半导体物理学答案 第二章

合集下载

半导体物理学(刘恩科第七版)习题答案(比较完全)

半导体物理学(刘恩科第七版)习题答案(比较完全)

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dkE d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。

它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。

2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。

3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。

自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。

空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。

4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。

掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。

1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。

晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。

晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。

2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。

3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。

晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。

2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。

3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。

1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。

它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。

晶体生长是将半导体材料从溶液或气相中生长出来的过程。

常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。

掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。

常用的掺杂方法包括扩散法、离子注入和分子束外延法等。

半导体物理习题答案完整版

半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体物理学(刘恩科第七版)课后习题答案

半导体物理学(刘恩科第七版)课后习题答案
第一章习题
1.设晶格常数为 a 的一维晶格,导带极小值附近能量 Ec(k)和价带极大值附近 能量 EV(k)分别为: h 2 k 2 h 2 ( k k1 ) 2 h 2 k 21 3h 2 k 2 Ec= , EV (k ) 3m0 m0 6m0 m0 m0 为电子惯性质量,k1
1
在E ~ E dE空间的状态数等于k空间所包含的 状态数。 即d z g (k ' ) Vk ' g (k ' ) 4k ' dk 2( m m m ) 1 3 2 1 dz ' t t l ( E Ec ) 2 V g (E) 4 2 dE h 对于si导带底在100个方向,有六个对称的旋转椭球, 锗在( 111)方向有四个,
解: (1)由
dE (k ) n 0 得 k dk a
(n=0,1,2…) 进一步分析 k ( 2n 1)

a
,E(k)有极大值,
E(k ) MAX k 2n
2 2 ma 2

a
时,E(k)有极小值
所以布里渊区边界为 k ( 2n 1)

a
2 2 ma 2
7. 锑化铟的禁带宽度 Eg=0.18eV,相对介电常数r=17,电子的有效质量
m* n =0.015m0, m0 为电子的惯性质量,求①施主杂质的电离能,②施主的弱束
缚电子基态轨道半径。
解:根据类氢原子模型:
* 4 * mn q mn E0 13.6 E D 0.0015 2 7.1 10 4 eV 2 2 2 m0 r 2(4 0 r ) 17
(2)能带宽度为 E(k ) MAX E ( k ) MIN (3)电子在波矢 k 状态的速度 v (4)电子的有效质量

半导体物理学(刘恩科第七版)习题答案

半导体物理学(刘恩科第七版)习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版_完整课后题答案

半导体物理学(刘恩科)第七版_完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+0m 。

试求:为电子惯性质量,nm a ak 314.0,1==(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2.晶格常数为0.25nm 的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tk hqE f ∆∆==得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm 解:(1)由0)(=dk k dE 得an k π=(n=0,±1,±2…)进一步分析an k π)12(+=,E(k)有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)ma k E MAX =(ank π2=时,E(k)有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部an k π2=所以mm n 2*=(5)能带顶部an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*m m p =半导体物理第2章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理部分考试习题答案

