三角函数知识点归纳总结
三角函数的基本性质知识点总结

三角函数的基本性质知识点总结一、正弦函数的性质1. 基本定义:在直角三角形中,正弦函数是指对于一个锐角A,其对边与斜边之比,即sin A = 对边/斜边。
2. 定义域和值域:正弦函数的定义域是实数集,值域是[-1, 1]。
3. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA,对称轴为原点。
4. 周期性:正弦函数的周期是360°或2π,即sin(A + 360°) = sinA。
5. 正弦函数的图像:根据正弦函数的性质,可以绘制出正弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动。
二、余弦函数的性质1. 基本定义:在直角三角形中,余弦函数是指对于一个锐角A,其临边与斜边之比,即cos A = 临边/斜边。
2. 定义域和值域:余弦函数的定义域是实数集,值域是[-1, 1]。
3. 奇偶性:余弦函数是偶函数,即cos(-A) = cosA,对称轴为y轴。
4. 周期性:余弦函数的周期是360°或2π,即cos(A + 360°) = cosA。
5. 余弦函数的图像:根据余弦函数的性质,可以绘制出余弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动,与正弦函数的图像相似但形状相对位移。
三、正切函数的性质1. 基本定义:在直角三角形中,正切函数是指对于一个锐角A,其对边与临边之比,即tan A = 对边/临边。
2. 定义域和值域:正切函数的定义域是除去所有使得临边等于零的实数,值域是全体实数集。
3. 奇偶性:正切函数是奇函数,即tan(-A) = -tanA,对称轴为原点。
4. 周期性:正切函数的周期是180°或π,即tan(A + 180°) = tanA。
5. 正切函数的图像:根据正切函数的性质,可以绘制出正切函数的图像,在0°到180°的范围内,图像呈现周期性的波动。
完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
三角函数的知识点总结

三角函数的知识点总结1. 三角函数的基本概念三角函数源于三角形的角度关系,最开始是根据角度的定义和圆的性质推导得到。
三角函数最常用的有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
正弦函数是指直角三角形中对边和斜边的比值,余弦函数是指直角三角形中邻边和斜边的比值,正切函数是指对边和邻边的比值。
这些函数中的输入变量是角度,输出变量是一个无量纲的比值。
2. 三角函数的关系与性质(1)正弦函数与余弦函数的关系:在单位圆上,当一个角为Θ时,其余弦函数值等于该角的补角的正弦函数值,即cos(Θ)=sin(π/2-Θ)。
(2)正切函数与余切函数的关系:在单位圆上,对于角Θ,其正切函数值等于角Θ的补角的余切函数值的倒数,即tan(Θ)=1/cot(Θ)。
(3)函数性质:三角函数具有周期性,正弦函数和余弦函数的周期是2π,而正切函数的周期为π。
3. 三角函数的定义和图像(1)正弦函数的定义和图像:正弦函数sin(x)在整个实数集上都有定义,其图像为一条连续曲线,且在区间[-π, π]上是凹函数,区间[0, π]上是凸函数,在区间[-π/2, π/2]上是单调递增函数,在区间[π/2, 3π/2]上是单调递减函数。
(2)余弦函数的定义和图像:余弦函数cos(x)在整个实数集上都有定义,其图像也是一条连续曲线,且在区间[0, π]上是凹函数,在区间[-π, 0]上是凸函数,在区间[0, π/2]上是单调递减函数,在区间[π/2, 3π/2]上是单调递增函数。
(3)正切函数的定义和图像:正切函数tan(x)在实数集上有定义,其图像是一条有无数间断点的曲线,且在每个周期的中点有一个无穷大的间断点。
4. 三角函数的导数(1)正弦函数和余弦函数的导数:正弦函数sin(x)的导数是cos(x),余弦函数cos(x)的导数是-sin(x)。
(2)正切函数的导数:正切函数tan(x)的导数是sec^2(x)。
5. 三角函数的应用三角函数在物理、工程、计算机科学等领域有着广泛的应用,例如在振动力学中,三角函数用于描述谐波振动的性质;在信号处理中,三角函数用于描述周期信号的特性;在工程中,正切函数用于计算斜面的坡度等。
高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
三角函数知识点归纳总结

三角函数知识点归纳总结三角函数是数学中研究角度与三角形边长之间关系的函数。
它们在解决几何问题、物理问题以及工程学中有着广泛的应用。
以下是三角函数的一些基本知识点归纳总结:1. 定义:- 正弦函数(sin):在直角三角形中,正弦是锐角的对边与斜边的比值。
- 余弦函数(cos):余弦是锐角的邻边与斜边的比值。
- 正切函数(tan):正切是锐角的对边与邻边的比值。
- 余切函数(cot):余切是锐角的邻边与对边的比值。
- 正割函数(sec):正割是斜边与邻边的比值。
- 余割函数(csc):余割是斜边与对边的比值。
2. 三角函数的值:- 特殊角(如0°, 30°, 45°, 60°, 90°)的三角函数值是基础,需要熟记。
- 正弦和余弦函数的值域是[-1, 1]。
- 正切和余切函数的值域是所有实数,但正切在90°(π/2弧度)处无定义,余切在0°和180°(0和π弧度)处无定义。
3. 单位圆:- 单位圆是一个半径为1的圆,三角函数可以在这个圆上定义。
- 角度可以用弧度制或角度制表示。
π弧度等于180°。
4. 三角恒等式:- 基本恒等式:sin²θ + cos²θ = 1。
- 双角公式:如sin(2θ) = 2sinθcosθ,cos(2θ) = cos²θ -sin²θ。
- 和差公式:如sin(α ± β) = sinαcosβ ± cosαsinβ,cos(α ± β) = cosαcosβ ∓ sinαsinβ。
5. 三角函数的图像:- 正弦函数和余弦函数是周期函数,周期为2π。
- 正切函数和余切函数也是周期函数,但它们在某些点有垂直渐近线。
6. 反三角函数:- 反三角函数是三角函数的逆运算,如arcsin、arccos、arctan 等。
- 反三角函数的值域通常被限制在特定的区间内,以保证其为单值函数。
三角函数知识点总结归纳图

