使用SPSS进行探索式因素分析的教程

合集下载

用SPSS做探索性因子分析

用SPSS做探索性因子分析

DRAFT ONLY附:在SPSS 中做探索性因子分析110.12操作步骤23 第一步:载入数据并启动因子分析。

4567 第二步:选择因子所对应的测度项。

在这个研究中,我们选择对应于七个变量(包括8 自变量、因变量、与控制变量) 的测度项。

910告读者丗本书的正式版丆《社会调查设计与数据分析:从立题到发表》丆 终于作为国内最好的研究方法丛书-重庆大学万卷方法丛书的一员出版了乮六2011年6月乯。

有兴趣购买的读者现在可以从卓越购买。

相比于意见稿丆正式版丗- 增加了第13章丆构成性测度与PLS•C - 增加了第14章丆潜变量的调节作用 - 大量充实第15章丆论文写作与发表- 第12章中数据分析的结果做了大量更新丆原内容介绍的方法与数据分析的结论虽然正确丆数据计算结果有错误。

其它各章也做了相当多的修改丆不再赘述。

正式版比意见版的内容增加了大概三分之一。

这些新增的内容对于科研人员和方法论老师来讲是十分重要。

本附录是书稿的一部分。

DRAFT ONLY12第三步:设定因子求解办法为主成分分析法。

使用相关系数矩阵,并设定主要因子的34特征根大于1。

5678第四步:设计因子旋转方法为“Varimax”。

然后在“Factor Analysis”窗口中按“ok”开始计算。

910DRAFT ONLY1210.13主成分分析的结果34 对应于27个测度项,主成分分析法一共产生了27个因子。

这是可以产生的因子个数5 的上限。

“Total ”列报告了每一个因子所对应的特征值。

“% of Variance ”表示这个特征6 值在所有特征值和中的比例。

“Extraction Sums of Squared Loadings ”这一列反映了特征根7 大于1的因子。

在这个例子中,我们顺利地得到了7个因子。

相应地,在用碎石坡法对因8 子进行目测时,我们得到的结果是一致的。

请读者参看本章中的相应图例。

值得一提的9 是,第八个因子的特征根为0.967,十分接近1。

图解spss探索分析实例

图解spss探索分析实例

图解spss探索分析实例最后更新:2012-12-10 阅读次数:【字体:小中大】探索分析是在对数据的基本特征统计量有初步了解的基础上,对数据进行的更为深入详细的描述性观察分析。

它在一般描述性统计指标的基础上,增加了有关数据其他特征的文字与图形描述,显得更加细致与全面,有助于用户思考对数据进行进一步分析的方案。

主要的分析如下:(1)观察数据的分布特征:通过绘制箱锁图和茎叶图等图形,直观地反映数据的分布形式和数据的一些规律,包括考察数据中是否存在异常值等。

过大或过小的数据均有可能是奇异值、影响点或错误数据。

寻找异常值,并分析原因,然后决定是否从分析中删除这些数据。

因为奇异值和影响点往往对分析的影响较大,不能真实地反映数据的总体特征。

(2)正态分布检验:检验数据是否服从正态分布。

很多检验能够进行的前提即总体数据分布服从正态分布。

因此,检验数据是否符合正态分布,就决定了它们是否能用只对正态分布数据适用的分析方法。

(3)方差齐性检验:用Levene检验比较各组数据的方差是否相等,以判定数据的离散程度是否存在差异。

例如在进行独立右边的T检验之前,就需要事先确定两组数据的方差是否相同。

如果通过分析发现各组数据的方差不同,还需要对数据进行方差分析,那么就需要对数据进行转换使得方差尽可能相同。

Levene检验进行方差齐性检验时,不强求数据必须服从正态分布,它先计算出各个观测值减去组内均值的差,然后再通过这些差值的绝对值进行单因素方差分析。

如果得到的显著性水平(Significance)小于0.05,那么就可以拒绝方差相同的假设。

探索分析的具体操作步骤如下:打开数据文件,选择【分析】(Analyze)菜单,单击【描述统计】(Descriptive Statistics)命令下的【探索】(Explore)命令,SPSS将弹出"探索"(Explore)对话框,如图3-9所示。

