABMC 面积的最大值758; (3)当点P 坐标为(1,2)--或3(4-,9)4-时,点P 、E 、O 为顶点的三角形与ABC ∆相似【解析】【分析】(1)利用二次函数的顶点式求解;(2)将四边形ABMC 进行分割,分成ABC ∆,∆CMN ,BMN ∆的和,ABC ∆的面积是定值,求出直线BC 的表达式,当点M 在移动时,表示出线段MN 的长度,从而计算出∆CMN ,BMN ∆面积和的最大值,进而求解;(3)利用三角形相似的判定条件,两边对应成比例且夹角相等进行求解,通过求直线CD 的表达式,得到E 点的坐标,从而求出OEC OBC ∠=∠,分情况讨论两边成比例的情况,进而求出点EP 的长度,再借助解直角三角形进行求解.(1)解:设抛物线的表达式为2(1)4y a x =--,∴将点(0,3)C -代入得:43a -=-,解得1a =,∴抛物线表达式为:()214y x =--;(2)解:连接BC ,作MN y ∥轴交BC 于点N ,作BE MN ⊥,CF MN ⊥,如图所示:由(1)知,抛物线表达式为22(1)423y x x x =--=--, 令0y =,可解得11x =-,23x =, ∴点A 坐标(1,0)-,点B 坐标(3,0),设直线BC 的表达式为y kx b =+,将点B (3,0),(0,3)C -代入得:303k b b +=⎧⎨=-⎩, ∴直线BC 表达式为3y x =-, 设M 点2(,23)m m m --,则点(,3)N m m -,222393(23)3()24N M MN y y m m m m m m =-=----=-+=--+, ΔΔABC BCM ABMC S S S ∴=+四边形ΔΔΔABC CMN BMN S S S =++111222AB OC MN CF MN BE =⨯⨯+⨯⨯+⨯⨯ 1143()22MN CF BE =⨯⨯+⨯⨯+ 1632MN =+⨯⨯ 23375()228m =--+, 当32m =时,即点M 坐标3(2,15)4时,四边形ABMC 面积的最大值758; (3) 解:如图所示,作PQ 垂直x 轴,设直线:CD y px q =+,将点C ,D 分别代入得,4{3p q q +=-=-,解得1{3p q =-=-, ∴直线:3CD y x =--,当0y =时,解得3x =-,∴点E 坐标为(3,0)-,3OE OC OB ===,45OEC OBC ∴∠=∠=︒,在Rt OBC ∆中,223332BC +=①当ΔΔBAC EPO ∽时,AB EP BC EO=332EP =,解得22EP = 在Rt ΔEPQ 中,45OEC ∠=︒,sin 45PQ EP∴︒=,解得2PQ =, 2EQ PQ ∴==,此时点P 坐标(1,2)--; ②当ΔΔBAC EOP ∽时,BA EO BC EP =332EP =,解得92EP = 在Rt ΔEPQ 中,45OEC ∠=︒,sin 45PQ EP ∴︒=,解得94PQ =, 94EQ PQ ∴==,此时点P 坐标3(4-,9)4-; 综上所述,当点P 坐标为()1,2--或39,44⎛⎫-- ⎪⎝⎭时,点P 、E 、O 为顶点的三角形与ABC ∆相似.【点睛】本题是二次函数的综合应用题,主要考查了待定系数法求函数解析式,直角坐标系内多边形面积的求法,三角形相似的判定.第2问的解题关键是能够将四边形面积进行分割计算,并且能够表示出线段MN 的长度,从而建立函数关系进行求解,第3问的解题关键是利用三角形相似求出线段EP 的长度,再借助解直角三角形进行求解.13.(1)y =x 2-4x +3(2)①94;②(1,0);(3)0(或0(, 【解析】【分析】(1)用待定系数法求解析式即可;(2)①根据抛物线解析式设出P 点坐标,用待定系数法求出直线BC 的解析式,确定D 点的坐标,根据二次函数的性质得出PD 的最大值即可;②分情况讨论求出P 点的坐标即可;(3)作△ABE 的外接圆,根据圆心在抛物线的对称轴上,且当半径最小时∠AEB 有最大值,即外接圆与y 轴相切时,求出此时的E 点坐标即可.(1)解:(1)∵抛物线y =ax 2+bx +3经过点A (1,0)和点B (3,0), ∴30,9330a b a b ++=⎧⎨++=⎩解得14a b =⎧⎨=-⎩∴抛物线的解析式为:y =x 2-4x +3;(2)①设P (m ,m 2-4m +3),由抛物线解析式知,C (0,3),设直线BC 的解析式为y =sx +t , 将点B 、C 坐标代入得30,3s t t +=⎧⎨=⎩解得13s t =-⎧⎨=⎩∴直线BC 的解析式为y =-x +3,∴D (m ,-m +3),∴PD =(-m +3)-(m 2-4m +3)=-m 2+3m =239(),24m =-+ ∴当32m =时,PD 有最大值为9;4(3) ②若△PBD 为直角三角形,则存在以下两种情况:(Ⅰ)如下图,当P 点与A 点重合时△PBD 为直角三角形,即P(1,0),(Ⅱ)如下图,当∠DBP=90°时,∵OB=OC=3,∴∠DBO=45°,∴此时△BPD为等腰直角三角形,由(Ⅰ)知PD=-m2+3m,且BD=BP,∴-m2+3m=2(3-m),且|-m2-4m+3|=-m+3此时无解,∴P点坐标为(1,0);(3)如下图,作△ABE的外接圆M,则圆心M在AB的垂直平分线上,即抛物线的对称轴上,AB长度不变,要使∠AEB最大则当⊙M半径最小时,即⊙M与y轴相切时,设E(0,e),则M(2,e),且AM=EM=2,||e ∴∴E 点的坐标为0(或0(, 【点睛】本题主要考查二次函数的综合知识,熟练掌握二次函数的性质及分类讨论思想是解题的关键.14.(2)①2;②(()11062y x x =< 【解析】【分析】(1)设AD =2a ,解直角三角形ADE ,表示AE 和DE ,可得四边形DEGF 是正方形,解直角三角形AGF ,表示出AF ,即可得出结果;(2)①作DG ⊥AB ,截取DG =AD ,作直线GF 交AC 于M ,交直线AB 于H ,可以证明ADE GDF ≌,从而得出60DGF A ∠=∠=︒,得出点F 的运动轨迹,然后解直角三角形DGH ,再解直角三角形AHM ,即可得出结果;②由①得,点F 的运动轨迹,然后解直角三角形DGH ,再解直角三角形AHM ,进而得出y 与x 的函数关系式.(1)设AD =2a , ABC 是等边三角形,60CAB ∴∠=︒,90AED ∠=︒,sin 2sin 60DE AD ABC a ∴=⋅∠=⨯︒=,12AE AD a ==, FG AC ⊥,90FGE ∴∠=︒,90DEG EDF ∠=∠=︒,∴四边形DEGF 是矩形,DE DF =,∴矩形DEFG 是正方形,∴GE FG DE ===,AG AE EG a ∴=+=,在Rt△AFG 中,由勾股定理得,AF=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三中考数学压轴题精选100题一、中考压轴题1.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.2.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.4.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.6.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.7.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.8.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.10.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.11.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.12.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.13.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.14.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.15.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.16.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.17.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.18.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.20.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.21.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.22.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.23.如图,AD是⊙O的直径.。