半导体物理部分考试习题答案

第一章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h −和E v (k)= 0226m k h -0223m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +012)(2m k k h −=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg=E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(−−−−×××××××=0.64eV②导带底电子有效质量m n 0202022382322m h m h m h dkE d C =+=;∴ m n=022283/m dk E d h C= ③价带顶电子有效质量m ’ 02226m h dk E d V −=,∴0222'61/m dk E d h m Vn−== ④准动量的改变量 h △k=h (k min -k max )= a h k h 83431=3. 如果n 型半导体导带峰值在[110]轴上及相应对称方向上,回旋共振实验结果应如何?[解] 根据立方对称性,应有下列12个方向上的旋转椭球面:[][][]110,101,011,110,⎡⎤⎣⎦ 101,011;⎡⎤⎡⎤⎣⎦⎣⎦ [110],101,011,110,⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 101,011;⎡⎤⎡⎤⎣⎦⎣⎦ 则由解析几何定理得, B 与3k 的夹角余弦cos θ为:cos θ= 式中, 123B b i b j b k =++. 对不同方向的旋转椭球面取不同的一组123(,,)k k k .(1) 若B 沿[111]方向,则cos θ可以取两组数. 对[][]110,110,101,101,⎡⎤⎡⎤⎣⎦⎣⎦[]011,011⎡⎤⎣⎦方向的旋转椭球得: cos θ=对110,110,101,101,011,011⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦方向的旋转椭球得:cos θ∴当cos θ=时: 22cos 3θ= 21sin 3θ= n t m m =∵ *n t m m ∴= 当cos 0θ=时; 2cos 0θ= 2sin 1θ= 同理得: *n m = 由*c n qB m ω=可知,当B 沿(111)方向时应有两个共振吸收峰. (2) 若B 沿(110)方向,则cos θ可以取三组数. 对[]110,110⎡⎤⎣⎦ 方向旋转椭球, cos 1θ= 对110,110⎡⎤⎡⎤⎣⎦⎣⎦ 方向旋转椭球, cos 0θ= 对[][]011,011,011,011,101,101,101,101⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦方向的旋转椭球, 1cos 2θ=当cos 1θ=时: 2cos 1θ= 2sin0θ= 得: *n m 当cos 0θ=时:2cos 0θ= 2sin1θ= 得: *n m = 当1cos 2θ=时: 21cos 4θ= 23sin 4θ= 得: *n m 故,应有三个吸收峰. (3)若B 沿[100]方向,则cos θ可以取两组数.对[][]110,110,110,110,101,101,101,101⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦方向上的旋转椭球得: cos θ= 对[]011,011,011,011⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦方向上的旋转椭球得:cos 0θ= 当cos θ=时, 21cos 2θ= 21sin 2θ= 得: *n t m m = 当cos 0θ=时: 2cos 0θ= 2sin 1θ= 得*n m = .(4) B 沿空间任意方向时, cos θ最多可有六个不同值,故可以求六个*nm ,所对应的六个共振吸收峰.第二章 半导体中的杂志和缺陷能级7. 锑化铟的禁带宽度0.18V g E e =,相对介电常数17r ε=,电子的有效质量00.015n m m ∗=,0m 为电子的惯性质量,求ⅰ)施主杂质的电离能,ⅱ)施主的若束缚电子基态轨道半径。

(考试范围)半导体物理学课后题答案

(考试范围)半导体物理学课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ半导体物理第2章习题5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时, 若(1) N D >>N A因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A 个受主能级上,还有N D -N A 个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= N D -N A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 金属-半导体接触1、 用不同波长的光照射置于真空中的金、银、铜三种金属和施主浓度皆为1×1016cm -3的锗、硅、砷化镓三种半导体的清洁表面,欲使其向真空发射电子,求各自的激发光临界波长。

计算时需要的相关参数见表5-1和5-2(下同)。

解:根据能量与波长关系:λγchh E ==可得Ehc =λ 金、银、铜三种金属的功函数分别为5.20eV 4.42eV 4.59eV 施主浓度皆为1×1016cm -3的锗、硅、砷化镓三种半导体的功函数分别为 4.31eV 4.25eV 4.17eV对于金:nm E hc 239106.120.51031062.619834=⨯⨯⨯⨯⨯==--λ 对于银:nm E hc 281106.142.41031062.619834=⨯⨯⨯⨯⨯==--λ对于铜:nm E hc 270106.159.41031062.619834=⨯⨯⨯⨯⨯==--λ 对于锗:nm E hc 288106.131.41031062.619834=⨯⨯⨯⨯⨯==--λ 对于硅:nm E hc 292106.125.41031062.619834=⨯⨯⨯⨯⨯==--λ对于砷化镓:nm E hc 298106.117.41031062.619834=⨯⨯⨯⨯⨯==--λ 2、 计算N D = 5×1016cm -3 的n-Si 室温下的功函数。

将其分别与铝、钨、铂三种金属的清洁表面相接触,若不考虑表面态的影响,形成的是阻挡层还是反阻挡层?分别画出能带图说明之。

解:设室温下杂质全部电离,则其费米能级由n 0=N D =5⨯1015cm -3求得:17C C C 19C 10ln 0.026ln 0.15 eV 2.810D F NE E kT E E N =+=+=-⨯ 其功函数即为:C () 4.050.15 4.20V SF W E E e χ=+-=+=若将其与功函数较小的Al (W Al =4.18eV )接触,则形成反阻挡层,若将其与功函数较大的Au (W Au =5.2eV )和Mo (W Mo =4.21eV )则形成阻挡层。

