spss方差分析步骤2篇
spss方差分析

方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。
那么,MS b>>MS w(远远大于)。
MS b/MS w比值构成F分布。
用F值与其临界值比较,推断各样本是否来自相同的总体。
方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。
两因素方差分析-SPSS教程

两因素方差分析-SPSS教程一、问题与数据某研究者已知受教育程度可以影响幸福指数,即如果将研究对象的受教育程度分为高中及以下、大学本科和硕士研究生及以上3个等级(级别依次递增),那么他们的幸福指数会随着受教育程度的增加而增加。
目前,该研究者拟进一步分析研究对象这种受教育程度与幸福指数的相关关系是否受性别影响。
研究者招募了58位研究对象,包括28位男性和30位女性。
每一类性别中,研究对象的受教育程度由均分为3类(高中及以下、大学本科和硕士研究生及以上)。
该研究者采用问卷测量研究对象的幸福指数,研究对象得分在0-100之间分布,分数越高,幸福指数越强。
最终收集了研究对象的幸福指数(Index)、性别(gender)和受教育程度(education)等变量信息,部分数据如图1。
图1 部分数据二、对问题分析研究者已知一个自变量(受教育程度)对因变量(幸福指数)的影响,想判断另一个自变量(性别)对这一相关关系是否存在作用。
针对这种情况,我们可以使用两因素方差分析,但需要先满足6项假设:假设1:因变量是连续变量。
假设2:存在两个自变量,且都是分类变量。
假设3:具有相互独立的观测值。
假设4:任一分类中不存在显著异常值。
假设5:任一分类中残差近似正态分布。
假设6:任一分类都具有等方差性。
假设1-3主要和研究设计有关,经分析,本研究数据满足假设1-3,那么应该如何检验假设4-6,并进行两因素方差分析呢?三、SPSS操作3.1 生成检验假设4-6的新变量检验假设4-6需要用到残差,因此我们先运行两因素方差分析的SPSS操作,得到主要结果和相应残差变量后,再逐一进行对假设的检验。
在主界面点击Analyze→General Linear Model→Univariate,分别将Index 放入Dependent Variable栏,gender和education放入Fixed Factor(s)栏。
如图2。
图2 Univariate点击Plots,分别将gender和education放入Separate Lines和Horizontal Axis栏。
SPSS统计分析第五章方差分析

二、方差分析中的术语
因素与处理(Factor and Treament) 水平(Level) 单元(Cell) 因素的主效应和因素间的交互效应 均值比较 协方差分析
1.因素与处理
因素(Factor)是影响因变量变化的客观条件;例如影响农作物产量的因素有气温、降雨量、日照时 间等; 处理(Treatments)是影响因变量变化的人为条件。也可以通称为因素。如研究不同肥料对不同种系 农作物产量的影响时农作物的不同种系可称为因素,所施肥料可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作相同理解。在要求进行方差分析的数据文件 中均作为分类变量出现。即它们的值只有有限个取值。即使是气温、降雨量等平常看作是连续变 量的,在方差分析中如果作为影响产量的因素进行研究,就应该将其数值用分组定义水平的方法 事先变为具有有限个取值的离散变量
4.因素的主效应和因素间的交互效应
有A、B两种药物治疗缺铁性贫血,患者12例,分为4组。实验方案是:第一组用一 般疗法;第二组在一般疗法基础上加用A药;第三组在一般疗法基础上加用B药,第 四组在一般疗法基础上A、B两药同时使用。一个月后观察红细胞增加数。要求分析 两种药物的疗效(数据下表)。
实验数据
Coefficients:为多项式指定各组均值的系数。 因素变量分为几组,输入几个系数,多出的无意 义。如果多项式中只包括第一组与第四组的均值 的系数,必须把第二个、第三个系数输入为0值。 如果只包括第一组与第二组的均值,则只需要输 入前两个系数,第三、四个系数可以不输入 。 多项式的系数需要由读者自己根据研究的需要输 入。
各组平均值
第一组 0.8 0.9 0.7 0.8
红细胞增加数(百万/m3)
第二组
spss进行方差分析LSD检验步骤

