人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_提高(1)

合集下载

必修3-高一数学人教版最全知识点(必须珍藏)

必修3-高一数学人教版最全知识点(必须珍藏)

高中数学必修3知识点总结目录高中数学必修3知识点总结 (2)第一章算法初步 (2)1.1算法的概念 (2)1.2程序框图 (3)(一) ........................................................................................... 程序构图的概念3(二) ............................................................................. 构成程序框的图形符号及其作用3(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(4)1.3输入、输出语句和赋值语句 (5)1.4条件语句 (6)1.5循环语句 (7)1.6 UNTIL 语句 (8)1.7辗转相除法与更相减损术 (8)1.8秦九韶算法与排序 (9)1.9进位制 (10)第二章统计 (11)2.1抽样方法 (11)2.1.1简单随机抽样 (11)2.1.2系统抽样 (13)2.1.3分层抽样 (13)2.2用样本的数字特征估计总体的数字特征 (14)2.3两个变量的线性相关 (15)第三章概率 (17)3.1随机事件的概率及概率的意义 (17)3.2概率的基本性质 (17)3.3古典概型及随机数的产生 (19)3.4几何概型及均匀随机数的产生 (19)高中数学必修3知识点总结第一章算法初步1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成2. 算法的特点:(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2) 确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可(3) 顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4) 不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5) 普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.2程序框图1、程序框图基本概念:(一)程序构图的概念程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。

高一数学人必修三课件第三章几何概型

高一数学人必修三课件第三章几何概型
在古典概型中,每个样本点出现的可能性相等。如果试验样本点的区域长度(面 积或体积)有大有小,则样本点出现的可能性就有大有小。这种与长度(或面积 、体积)有关的概率模型称为几何概率模型,简称几何概型。
分类
根据样本空间的维数不同,几何概型可分为一维、二维和三维三种。
几何概型与古典概型关系
联系
古典概型和几何概型都是概率模型, 都要通过样本空间中的样本点来计算 事件发生的概率。
二维面积比例典型例题
01
例题1
在边长为1的正方形内随机取一个点,求该点到四个顶点 的距离都大于1的概率。
02
例题2
在半径为1的圆内随机取一个点,求该点到圆心的距离小 于0.5的概率。
03
解题思路
二维面积比例问题涉及到平面图形的随机取点。解题时需 要根据题意确定满足条件的区域,并计算该区域与总面积 的比例。通过解析几何、三角函数等工具,可以求出满足 条件的面积,进而得到概率。
05
练习题与课堂互动环节
针对本节课知识点进行练习
练习题一
已知一个边长为2的正方形,在其 中随机投掷一个点,求该点落在 正方形内切圆内的概率。
练习题二
在区间[0,5]上随机取两个数,求这 两个数之和小于等于6的概率。
练习题三
一个转盘被等分成10个扇形,分别 标有数字1到10。转动转盘两次, 求两次转到的数字之和为偶数的概 率。
利用勾股定理求解
当已知直角三角形的两条 边时,可以利用勾股定理 求解斜边的长度。
二维面积比例问题求解
利用相似比求解
当两个图形相似时,它们的面积比等 于相似比的平方。因此,可以通过相 似比和已知图形的面积求解未知图形 的面积。
利用割补法求解
利用间接法求解

新人教版高中数学必修3知识总结ppt课件

新人教版高中数学必修3知识总结ppt课件
只有1次中靶6甲乙两人下棋两人下和棋癿概率乙获胜癿概率为则甲获胜癿概率为7在相距5米癿两根木杆上系一条绳子幵在绳子上挂一盏灯则灯不两端距离都大538将甲乙两颗骰子先后各抛一次ab分别表示抛掷甲乙两颗骰子所得癿点数若把点数pab落在丌等式组所表示癿区域癿事件记为a求pa549袋中有红白色球各一个每次仸意取一个有放回地抽三次1三次颜色中恰有两次同色癿概率
3
例2、如图是一个算法的程序框图,当输入
的值x为5时,则其输出的结果是