三角函数知识点总结归纳图在数学中,三角函数是研究三角形以及与角度相关的函数。
它们在许多领域中都有广泛的应用,如物理学、工程学、计算机图形学等。
本文将对常用的三角函数进行总结和归纳,并使用图表形式展示相关知识点。
一、正弦函数(sine function)正弦函数是最基本也是最重要的三角函数之一。
它表示一个角度对应的三角形中的对边与斜边之比。
正弦函数的定义域为实数集合R,值域为[-1, 1]。
1. 正弦函数的周期性正弦函数是周期性函数,其最小正周期为2π。
即对于任意实数x,有sin(x+2π)=sin(x)。
2. 正弦函数的图像正弦函数的图像为连续的波浪线,通过原点(0,0),在每个周期内,正弦函数在x轴上的值在[-1,1]之间变化。
3. 正弦函数的性质正弦函数具有奇函数的性质,即sin(-x)=-sin(x)。
同时,正弦函数在π/2和3π/2时取得最大值1,在π和2π时取得最小值-1。
二、余弦函数(cosine function)余弦函数是三角函数中的另一个重要函数,表示一个角度对应的三角形中的邻边与斜边之比。
余弦函数的定义域为实数集合R,值域为[-1, 1]。
1. 余弦函数的周期性余弦函数也是周期性函数,其最小正周期为2π。
即对于任意实数x,有cos(x+2π)=cos(x)。
2. 余弦函数的图像余弦函数的图像为连续的波浪线,通过点(0,1),在每个周期内,余弦函数在x轴上的值在[-1,1]之间变化。
3. 余弦函数的性质余弦函数为偶函数,即cos(-x)=cos(x)。
同时,余弦函数在π和2π时取得最大值1,在π/2和3π/2时取得最小值-1。
三、正切函数(tangent function)正切函数是表示一个角度对应的三角形中的对边与邻边之比。
正切函数的定义域为实数集合R,值域为全体实数。
1. 正切函数的周期性正切函数也具有周期性,其最小正周期为π。
即对于任意实数x,有tan(x+π)=tan(x)。
初中三角函数知识点总结

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 A90B 90∠-︒=∠︒=∠+∠得由B A的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h i l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),南偏西60°(西南方向), 北偏西60°(西北方向)。
(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数知识点归纳总结
第一篇:三角函数基础知识点
三角函数是高中数学中的重要内容,也是建立数学模型和解决实际问题的重要工具。
三角函数主要分为正弦函数、余弦函数、正切函数和余切函数四种。
1. 正弦函数
正弦函数是三角函数中最基本的函数之一,通常用sin 表示。
它的定义域是整个实数集,取值范围在[-1,1]之间。
在单位圆上,正弦函数就是对于任意角度θ,其对应点在单位圆上的y坐标值。
2. 余弦函数
余弦函数与正弦函数非常相似,通常用cos表示。
它的定义域也是整个实数集,取值范围也在[-1,1]之间。
在单位圆上,余弦函数就是对于任意角度θ,其对应点在单位圆上的x 坐标值。
3. 正切函数
正切函数是将正弦函数与余弦函数相除得到的,通常用tan表示。
它的定义域是除去所有奇点(即函数值为正无穷或负无穷的点)之后的实数集,取值范围则是整个实数集。
在单位圆上,正切函数就是对于任意角度θ,其对应点在单位圆上的斜率。
4. 余切函数
余切函数则是将余弦函数与正弦函数相除得到的,通常用cot表示。
其定义域和范围与正切函数相反。
在单位圆上,
余切函数就是对于任意角度θ,其对应点在单位圆上的斜率
的倒数。
以上四种三角函数都是周期函数,其周期是360度或2π弧度。
在求解实际问题时,可以通过这些函数将角度与其它物理量(如长度、速度等)相互转化。
第二篇:三角函数的应用
三角函数的应用广泛,今天我们来谈谈三角函数在三角
形中的应用和在物理问题中的应用。
1. 三角函数在三角形中的应用
三角函数在解决三角形中的各种问题时非常重要。
例如,已知一个三角形的两条边以及它们之间的夹角,我们可以通过正弦函数、余弦函数或正切函数求出第三条边的长度或其它角度的大小。
同样的,如果已知三角形的三条边的长度,则可以应用余弦定理和正弦定理求出三个角度的大小。
2. 三角函数在物理问题中的应用
三角函数在物理学中的应用非常广泛。
例如,我们可以
应用正弦函数和余弦函数来描述一个简谐运动(如波动、振动)的变化规律。
在电学中,我们可以应用正切函数来计算电阻的值,同时也可以应用三角函数来描述电流、电压等量的变化规律。
此外,在物理问题中,三角函数还经常被用来描述波的传播、声音的分析、光的折射等等。
总之,三角函数在数学、物理、工程、电学等不同领域
中都有广泛的应用,它们不仅能帮助人们理解自然现象和数学模型,也能帮助人们更好地解决实际问题。