spss进行方差分析LSD检验步骤
SPSS12.0
1、在Variable View 中第一行第一格中输入观测项目名称(如ALT,也可用X代表),按回
车;在第二行第一格中输入项目名称(如组别,可用Y代表),回车。
2、打开Date View 页,将实验数据输入第一竖排,将其对应的组别名称输入第二竖排(只
能用数字表示)
3、结果分析:Analyze---Compare Means---One Way ANOV
A ,激活One Way ANOV A单因
素方差分析对话框。
将自变量(X)移入Dependent List一栏,将因变量(Y)移入Factor 一栏。
单击Post Hoc按钮,勾选LSD项,continue
4、统计描述:单击Option按钮,勾选Descriptive(统计结果描述),及Homogeneity-of-variance
(方差齐性检验),Continue。
出现结果表。
5、结果说明
(1)Descriptives 一表为统计描述,包括各组例数,均数,标准差,等。
(2)Test of Homogeneity-of-variance 一表为方差齐性检验结果,当Sig值大于0.05时,可认为方差齐,可进行方差分析,否则,不可用。
(3)ANOVE 当Sig小于0.05时,说明各组不是或不全是来自于一个整体,即有统计学差别。
(4)Multiple Comparision一表为各组比较的结果。
Sig一列为p值。
SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。
一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。
研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。
另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。
换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。
也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。
注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。
在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。
这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。
因此,交互作用也可以看做是对单独效应间是否存在差异的检验。
在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。
研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。
部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。
《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
SPSS中的方差分析法(1)

方差分析(多因素,协方差)一、方法名称单因素二、定义(方法及结果)三、用途四、实现过程1、格式数据整理2、提交显示3、分析变量处理:自变量、因变量ANOVA检验:显示表,是否齐次1 方差分析法方差分析是一种是一种假设检验,它把观测总变异的平方和自由度分解为对应不同变异来源的平方和自由度,将某种控制性因素所导致的系统性误差和其他随机性误差进行对比,从而判断各组样本之间是否存在显著性差异,以分析该因素是否对总体存在显著性影响。
2 样本数据要求方差分析法采用离差平法和对变差进行度量,从总离差平方分解出可追溯到指定来源的部分离差平方和。
方差分析要求样本满足以下条件:2.1 可比性样本数据各组均数本身必须具有可比性,这是方差分析的前提。
2.2 正态性方差分析要求样本来源于正态分布总体,偏态分布资料不适用方差分析。
对偏态分布的资源要考虑先进行对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变换为正态或接近正态后再进行方差分析。
2.3 方差齐性。
方差分析要求各组间具有相同的方差,满足方差齐性。
3 单因素分析法实验操作单因素分析用于分析单一控制变量影响下的多组样本的均值是否存在显著性差异。
单因素分析法的原理,单因素方差分析也称为一维方差分析,用于分析单个控制因素取不同水平时因变量的均值是否存在显著差异。
单因素方差分析基于各观测量来自于相互独立的正态样本和控制变量不同水平的分组之间的方差相等的假设。
单因素方差分析将所有的方差划分为可以由该因素解释的系统性偏差部分和无法由该因素解释的随机性偏差,如果系统性偏差明显超过随机性偏差,则认为该控制因素取不同水平时因变量的均值存在显著差异。
3.1 实验数据描述某农业大学对使用不同肥料的实验数据对比。
产量(千克/亩产)施肥类型864 普通钾肥875 普通钾肥891 普通钾肥873 普通钾肥883 普通钾肥859 普通钾肥921 控释肥944 控释肥986 控释肥929 控释肥973 控释肥963 控释肥962 复合肥941 复合肥985 复合肥974 复合肥977 复合肥在SPSS的变量视图中建立变量“产量”和“施肥类型”,分别表示实验田产量和实验田的施肥类型。
利用SPSS做方差分析教程