在"探索"(Explore)对话框中,左边的变量列表为原变量列表,通过单击按钮可选择一个或者几个变量进入右边的"因变量列表"(Dependent List)框、"因子列表"(Factor List)框和"标注个案"(Label Cases by)列表框。

使用SPSS进行探索式因素分析的教程

使用SPSS进行探索式因素分析的教程

使用SPSS进行探索式因素分析的教程探索性因素分析是一种统计方法,用于确定一组变量之间的潜在结构。

SPSS是一种常用于数据分析的软件工具,它提供了强大的因素分析功能。

以下是一个使用SPSS进行探索性因素分析的简单教程,该教程可以帮助您了解如何使用SPSS来执行因素分析并对结果进行解释。

步骤1:导入数据步骤2:准备数据确保您的数据符合因素分析的前提条件。

确定您要进行因素分析的变量是否具有线性关系,并进行必要的数据转换(例如,对数转换)以满足这个条件。

步骤3:执行因素分析在SPSS的“分析”菜单下,选择“数据准备”和“因子”。

在弹出的对话框中,选择您要进行因素分析的变量并将其移动到“因子”框中。

选择“萃取方法”(如主成分分析或最大似然估计)并指定要提取的因素的数量。

您还可以选择执行因子旋转以获得更简单和解释性更强的因子结构。

步骤4:解读结果SPSS将生成一个因素分析的输出报告,其中包含多个表格和图形。

以下是一些常见的解读步骤:-总体解释:观察“总体解释”表,了解因子数量和提取方法的解释力度。

查看“因素”的特征值,了解提取的因子解释的总方差比例。

-因子负荷:查看“因子负荷”表,该表显示了原始变量与提取的因子之间的相关性。

较高的因子负荷表示原始变量与特定因子之间的较强关联。

-因子旋转:如果您选择了因子旋转,则查看“旋转因子载荷矩阵”表,该表显示了旋转后的因子负荷。

查看这些旋转后的因子负荷以确定是否存在更简单的因子结构。

-因子得分:根据选定的因子分析方法,可以生成每个观测值的因子得分。

这些得分表示了每个观测值在每个因子上的得分情况,可以用于后续的分析和解释。

步骤5:解释因子根据因子负荷和因子名称,解释每个因子代表的潜在结构。

结合领域知识和因子负荷,您可以确定每个因子是否与特定概念或潜在维度相关联。

步骤6:结果报告根据您的研究目的和需要,将因子分析的结果写入报告中。

确保清楚地描述因子数量、命名以及每个因子代表的结构或概念。

使用SPSS进行探索式因素分析的教程

使用SPSS进行探索式因素分析的教程

第4章 探索式因素分析在社会及行为科学研究中,研究者经常会搜集实证性量化资料來做验证,而要证明这些资料可靠性及正确性,则必须依靠测量或调查工具信度或效度(杨国枢等,2002b )。

一份好量表应该要能够将欲研究主题构念(Construct ,它是心理学上一种理论构想或特质,无法直接观测得到)清楚且正确呈现出来,而且还需具有「效度」,即能真正衡量到我们欲量测特性,此外还有「信度」,即该量表所衡量结果应具有一致性、稳定性,因此为达成「良好之衡量」目标,必须有以下两个步骤:第一个步骤是针对量表题项作项目分析,以判定各项目区别效果好坏;第二步骤则是建立量表信度及效度。