3、 用N D = 3×1015cm -3的 n-Si 与金属Cr 形成理想的肖特基势垒接触。

求300K 下该接触的肖特基势垒高度及接触电势差,以及在5V 反偏压下的最大电场强度及势垒比电容。

解:室温下杂志强电离,费米能级为)ln(0cDc F N N T k E E +=代入数据计算可得:eV N N T k E E E c D F c n 238.0)108.2103ln(026.0)ln(19150=⨯⨯⨯=-=-= 因此半导体的功函数eV E W n s 288.4238.005.4=+=+=χ 接触电势差公式为:V q W W V S M D 312.0106.1288.46.419=⨯-=-=- 肖特基势垒的高度:eV E qV W q n D M M 074.0238.0312.0=-=+=-=χφ 在5V 反偏压下最大电场强度为cm V U V qN rD D m /1096.61085.89.11)5312.0(103106.12)(2 41215190⨯=⨯⨯+⨯⨯⨯⨯=-=--εεε 势垒比电容为F U V qN C D Dr TS 71519120107)5312.0(2103106.11085.89.11)(2---⨯=+⨯⨯⨯⨯⨯⨯=-=εε4、 功函数为4.3eV 的金属与电子亲合能为4.0eV 的p 型硅形成一个金-半接触,已知硅的受主浓度N A = 5×1016cm -3,T =300K 。

(a )计算肖特基势垒高度;(b )大致绘出零偏、正偏0.25V 和反偏3V 状态下的能带示意图。

解: (a)肖特基势垒的高度:eV W q M M 3.00.43.4=-=-=χφ (b)在零偏压下,室温下杂志强电离,费米能级为)ln(0cDc F N N T k E E += 代入数据计算可得:eV N N T k E E v A F c 1402.0)101.1105ln(026.0)ln(19160=⨯⨯⨯=-=-5、 施主浓度为1015cm -3的n 型Si 与Al 接触,已知 Al 的功函数为4.18eV ,Si 的电子亲合能为4.05eV 。

分别针对下述两种情况画出金-半接触能带示意图并标出半导体表面势的大小:(1)不考虑表面态影响;(2)若表面态密度很大,且表面态为电中性时的功函数为4.78eV 。

解:(1) 不考虑表面态影响时肖特基势垒的高度:eV W q M M 13.005.418.4=-=-=χφ 查表可知Si 的功函数为W s =4.31eV 因此势垒高度eV W W qV s m D 13.0-=-=(2)表面态使半导体的功函数变为:D S n D S qV WE qV W +=++=χ'错误!未找到引用源。

代入数据可得eV W s 431.031.4=-=、6、 某金属与均匀掺杂的n-Si 形成肖待基势垒接触,已知半导体一边的势垒高度qV D =0.6eV ,N D =5⨯1015cm -3,试求在5V 反偏电压下的阻挡层厚度、最大电场强度以及单位面积的势垒电容,并画出该接触的1/C 2对(V D -U )的关系曲线。

解:根据阻挡层厚度公式可得DD D qN U V X )(20-=εε带入数据计算:cm qN U V X DD D 41519120102.1105106.1)56.0(1085.89.112)(2---⨯=⨯⨯⨯+⨯⨯⨯=-=εε 根据最大电场强度公式可得εεε0)(2U V qN D D m-=带入数据计算:cm V U V qN D D m/102.91085.89.11)56.0(105106.12)(241215190⨯=⨯⨯+⨯⨯⨯⨯=-=--εεε根据最大电场强度公式可得DD DTS X U V qN C εεεε00)(2 =-=带入数据计算:F X U V qN C DD DTS 9412001078.8102.11085.89.11)(2 ---⨯=⨯⨯⨯==-=εεεε根据公式)(2 0U V qN C D D-=εε可得:)(108.3)(21602U V U V qN C D D D-⨯=-=-εε 7、 右图为同一种金属与不同半导体构成的两个肖特基势垒接触在300K 下的C -V 实验曲线,试根据曲线分别求出半导体的掺杂浓度以及相应的肖特基势垒高度。