4
例3、根据框图,回答下列问题: (1)若输入的x值为5, 则输出的结果是: ; (2)要输出的值为8, 则输入的x是 ; (3)要使输出的值最小, 输入的x的范围是 。
5
二、完善程序框图中的条件或内容
例4、如图,若框图所给的程序运行结果为s=132, 那么判断框中应填入的关于k的判断条件是 。
A. yˆ 6.5x 17.5 B. yˆ 6.5x 17
C. yˆ 6.5x 27.5
D. yˆ 6.5x 27
37
【2】已知回归直线斜率的估计值为1.23, 样本点的中心为(4 , 5) , 则回归直线方程为
( ). C
A. yˆ 1.23x 4 B. yˆ 1.23x 5
城市人均消费额占人均工资收入的百分比约为
( A)
A.83%
B.72%
C.67%
D.66%
39
41
概率知识点:
1、频率与概率的意义 2、事件的关系和运算 3、古典概型 4、几何概型
42
频率与概率的意义:
1、频率本身是随机的,在试验前不能确定。做 同样次数的重复试验得到事件的频率会不同。 2、概率是一个确定的数,与每次试验无关。是 用来度量事件发生可能性大小的量。 3、频率是概率的近似值,随着试验次数的增加, 频率会越来越接近概率。

人教版高中数学必修三知识点归纳.ppt

人教版高中数学必修三知识点归纳.ppt
因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较 稳定.
难点突破四 回归直线方程
1、回归分析是对具有相关关系的两个变量进行统计分析的方法,两个变量具有相 关关系是回归分析的前提。
有时散点图中的各点并不集中在一条直线的附近,虽然仍可以按照求回归直线
的步骤求得回归直线方程,但是是没有实际意义的,所以求回归直线方法时应该先 画出散点图,判断是否具有线性相关关系。
思路分析:本题主要考查线段型的几何概型及其应用, 从每一个位置剪断绳子都是一个基本事件,剪断位置 可以是长度为3m绳子上的任意一点,则基本事件有无 限多个,所以属于几何概型。
解:如图所示,记A为剪得两段绳子长都不小于1m, 把绳子三等分,于是当剪断位置处于中间一段上时, 事件A发生。
全部试验结果构成的区域长度是绳子的长度3m,事 件A包含的结果构成的区域长度是中间一段的长度, 为1m,故事件A发生的概率为 P( A) 1
C)
A.至少有一个黑球与都是黑球
B.至少有一个黑球与至少有一个红球
C.恰有一个黑球与恰有两个黑球
D.至少有一个黑球与都是红球
2、盒中有10个铁钉,其中8个是合格的,2个是不合格 的,从中任取两个恰好都是不合格的概率是 1/45
3、(2007广东高考,文8)在一个袋子中装有分别标注 数字1,2,3,4,5的五个小球,现从中随机取出2 个小球,则取出的小球标注的数字之和为3或6的概 率是 3/10
3
变式训练
变式、函数 f (x) x2 x 2, x ,5那,5 么任取一点 x0,使f(x0 ) 的【0概点几率评何(】概型主要有)体积型、面积型、长度型 等,
思路分析:本题解也题关是键一是道:几找何到本概题型中的要题用目到,是哪是种线几段何型度量, 的一种变式,它然这后再里考的虑长子度区是域A指的区几间何度的量长占度的,几但何只度量要的比例。 找出构成事件A除的的以问区上 题域三 。长种几度何,度本量题之还外是,还易有于与求角解度的、时。间相关

人教版高中数学必修3-3.3概念汇总:几何概型

人教版高中数学必修3-3.3概念汇总:几何概型

1 / 1
3.3 几何概型
1. 几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
2. 几何概型的概率公式:P (A )=
积)
的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3. 几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等.
4.几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;。

高中数学必修三知识点必看归纳

高中数学必修三知识点必看归纳

高中数学必修三知识点必看归纳每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。

下面是小编给大家整理的一些高中数学必修三知识点归纳的学习资料,希望对大家有所帮助。

高一数学必修三知识点总结1.一些基本概念:(1)向量:既有大小,又有方向的量.(2)数量:只有大小,没有方向的量.(3)有向线段的三要素:起点、方向、长度.(4)零向量:长度为0的向量.(5)单位向量:长度等于1个单位的向量.(6)平行向量(共线向量):方向相同或相反的非零向量.※零向量与任一向量平行.(7)相等向量:长度相等且方向相同的向量.2.向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点高一数学必修三知识点总结一、高中数学函数的有关概念1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.注意:函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)2.高中数学函数值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共21张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件(共21张PPT)