利用SPSS做方差分析教程在进行数据分析时,往常我们需要通过样本对总体进行推断。
然而,由于样本的随机性质和误差,我们需要应用一些常见的统计方法,如方差分析。
方差分析是一种用于比较两个或多个平均值的统计方法。
它比基于t检验的两个样本测试更灵活,因为它可以用于比较两个或多个样本数据。
SPSS是一个功能强大的数据分析工具,它提供了丰富的数据分析功能。
在本文中,我们将介绍如何使用SPSS进行方差分析。
软件准备首先,你需要下载并安装SPSS软件。
你可以到IBM的网站上下载SPSS试用版或购买正式版。
数据文件准备在进行方差分析之前,我们需要准备好数据文件。
在本次实验中,我们将使用实验数据。
该数据是每个组的平均次数和标准偏差。
可以使用以下命令查看数据:GROUP Mean Std. Deviation1 15.00 1.7342 21.00 2.1603 19.25 2.6004 23.75 1.7085 23.20 2.078执行分析在SPSS中选择“Analyze”>“General Linear Model”>“Univariate”。
1.选择因素在弹出的“Univariate”窗口中,选择要分析的有影响因素和结果变量,如下所示:Independent Variable: GroupDependent Variable: Mean2.统计在“Univariate”窗口中,选择要执行的统计分析,如下所示:Descriptive StatisticsHomogeneity of Variance TestsANOVA缺省情况下,所有三个分析选项都是选中的。
3.Descriptives在选择“Descriptives”选项后,可以查看每个组的样本数量、平均值和标准偏差。
结果如下所示:Group N Mean Std. Deviation1 4 15.00 1.7342 4 21.00 2.1603 4 19.25 2.6004 4 23.75 1.7085 4 23.20 2.0784.Homogeneity of Variance Tests在选择“Homogeneity of Variance Tests”选项后,可以查看每个组方差是否相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
spss方差分析步骤2篇
SPSS方差分析步骤
方差分析(Analysis of Variance, ANOVA)是一种经典
的多组比较方法,也是社会科学研究、生物医学研究、经济管理和自然科学等各个领域常用的统计工具。
通过比较不同组之间的均值差异来检验各组是否存在显著差异,从而对研究问题做出合理解释。
方差分析主要用于三个或三个以上的不同组别之间的比较,以研究自变量与因变量之间的关系。
在使用SPSS软件进
行方差分析的时候,需要掌握以下步骤。
步骤1:准备数据
将需要进行统计分析的数据导入SPSS软件中,点击“变
量视图”,添加需要分析的变量,将自变量添加至“因子”栏位,将因变量添加至“依赖”栏位。
步骤2:设置参数
点击“分析”-“一般线性模型”-“单因子方差分析”,在“模型”中选择“因子”,在“因子”中选择自变量,将因变量拖入“因变量”的栏位中,最后点击OK。
步骤3:检验方差齐性
点击“选项”,在弹出的对话框中选择“描述”-“定义
因子的不同水平上样本数不等的比例”,然后点击“继续”和“OK”。
如果不同组别之间样本量接近,则方差齐性检验通过,否则需要采用多元方差分析进行分析。
步骤4:生成结果
在SPSS的输出窗口中,可以看到方差分析结果的表格与
图表。
在表格中,关注“F”值和“Sig.”(显著性水平)两列。
如果“Sig.”列中的数字小于所设定的显著性水平(通常为0.05),则可以拒绝原假设,认为不同组别之间的均值有
显著差异,反之,则接受原假设,认为不同组别之间均值没有显著差异。
步骤5:结果的解释
针对方差分析的结果,需要将其解释清楚,涉及到的内
容包括方差齐性检验、显著性水平、自变量与因变量之间的关系以及各组之间的均值差异等。
需要注重文字描述和图表展示的结合,对结果的得出做出严谨而科学的解释。
总之,SPSS方差分析步骤包括数据准备、设置参数、检
验方差齐性、生成结果和结果的解释。
在进行数据分析的过程中,需要注意数据的准确性和严谨性,采用合适的方法和技巧,对分析结果进行深入的思考和解释,有助于提高研究成果的质量和可信度。
SPSS方差分析的注意事项
SPSS方差分析是一种常用的数据分析方法,可以有效地
揭示因变量在多个不同自变量组之间的变化情况。
在实际分析过程中,需要注意以下事项。
1. 样本量的选择
样本量是方差分析结果的重要影响因素之一,通常情况下,样本量越大,分析结果越准确。
因此,在进行方差分析前,应充分考虑样本量的选择,保证样本量足够,才能准确反映各组之间的差异。
2. 方差齐性的检验
方差分析在进行前,需要进行方差齐性检验,即各组样
本方差是否相等。
在进行方差分析时,如果假设的方差齐性不成立,将会对分析结果造成一定的影响,所以要对方差的分布进行检查,保证每个因子水平在样本之间方差(协方差)相等。
3. 正态性的检验
正态分布是众数、中位数和平均数相等的分布,符合正
态分布的数据更加稳定,可以更好地支持数据分析。
在进行方差分析前,应对数据进行正态性检验,如果数据不符合正态分布,可以尝试转换数据类型、分组或者采用非参数方法进行分析。
4. 显著性水平的设置
在进行方差分析时,需要设定显著性水平,通常设定为
0.05。
但是,不同领域、研究对象的不同可能会影响到显著性水平的选择,因此要根据具体情况灵活处理,确定合适的显著性水平。
5. 结果的解释
在得到方差分析结果之后,需要进行细致的结果解释,
包括各组之间的差异、方差齐性的检验、显著性水平等方面,要注重文字描述和图表展示的结合,使得分析结果准确地反映实际的情况,从而得出更为可靠的研究结论。
综上所述,SPSS方差分析需要注意样本量、方差齐性检验、正态性检验、显著性水平的设置和结果的解释等方面,以确保分析结果的准确性和可靠性。
通过合理选择方法和技巧,以及科学严谨的工作态度,可以为研究成果的提高和应用做出积极贡献。