量表之项目分析、信度检验已于第2、3章有所说明,本章将探讨量表之效度问题。

4-1 效度效度即为正确性,也就是测量工具确实能测出其所欲测量特质或功能之程度。

一般研究中最常使用「内容效度」(Content Validity )及「建构效度」(Construct Validity )来检视该份研究之效度。

所谓「内容效度」,是指该衡量工具能足够涵盖主题程度,此程度可从量表内容代表性或取样适切性来加以评估。

若测量内容涵盖所有研究计划所要探讨架构及内容,就可说是具有优良内容效度。

在一般论文中,常使用如下描述来「交代」内容效度:而所谓「建构效度」系指测量工具内容,即各问项是否能够测量到理论上构念或特质程度。

建构效度包含收敛效度(Convergent Validity )及区别效度(Discriminant Validity ),收敛效度主要测试以一个变量(构念)发展出多项问项,最后是否会收敛于一个因素中(同一构念不同题目相关性很高);而区别效度为判别问项可以及其它构念之问项区别程度(不同构念不同题目相关性很低)。

衡量收敛效度统计方式可使用探索式因素分析法(Exploratory factor analysis),简称因素分析。

进行因素分析时,若发现各构念衡量项目皆可收敛于同一个共同因素之下,则表示该量表收敛效度是可被接受。

使用SPSS进行数据探索性分析的步骤

使用SPSS进行数据探索性分析的步骤

使用SPSS进行数据探索性分析的步骤数据探索性分析是研究者在进行数据分析之前的一项重要工作。

它可以帮助研究者了解数据的基本特征、发现数据中的规律和异常情况,并为后续的数据分析提供参考。

SPSS是一款常用的统计软件,它提供了丰富的功能和工具,方便研究者进行数据探索性分析。

下面将介绍使用SPSS进行数据探索性分析的步骤。

1. 导入数据在SPSS中,首先需要将待分析的数据导入软件中。

可以通过点击菜单栏中的"文件"-"打开"来选择数据文件,或者直接将数据文件拖入SPSS的工作区。

导入数据后,SPSS会自动将数据显示在数据视图中。

2. 查看数据在导入数据后,可以通过查看数据视图来了解数据的整体情况。

数据视图显示了数据表格,每一列代表一个变量,每一行代表一个观察值。

可以通过滚动条或者快捷键来浏览数据。

同时,还可以通过点击菜单栏中的"数据"-"描述统计"-"频数"来查看每个变量的频数分布情况。

3. 处理缺失值在数据分析过程中,经常会遇到缺失值的情况。

缺失值可能对后续的数据分析产生影响,因此需要对缺失值进行处理。

SPSS提供了多种处理缺失值的方法,如删除含有缺失值的观察值、替换缺失值等。

可以通过点击菜单栏中的"数据"-"选择"-"筛选"来选择处理缺失值的方法。

4. 描述性统计分析描述性统计分析是数据探索性分析的重要部分,它可以帮助研究者了解数据的基本特征。

在SPSS中,可以通过点击菜单栏中的"分析"-"描述统计"-"统计量"来进行描述性统计分析。

在弹出的对话框中,选择需要进行描述性统计分析的变量,并选择需要计算的统计量,如均值、标准差、最小值、最大值等。

点击确定后,SPSS会自动计算并显示结果。

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程探索性因子分析(Exploratory Factor Analysis,EFA)是一种统计方法,旨在帮助研究者理解和解释大量变量之间的关系。