例题讲解
例2(面积问题):取一个边长为2a的正方形及其内切圆, 随机向正方形内丢一粒豆子,求豆子落入圆内的概率.
解:记“豆子落入圆内”为事件A,
2a
P
(
A
)
圆的面积 正方形的面积
πa2 4a2
π 4,
答 : 豆子落入圆内的概率为
π 4.
跟踪练习2
中国钓鱼岛问题
中国钓鱼岛周围海域面积约为17万 平方公里,如果在此海域里有面积达 0.1万平方公里的大陆架蕴藏着石油, 假设在这个海域里任意选定一点钻探, 则钻出石油的概率是多少? 解:记“钻出石油”为事件A,则
卧卧室室
书房 3
探究
问题1中,假如甲壳虫在书房 的地砖上自由的飞来飞去,并随 意停留在某块方砖上(图中每一 块方砖除颜色外完全相同) (1)甲壳虫每次飞行,停留在任 何一块方砖上的概率是否相同? (2)它最终停留在黑色方砖上 的概率是多少?
4
试试看
问题2:图中有两个转盘.甲乙两人玩转盘游戏,规 定当指针指向黄色区域时,甲获胜,否则乙获胜.在下列 那种情况下甲获胜的概率大?说明理由.
几何概型
1
复习回顾
古典概型的两个基本特点: (1)每个基本事件出现的可能性相等; (2)试验中所有可能出现的基本事件只有有限个.
古典概型的概率计算公式:
P(A)= A包含的基本事件的个数
基本事件的总数 那么对于有无限多个试验结果的情况相应的概率应如何求呢?
试试看
问题1:下图是卧室和书房地板的示意图,图 中每一块方砖除颜色外完全相同,甲壳虫 分 别在卧室和书房中自由地飞来飞去,并随意停 留在某块方砖上,问在哪个房间里,甲壳虫停 留在黑砖上的概率大?
60 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习几何概型【学习目标】1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算;4.能运用模拟的方法估计概率,掌握模拟估计面积的思想. 【要点梳理】要点一、几何概型 1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D的测度的测度.说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为:P=v 的体积/V 的体积要点二、均匀随机数的产生 1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法(1)实例法.包括掷骰子、掷硬币、抽签、转盘等.(2)计算器模拟法.现在大部分计算器的RAND 函数都能产生0~1之间的均匀随机数. (3)计算机软件法.几乎所有的高级编程语言都有随机函数,借用随机函数可以产生一定范围的随机数. 要点诠释:1.在区间[a ,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.3.用随机模拟试验不规则图形的面积的基本思想是:构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.4.利用计算机和线性变换Y=X*(b-a)+a ,可以产生任意区间[a ,b]上的均匀随机数. 【典型例题】类型一:与长度有关的几何概型问题例1.假设车站每隔10分钟发一班车,随机到达车站,问等车时间不超过3分钟的概率 ?【思路点拨】以两班车出发间隔( 0,10 )区间作为样本空间 S ,乘客随机地到达,即在这个长度是10 的区间里任何一个点都是等可能地发生,因此是几何概率问题.【答案】0.3【解析】 记“等车时间不超过3分钟”为事件a ,要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中a 包含的样本点,P=的长度的长度S a =103= 0.3 .【总结升华】在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数. 举一反三:【变式1】 某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间大于10 min 的概率. 【答案】13【解析】 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T=5,T 2T=10,如图所示.记“等车时间大于10 min ”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上时,事件A 发生,区域T 1T 2的长度为15,区域T 1T 的长度为5. ∴11251()153T T P A T T ===的长度的长度.即乘客等车时间大于10 min 的概率是13. 0← S →10【变式2】在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率为( ). A .14 B .12 C .34 D .23【答案】C【变式3】某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率. 【答案】16【解析】 因为电台每隔1小时报时一次,他在0到60之间任何一个时刻打开收音机是等可能的,所以他在哪个时段打开收音机的概率只与该时间段的长度有关,这符合几何概型的条件,因此,可以通过几何概型的概率公式得到事件发生的概率.于是,设A={等待报时的时间不多于10分钟}.事件A 是打开收音机的时刻位于50~60的时间段内,因此由几何概型求概率的公式得60501()606P A -==. 即“等待报时的时间不超过10分钟”的概率为16.类型二:与面积有关的几何概型问题 【几何概型 例4】例2.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率. 【思路点拨】两人不论谁先到最多只等40分钟,设两人到的时间分别为x 、y ,则当且仅当2||3x y -≤时,两人才能见面,所以此问题转化为面积性几何概型问题。