解: 查表可得,对于Si 电子亲和能是4.05eV ,对于GaAs 电子亲和能是4.07eV 。

根据曲线在X 轴上的截距可以得出接触电势差V D 的值。

对于Si :V D =0.7V , 对于GaAs :V D =0.4V 。

U (V )截距在两条曲线上分别取U=0V 那一点带入公式)(2102U V qN C D D-=εε就可以求出掺杂 浓度。

计算可得:对于Si :N D =4.4×1015cm -3, 对于GaAs :N D =2.4×1015cm -3。

在由这个公式)ln(0cDF c n N N T k E E E -=-=可以求出E n 。

计算可得:对于Si :E n =0.202eV 对于GaAs :E n =0.137eV 。

在由这个公式n s E W +=χ可以求出半导体的功函数。

计算可得:对于Si :W s =4.252eV 对于GaAs :W s =4.207eV 。

在由这个公式qW W V SM D -=可以求出金属的功函数。

计算可得:对于Si :W M =4.952eV 对于GaAs :W M =4.607eV 。

最后带入公式χφ-=M M W q 就可以求出肖特基势垒的高度。

计算可得:对于Si :M q φ=0.902eV 对于GaAs :M q φ=0.537eV 。

8、 对金属与n 型半导体的接触,若预先在半导体表面加入一重掺杂层,然后再淀积金属层,即形成M-n +-n 结构,便可形成欧姆接触,试画出该结构的能带示意图并解释之。

解:9、 具有相同横截面积和0.5mA 正向电流的pn 结二极管和肖特基势垒二极管,肖特基二极管的反向饱和电流为5×10-7A ,二者的正向压降差值为0.30V 。

计算pn 结的反向饱和电流。

解:肖特基二极管的反向饱和电流为A A e N q A J I kTq C m SD SD M 7105--⨯===φμE其电流电压关系式为:mA A eJ A J I kTqU SD 5.0)1(1=-==肖特基肖特基pn 结二极管的反向饱和电流为:A L n qDn L p qD A J I np p n ps s )(00+== 其电流电压关系式为:mA A eJ A J I kTqU s n p n p 5.0)1(2=-==-- 因为是正向偏压所以:15.05.0105217n-p ==⨯=-kTqU kT qU see J I I 肖特基 有由已知条件可知:U 1-U 2=0.3eV 代入上式求解可得I s =4.87×10-12A 10、 金与掺杂浓度为N D = 5×1016cm -3的n 型GaAs 形成一个理想肖特基势垒接触,若要在300K 下得到 5A/cm 2的电子电流密度,需要加多大的正向电压?要想将电流密度提高一倍,正向电压应加多大?解:肖特基二极管的电流电压关系式为:)1(-=kTqU SD e J J 肖特基其中反向饱和电流为:kTq C m SD M eN q J φμ-=E11、 一个肖特基二极管和一个pn 结二极管的接触面积均为5×10-4cm 2。

肖特基二极管的反向饱和电流密度为3×10-8 A/cm 2,pn 结二极管的反向饱和电流密度为3×10-12 A/cm 2。

当这两个二极管在300K 下都产生1mA 正向电流时,各自的正向压降是多少? 解:肖特基二极管电流电压关系式为:A e J A J I kTqU SD )1(1-==肖特基肖特基其中28/103cm A J SD -⨯=,A=5×10-4cm 2300K 时,因为是正偏压所以mA A e J A J I kTqU SD 11===肖特基肖特基计算可得U 1=0.47Vpn 结二极管电流电压关系式为:A e J A J I kTqU s n p n p )1(2-==--,其中212/103cm A J S -⨯=,A=5×10-4cm 2300K 时,因为是正偏压所以mA A eJ A J I kTqU S n p n p 12===--计算可得U 1=0.71V 12、 p n 结二极管和肖特基二极管在300K 下的反向饱和电流密度分别为5×10-12 A/cm 2和7×10-8 A/cm 2。

相关文档
最新文档