它可以用于数据降维、信度分析和测量模型构建等多种研究目的。

以下是SPSS中进行探索性因子分析的详细步骤:1.数据准备:-打开SPSS软件,并导入数据文件。

-确保数据变量符合连续性或有序性测量标准。

如果存在分类变量,需要进行变量转换,如使用哑变量编码。

2.确定分析目的和因变量:-确定研究目的,明确是否要进行因子分析以及预期得到的结果。

-选择用于分析的变量,这些变量应当在理论上与研究目的相关,并且在实践中已经得到应用。

3.进行初始的探索性因子分析:-在「分析」菜单中选择「数据降维」,然后选择「因子」。

-从左侧的变量列表中选择需要进行因子分析的变量,将其添加到右侧的「因子分析」框中。

-在「提取」选项卡中,选择提取的因子数量。

通常,可以通过解释方差方法选择大于1的特征根值,或者根据理论确定因子数量。

-点击「列表」按钮,查看提取出的因子信息,包括特征根值、解释方差和因子载荷。

根据因子载荷大小判断变量与因子之间的关系。

4.进行旋转:-在「提取」选项卡中,点击「旋转」按钮。

- 在旋转选项卡中,选择旋转方法。

常用的旋转方法包括方差最大化(Varimax)、直角旋转(Orthogonal rotation)和斜交旋转(Oblique rotation)。

-点击「列表」按钮,查看旋转后的因子载荷。

选择合适的旋转结果,以使因子载荷更加清晰和解释性更好。

5.进行因子得分估计:-在主对话框中,点击「因子得分」选项卡。

-选择要估计的因子得分的方法。

可选择「最大似然估计」或「预测指标法」。

-点击「存储因子得分」复选框,以将因子得分保存到数据文件中。

-点击「OK」按钮进行分析。

6.结果解读:-分析结果包括提取的因子信息、旋转后的因子载荷、因子得分和信度分析等。

-根据因子载荷和理论知识,解释每个因子代表的潜在构念。

SPSS探索性因素分析之具体步骤探讨

SPSS探索性因素分析之具体步骤探讨

SPSS探索性因素分析之具体步骤探讨探索性因素分析之具体步骤探讨文/哈工程大学应用心理学系曹国兴这主要针对的是预试问卷而言,也就是说在初试问卷经过了语义分析,专家讨论论证之后最终得出的问卷。