【答案】89【解析】 设两人分别于x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当两人到达约见地点所有时刻(x ,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x ,y)的各种可能结果可用图中的阴影部分(包括边界)来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,因此所求的概率为:【总结升华】 此类问题的难点是把两个时间分别用x ,y 表示,构成平面内的点(x ,y ),从而把时间这个一维长度问题转化为平面图形的二维面积问题,从而转化成面积型几何概率问题.举一反三: 【变式1】 平面上画了一些彼此相距2a 的平行线,把一枚半径r a <的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.M2211()8319S P S -===阴影单位正方形【答案】a ra- 【解析】把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[0,]a ,只有当r OM a <≤时硬币不与平行线相碰,所以所求事件A 的概率就是 (,]()[0,]r a P A a =的长度的长度=ara -【变式2】甲、乙两人相约上午10点到1l 点在某地会面,先到者等候另一人15分钟,过时就离去,那么这两个人见面的机会多大? 【答案】716【解析】两个人要想见面,一个人先到达后必须等待一段时间,设x ,y 分别表示甲、乙到达会面地点的时间,若甲先到需等15分钟,若乙先到也需等15分钟,两个人能见面必须满足|x -y|≤15.由于每个人到达地点的时间是任意的,所以在边长为60的正方形内的每一点都是等可能的,所求问题就转化为面积型的几何概型.如图,能见面的点的区域用阴影表示.记“两个人见面”为事件A ,根据几何概型。

得22260457()6016P A -==. 所以两个人见面的机会是716. 【变式3】(2015 贵州遵义一模)已知二次函数2()41(0)f x ax bx a =-+≠. (1)若a =1,b ∈[-1,1],求函数y =f (x )在[1,+∞)上是增函数的概率;(2)设(a ,b )是区域8000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,求函数y =f (x )在[1,+∞)上的增函数的概率.【思路点拨】(1)求出函数y =f (x )在[1,+∞)上是增函数的b 的范围,利用区域长度比求概率. (2)画出区域,求出满足条件的区域面积,利用面积比求概率. 【答案】(1)34;(2)13【解析】函数y =f (x )在[1,+∞)上是增函数,则a >0且21ba≤,即a >0且a ≥2b ; (1)因为a =1,则12b ≤时,函数f (x )为增函数 所以函数y =f (x )在[1,+∞)上是增函数的概率1(1)321(1)4p --==--; (2)由(1)知当且仅当a ≥2b ,且a >0时,函数2()41f x ax bx =-+在区间[1,+∞)上为增函数,依条件可知实验的全部结果所构成的区域为不等式组所表示的平面区域. 构成所求事件的区域为图中的阴影部分.由802a b ab +-=⎧⎪⎨=⎪⎩,得交点的坐标为168(,)33,故所求事件的概率为18812313882p ⨯⨯==⨯⨯. 类型三:与体积有关的几何概型问题例3.在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,在正方体内随机取点M . (1)求M 落在三棱柱ABC —A 1B 1C 1内的概率; (2)求M 落在三棱锥B —A 1B 1C 1内的概率; (3)求M 与面ABCD 的距离大于3a的概率; (4)求M 与面ABCD 及面A 1B 1C 1D 1的距离都大于3a的概率; (5)求使四棱锥M —ABCD 的体积小于316a 的概率. 【思路点拨】此题是几何概型问题,求各部分的体积比即可。