以下的经验是根据我编制职业承诺问卷的基础上总结而来,错误之处希望同行指教。

首先要说的是关于样本数量的问题。

按照统计学标准而言,一般样本数应为题目数的5-10倍。

由于我的题目为50,故样本至少为250个。

前期我计划发放样本数为6倍也就是300份,由于样本流失及废卷的原因,最终回收到有效问卷为256份,有效率为85.33%。

当然这是无法避免的。

下面我主要谈一下进行探索性分析的具体步骤:第一:比较明确的一步就是做一下关于各个项目的鉴别度(区分度)的分析。

在这个条件下会删除一部分不适合的题目。

删除程序为SPSS下的Analyze→Scale→ReliabilityAnalysis。

比较保险的的是从比较小的鉴别度一步一步删除,每次删一些较低的题目就看一下科隆巴赫系数的大小,直到满意为止。

当然也可以直接将低于0.3的题目删除。

注意的是删除的应为那些删除后科隆巴赫系数值提高的题目,如果删除后科隆巴赫系数值降低,这就需要重新考虑了。

结合语义分析取舍。

第二:在这种情况下一般而言,进行问卷设计之前所有的题目究竟是属于哪一个维度或者有几个维度应该有一定的假设,此时应该如下操作:(1)首先是反向题目的更改。

这方面需要注意的就是每次关闭文件的时候注意不要保存或者你将反向题目更改后的文件保存下来,一定要注明,因为如果你忘记了,就会混淆到底反向题目有没有修改过。

(2)也就是重点阶段。

顾名思义探索性因子分析就好比你是一个探险家在探索一块未知的领域,你不知道去哪一个方向才是正确的,也许你走了很长的路却与你所期望的目的地相反。

为避免在进行探索性因子分析的时候做无用功,我采用了如下的方法:在最大变异法和极大相等法两种正交旋转下分别对题目进行讨论。

利用SPSS进行因素分析

利用SPSS进行因素分析

二、应用SPSS进行量表分析的步骤
问 题 从未 使用 1 很少 使用 2 有时 使用 3 经常 使用 4 总是 使用 5
题 项
A1
A2 A3 A4 A5 A6 A7
电脑
录音磁带 录像带 网上资料 校园网或因特网 电子邮件 电子讨论网
A8
A9
CAI课件
视频会议
A10 视听会议
题目 编号 01 02 03
特征值----是每个变量在某一共同因素之因素负荷量的平 方总和(一直行所有因素负荷量的平方和)。 如F1的特征值 G=(0.896)平方+(0.802)平方 +(0.516)平方+(0.841)平方 +(0.833)平方=3.113
特征值的总和等于实测变量的总数 方差贡献率----指公共因子对实测变量的贡献, 又称变异量 方差贡献率=特征值G/实测变量数p, 如F1的贡献率为3.113/5=62.26%
因子分析案例
公因子 F1 Z1=代数1 0.896 公因子 F2 0.341 共同度 hi 0.919 特殊因子
δi
0.081
Z2=代数2
Z3=几何 Z4=三角
0.802
0.516 0.841
0.496
0.855 0.444
0.889
0.997 0.904
0.111
0.003 0.096
Z56 .474 .401 .495 .605 .633
Extrac ti on Method: Princ ipal Component Anal ysis . a. 3 components extracted.
Extraction Method: Principal Component Analysis.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章探索式因素分析在社会与行为科学研究中,研究者经常会搜集实证性的量化资料來做验证,而要证明这些资料的可靠性与正确性,则必须依靠测量或调查工具的信度或效度(杨国枢等,2002b)。

一份好的量表应该要能够将欲研究的主题构念(Construct,它是心理学上的一种理论构想或特质,无法直接观测得到)清楚且正确的呈现出来,而且还需具有「效度」,即能真正衡量到我们欲量测的特性,此外还有「信度」,即该量表所衡量的结果应具有一致性、稳定性,因此为达成「良好之衡量」的目标,必须有以下两个步骤:第一个步骤是针对量表的题项作项目分析,以判定各项目的区别效果好坏;第二步骤则是建立量表的信度与效度。

量表之项目分析、信度检验已于第2、3章有所说明,本章将探讨量表之效度问题。

4-1 效度效度即为正确性,也就是测量工具确实能测出其所欲测量的特质或功能之程度。

一般的研究中最常使用「内容效度」(Content Validity)与「建构效度」(Construct Validity)来检视该份研究之效度。

所谓「内容效度」,是指该衡量工具能足够涵盖主题的程度,此程度可从量表内容的代表性或取样的适切性来加以评估。

若测量内容涵盖所有研究计划所要探讨的架构及内容,就可说是具有优良的内容效度。

在一般论文中,常使用如下的描述来「交代」内容效度:本研究问卷系以理论为基础,参考多数学者的问卷内容及衡量项目,并针对研究对象的特性加以修改,并经由相关专业人员与学者对其内容审慎检视,继而进行预试及修正,因此本研究所使用之衡量工具应能符合内容效度的要求。

本研究之各研究变项皆经先前学者之实证,衡量工具内容均能足够地涵盖欲探讨的研究主题。

另外,本研究于正式施测前,亦针对问卷之各题项与相关领域的学者、专家进行内容适切度之讨论,因此,研究采用之衡量工具应具内容效度。

在内容效度方面,主要是根据文献探讨及专家研究者的经验。

然因本研究问卷设计之初,考虑目前相关的文献中,尚未对本研究议题提出实证性问卷,故只能自行设计量表,对于内容效度是否达成,尚有疑虑。

而所谓「建构效度」系指测量工具的内容,即各问项是否能够测量到理论上的构念或特质的程度。

建构效度包含收敛效度(Convergent Validity)与区别效度(Discriminant Validity),收敛效度主要测试以一个变量(构念)发展出的多项问项,最后是否会收敛于一个因素中(同一构念不同题目相关性很高);而区别效度为判别问项可以与其它构念之问项区别的程度(不同构念不同题目相关性很低)。

衡量收敛效度的统计方式可使用探索式因素分析法(Exploratory factor analysis),简称因素分析。

进行因素分析时,若发现各构念的衡量项目皆可收敛于同一个共同因素之下,则表示该量表的收敛效度是可被接受的。

至于区别效度,则可采用因素分析与皮尔森相关分析,首先,必须在因素分析法中,各构念的衡量项目皆没有与其它构念的衡量项目收敛于同一个共同因素之下,此外,在皮尔森相关系数矩阵中,不同构念的衡量项目彼此之间关联性很低,如皮尔森系数皆小于0.3,若出现上述两现象显示不同构念的衡量项目间彼此皆不具有强烈的关连性,据此,即可显示出区别效度是可以被接受的。

进行量表之建构效度评估时,虽理应同时检视收敛效度与区别效度,然审视国内之硕士论文或一些期刊论文都可发现,大部分都只以因素分析进行收敛效度之评估,并据以说明量表的建构效度,其方法如:同一构念中,若因素负荷量的值愈大(通常取0.5以上者才保留该项目,否则删除后再重新执行一次因素分析),表示收敛效度愈高。

此外,也可使用属线性结构方程(Linear Structural Equation)领域的验证性因素分析(Confirmatory Factor Analysis),以进行模式的适合度检定,并检定各构念是否具有足够的收敛效度与区别效度。

4-1因素分析的意义因素分析(Factor Analysis)属于多元统计分析技术的一种,其主要目的是浓缩数据。

它透过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想的变量来表示其基本的数据结构。

这些假想变量能够反映原来众多的观测变量所代表的主要信息,并解释这些观测变量之间的相互依存关系,我们把这些假想变量称之为基础变量,即因素(Factors)。

因素分析就是研究如何以最少的信息遗失,而能把众多的观测变量浓缩为少数几个因素。

一般在对实际问题做研究时,研究者往往希望尽可能地多多收集与研究主题相关的变量,以期能针对问题有比较全面性的、完整性的掌握和认识。

虽然收集这些数据需投入许多的人力、物力与时间成本,虽然它们能够较为整体而精确地描述研究主题,但将这些资料实际用在分析、建模时,这些变量未必能真正发挥研究者预期的作用,也就是说研究者的「投入」和「产出」并非呈合理的正比,相反的,这样的搜集资料行为反而会给研究者于统计分析时带来许多问题,这些问题如下:■计算量的问题由于研究者所收集的变量相当多,如果这些变量都投入数据的分析与建模,无疑的,这将会增加分析过程中于计算上的工作量。

虽然,目前计算机运用普遍且其计算能力亦相当优异,然而对于此种高维的变量和庞大的数据仍是于计算上所不容忽视的。

■变数间的相关性问题由于研究者针对特定之主题所收集到的诸多变量之间通常或多或少都会存在着相关性。

也就是说,变量之间往往具有信息的高度重迭性和高度相关性,这些特质将会给统计方法的应用带来许多不便。

例如,在多元线性回归分析中,如果这些众多的解释变量之间,存在着较强且显着的相关性,即存在着高度的多重共线性,那么于回归方程的参数估计时,将带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。

为解决上述的问题,最简单且最直接的解决方法即是精减变量之个数,但是这又必然会导致信息的漏失和信息不完整等现象产生,这是一个Trade-off的问题。

为此,研究者无不希望探索一种更有效的解决方法,期盼它既能大大减少参与数据分析、建模的变量个数,也同时不会造成信息的大量漏失。

而因素分析正是这样一种能够有效降低变量维数(个数),并已得到广泛应用的分析方法。

因素分析是由心理学家所发展出来的,最初心理学家借助因素分析模型来解释人类的行为和能力,1904年Charles Spearman在美国心理学杂志上发表了第一篇有关因素分析的文章,在往后的三四十年里,因素分析的理论和数学基础理论逐步获得发展和改善,也因此,这个统计分析工具逐渐被人们所认识和接受。