【答案】(1)12(2)16(3)23(4)13(5)12【解析】正方体的体积为V=a 3.(1)∵231122V a a a =⋅=三棱柱,∴所求概率112P =. (2)∵11231111113326A BB V S B C a a a ∆=⋅⋅=⋅⋅=三棱锥,∴所求概率216P =.(3)3233a a P a -==. (4)41333a a a P a --==. (5)设M 到面ABCD 的距离为h ,则31136M ABCD ABCD V S h a -=⋅=底面,而2ABCD S a =底面,∴12h =.∴51122aP a ==. 【总结升华】 求体积时要注意选择适当的底,以使计算方便,本题综合考查了立体几何的体积计算及几何概型的计算.举一反三:【变式1】已知正三棱锥S —ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于2h的概率. 【答案】78【解析】如图,在SA 、SB 、SC 上取点A 1、B 1、C 1,使A 1、B 1、C 1分别为SA 、SB 、SC 的中点,则当点M 位于面ABC 和面A 1B 1C 1之间时,点M到底面的距离小于2h . 设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1且相似比为2,得△A 1B 1C 1的面积为4S . 由题意,三棱锥S —ABC 的体积为13Sh ,三棱台A 1B 1C 1—ABC 的体积为1117334438S h Sh Sh -⨯⨯=⨯.∴78P =. 【变式2】在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大.【答案】12【解析】设O 到三点的三线段长分别为x ,y ,z ,即相应的右端点坐标为x ,y ,z ,显然0,,1x y z ≤≤,这三条线段构成三角形的充要条件是:x z y y z x z y x >+>+>+,,.在线段[0,1]上任意投三点x ,y ,z 与立方体 10≤≤x ,10≤≤y ,10≤≤z 中的点),,(z y x 一一对应,可见所求“构成三角形”的概率,等价于x 边长为1的立方体T 中均匀地掷点,而点落在,,x y z x z y y z x +>+>+>区域中的概率;这也就是落在图中由△ADC ,△ADB ,△BDC ,△AOC ,△AOB ,△BOC 所围成的区域G 中的概率.由于,1)(=T V33111()131322V G =-⨯⨯⨯=,()1()2V G p V T ∴== 由此得,能与不能构成三角形两事件的概率一样大. 类型四:几何概型问题在实际中的应用 例4.(2015 成都武侯区模拟)如图所示的茎叶图记录了甲、乙两组各四名同学的植树的棵数;乙组有一个数据模糊,用X 表示.(1)若x =8,求乙组同学植树的棵数的平均数;(2)若x =9,分别从甲、乙两组中各随机录取一名学生,求这两名学生植树总棵数为19的概率;(3)甲组中有两名同学约定一同去植树,且在车站彼此等候10分钟,超过10分钟,则各自到植树地点再会面.一个同学在7点到8点之间到达车站,另一个同学在7点半到8点之间到达车站,求他们在车站会面的概率.【思路点拨】(1)直接根据平均数、方差、标准差的定义求出乙组同学植树棵数的平均数和标准差. (2)当X =9时,分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能,而这两名同学的植树总棵数为19的情况有2+2=4种,由此求得两名同学的植树总棵树为19的概率.(3)由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x ,y )|7≤x ≤8,7.5≤y ≤8},做出事件对应的集合表示的面积,写出满足条件的事件是A ={(x ,y )|7≤x ≤8,7.5≤y ≤8,10||60x y -≤},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.【解析】(1)135(88910)44x =+++=(2)当x =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11,乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共4×4=16种可能, 其中满足这两名同学的植树总棵数为19的情况有2+2=4种, 这两名同学的植树总棵数为19的概率等于41164= (3)由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x ,y )|7≤x ≤8,7.5≤y ≤8} 事件对应的集合表示的面积是s =0.5,满足条件的事件是A ={(x ,y )|7≤x ≤8,7.5≤y ≤8,10||60x y -≤} 事件对应的集合表示的面积是39128, ∴他们在车站会面的概率为3964【总结升华】本题主要考查等可能事件的概率,茎叶图、平均数,几何概型问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结算.举一反三:【变式1】甲和乙都为货运公司工作,由于工作需要,他们都使用对讲机.他们的对讲机的接收范围为25公里,在下午3:0O 时甲正在基地正东距基地30公里以内的某处向基地行驶,而乙在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O 时他们能够通过对讲机交谈的概率有多大?【答案】0.41【解析】设x 和y 分别代表甲和乙距基地的距离,于是400,300≤≤≤≤y x则他俩所有可能的距离的数据构成有序点对(x ,y),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表甲和乙的一个特定的位置,他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如图),因此构成该事件的点由满足不等式2522≤+y x 的数对组成,此不等式等价于62522≤+y x右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方公里,而事件的面积为()462525412ππ=⎪⎭⎫ ⎝⎛,于是有625625240.411200480090p ππ====.类型五:用随机模拟的方法求几何概型问题的概率例5.现向如图所示正方形内随机地投掷飞镖,求飞镖落在阴影部分的概率,阴影部分由直线6x -3y -4=0和正方形围成. 【解析】记事件A={飞镖落在阴影部分}.(1)用计算机或计算器产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND . (2)经过平移和伸缩变换,x=(x 1-0.5)*2,y=(y 1-0.5)*2得到两组[-1,1]上的均匀随机数.(3)统计试验总次数N 及落在阴影部分的点数N 1[满足6x -3y -4>0的点(x ,y )的个数]. (4)计算频率()n f A =1N N即为飞镖落在阴影部分的概率的近似值. 举一反三:【变式1】用随机模拟的方法近似计算边长为2的正方形内切圆面积,并估计π的近似值. 【解析】(1)利用计算机产生两组[]10,上的均匀随机数,RAND b RAND a ==11,. (2)进行平移和伸缩变换,()25.0,2)5.0(11*-=*-b b a ,得到两组[]1,1-上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数1N )数)的点((满足b a b a ,122≤+.(4)计算频率NN 1即为点落在圆内的概率近似值. (5)设圆面积为S ,则由几何概率公式得4S P =. ∴N N S 14≈,则N N S 14≈即为圆面积的近似值.又∵2S r ππ==圆.∴NN S 14≈=π即为圆周围率π的近似值.。

相关文档
最新文档