50年代以来,随着计算机的普及和各种统计软件的出现,因素分析在社会学、经济学、医学、地质学、气象学和市场营销等越来越多的领域得到了应用。

因素分析以最少的信息漏失为前提,试图将众多的原始变量综合成较少几个综合指标,这些综合指标即名为因素(factor)。

一般而言,因素具有以下几个特点:■因素个数远少于原始变量的个数原始变量综合成少数几个因素后,因素将可以替代原始变量参与数据建模,这将大大减少分析过程中的计算工作量。

■因素能够反映原始变量的绝大部分信息因素并不是原始变量的简单取舍,而是原始变量重组后的结果,因此不会造成原始变量信息的大量遗失,并能够代表原始变量的绝大部分信息。

■因素之间的线性关系不显着由原始变量重组出来的因素之间的线性关系较弱,因素参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。

■因素具有命名解释性通常,因素分析产生的因素能够透过各种方式最终获得命名解释性。

因素的命名解释性有助于对因素分析结果的解释评价,对因素的进一步应用有重要意义。

例如,对高校科研情况的因素分析中,如果能够得到两个因素,且其中一个因素是对科研人力投入、经费投入、立项项目数等变量的综合,而另一个是对结项项目数、发表论文数、获奖成果数等变量的综合,那么,该因素分析就是较为理想的。

因为这两个因素均有命名可解释性,其中一个反映了科研投入方面的情况,可命名为科研投入因素,另一个反映了科研产出方面的情况,可命名为科研产出因素。

总之,因素分析是研究如何以最少的信息遗失将众多原始变量浓缩成少数几个因素,如何使因素具有一定的命名解释性的多元统计分析方法。

4-2 因素分析的数学模型因素分析的核心价值在于它能使用较少且相互独立的因素来反映原始变量的绝大部分信息。

由于任何一个变量都可以透过x xx z σ-= (x 为x 的平均数,x σ为x 标准差)的转换而变成标准化变量,经标准化后的变量并不会改变原始变量之间的相关系数,也就是说不失其一般性。

在此我们所讨论的变量都是标准化变量。

设原有p 个变数p x x x ,,,21 且每个变量的平均数为0,标准差均为1。

现将每个原始变数用)(p k k <个因素k f f f ,,,21 的线性组合来表示,即:113132121111u f a f a f a f a x k k +++++=223232221212u f a f a f a f a x k k +++++=333332321313u f a f a f a f a x k k +++++= (4-1) …p k pk p p p p u f a f a f a f a x +++++= 332211式(4-1)就是因素分析的数学模型,此模型在型式上和多元回归模型很相似,也可用矩阵的型式表示为U AF X +=。

其中F 称为因素,由于它们出现在每个原始变量的线性表达式中,因此又称为共同因素(Common factors ),它们是各个原始变量所共同拥有的因素,解释了变量之间的相关程度。

因素也可被想象成是高维空间中互相垂直的k 个坐标轴。

A 称为因素负荷矩阵,ij a 称为因素负荷(Factor loading ),它是第i 个原始变数在第j 个因素上的负荷,相当于多元回归分析中的标准回归系数。

U 称为特殊因素(Unique factor ),它是每个原始变量所特有的因素,相当于多元回归中的残差项,它表示了原始变量不能被因素所解释的部分,其平均数为0。

因素分析模型中假设p 个特殊因素之间是彼此独立的,特殊因素和共同因素之间也是彼此独立的。

此外该模型中,每一个原始变量都是由k 个共同因素和一个特殊因素的线性组合来表示,而我们所感兴趣的只是这些能够代表较多信息的共同因素,因此往后如果没有特殊说明的话,本书中所经常提到的因素一词,实际上所指的就是共同因素。

共同因素的个数最多可以等于原始变量的数量。

因为在求因素解时,通常都会使第一个因素之代表性最高(即拥有最多的信息),之后的其它因素之代表性日益衰减,因此,如果忽略掉最后几个因素,则对原始变量的代表性也不会有什么损失。

所以,因素分析模型中,共同因素的个数,往往远远小于原始变量的个数。

相关文档
最新文档