有机朗肯循环发电系统利用的研究_刘广林

合集下载

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术引言我国水泥厂的余热发电,先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。

纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、生产过程中不增加粉尘、废渣、N 0。

和S0。

等废弃物排放的优点。

本文介绍以色列奥玛特(0RMAT)公司利用低温热源的有机朗肯循环(0 rganic RankineCyck,简称()RC)纯低温余热发电技术。

该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质来吸收废气余热,汽化,进入汽轮机膨胀做功。

1.低沸点的有机物在一个大气压下,水的沸点足100℃,而一些有机物的沸点却低于水的沸点,见表l。

有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表2。

水的沸点与压力之间对应关系见表3。

由表2和表3町见,氯乙烷的沸点比水低,蒸气压力很高。

根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。

2 ORC纯低温余热发电在地热发电方面的应用0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。

热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。

西藏羊八井地热电站,热水温度145℃,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3一1.’7/0.5型地热汽轮机发电机组)单机容量3000W,3 000W/min,一次进汽压力182kPa,温度115℃,二次进汽压力54kPa,温度81℃,额定排汽压力为10kPa。

双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。

双工质循环机组,其热效率高,结构紧凑。

我国的小型双工质循环系统地热电站——辽宁营口熊岳试验电站的装机容量2×J00KW,利用地热水(水温75℃)发电,于1977年1 1月投入运行。

有机朗肯循环发电系统热力过程的研究

有机朗肯循环发电系统热力过程的研究
i d s r a d c n e t i i t c e n e e g — e e ti i . T i ri l e c i e n i e c c e p we n ut y n o v r t no la n ry l c rc t y h s a t e d s r b s a Ra k n y l o r c g n r t n t e r t a c e ,t e b s c wo k n i c e h y t m a c l t d me h d e e a i h o e i l s h me h a i r ig prn i ,t e s s e c l u a e t o .Ba e n t e o c pl sd o h
( h nIs tt f r eEe tcPo us n CSC Wu a 3 0 4 C ia Wu a tueo Mai lc i rp l o , I , hn4 0 6 , hn ) ni n r i
Ab ta t h ra i R n ieccep w rg n r t n e u me t a fe t e s ew s e t rm sr c:T eog nc a kn y l o e e eai q i n n e ci l u et a t h a o o p c f vy h e f
动 力 特 性 , 具有 较 高 的轮 机 效 率 。
以是 非 水 工 质 。如 果 余热 工 质 本 身 是 非 水 或 者 不
洁 净 的 , 中 间工 质 方 案 是 目前 唯 一可 行 的方 案 。 则
ห้องสมุดไป่ตู้
中 问 工 质 可 以 是 水 也 可 以是 非 水 的 有 机 工
质 ,对 于低 温 热 源 的利 用 ,O RC技 术 相 比水 蒸 气 朗肯 循 环 有 很 多 有 点 :

朗肯循环

朗肯循环
41
2、混合加热理想循环(萨巴德循环)
分析循环吸热量,放热量,热效率和功量 p
3 4
T
3 5 1 2
4 5
2
1
v
s
42
3、定义几个指标性参数
p
3 4
压缩比
2
5 1
定容增压比 预胀比
43
v
4、理想混合加热循环的计算
吸热量 T
3
4
5
放热量(取绝对值)
2
1
热效率
s
44
理想混合加热循环的计算
热效率
45
t1 , p2不变,p1
T 优点:
• •
5'
5
6'
1' 1
6 2 s
T1 v2'
t
,汽轮机出口
4'
4
3
2'
尺寸小 缺点: • 对强度要求高 • x2' 不利于汽 轮机安全。一般 要求出口干度大 于0.85~ 0.88
17
蒸汽初温对郎肯循环热效率的影响
p1 , p2不变,t1
T 5 4 3 2 2' s 优点:
28
热电联产(供)循环的经济性评价
wnet 只采用热效率 t 显然不够全面 q1 能量利用系数,但未考虑热和电的品位不同 q供热+wnet 已被利用的能量 K 工质从热源得到的能量 q1
热电联产、集中供热是发展方向,经济环保
1 过热器 锅炉 4 给水泵 汽轮机
锅炉 调节阀 热用户 冷却水 冷凝器
汽油机实际工作循环
0—1 吸空气 1—2 多变压缩 2 火花塞点火燃烧 p 3
2 4 1’ 1

有机朗肯循环系统孤网运行的实验研究

有机朗肯循环系统孤网运行的实验研究

2017年第36卷第10期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·3577·化 工 进展有机朗肯循环系统孤网运行的实验研究曹泷,刘秀龙,张鸣,徐进良(华北电力大学低品位能源多相流与传热北京市重点实验室,北京102206)摘要:针对孤网环境下有机郎肯(ORC )系统的实际应用,以R245fa 为工质,采用单螺杆膨胀机与同步发电机同轴联动,设计集成了一台10kW 级的小型ORC 机组,并以10.5kW 的卤素灯阵作为孤网负载,就地消耗机组输出的电能。

实验中在115℃热源条件下通过调整负载容量改变ORC 系统的运行工况,对不同负载与膨胀机转速下ORC 系统性能进行实验研究。

实验数据表明:单螺杆膨胀机的性能较为优良,其等熵效率最大值为84.1%,随负载及膨胀机转速的增加而减小。

工质泵的实际运行效率为8.31%~19.10%,其等熵效率随负载及转速增大而变大,最大值为73.97%。

工质泵的机械效率较低,仅为19.22%~36.82%,与负载及膨胀机转速之间没有明显关系,较低的机械效率是工质泵实际运行效率偏低的主要原因。

机组电功随负载及膨胀机转速的增加而增大,最大发电量与发电效率分别为5.86kW 与7.38%。

关键词:有机朗肯循环;孤网;R245fa ;单螺杆膨胀机;系统集成中图分类号:TK11+5 文献标志码:A 文章编号:1000–6613(2017)10–3577–07 DOI :10.16085/j.issn.1000-6613.2017-0194Experimental study of an integrated organic Rankine cycle system underisolated network operating conditionCAO Shuang ,LIU Xiulong ,ZHANG Ming ,XU Jinliang(Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy ,North China Electric PowerUniversity ,Beijing 102206,China )Abstract :The test results of a 10kW integrated organic Rankine cycle (ORC )system with R245fa as the working fluid under isolated network operating condition were presented in this paper. A single screw expander was integrated in the system to drive the synchronous generator to generate electric power. The 10.5kW halogen lamp array was used as the load to consume the generated electric power. Two independent parameters ,the load capacity and the expander speed ,were varied during the test. The ORC system characteristics were analyzed at the heat source temperature of 115℃. The experimental data showed that the single screw expander performed very well. The maximum expander isentropic efficiency was 84.1%,which decreased with increase of load and expander speed. The maximum isentropic efficiency of working fluid pump was 73.97%,which increased with the increase of load and expander speed. The mechanical efficiency of the working fluid pump was only 19.22%—36.82%,and had no obvious relationship with the load and the expander speed. The generated electric power increased with the increase of load and expander speed. The maximum generated electric power and the electrical efficiency were 5.86kW and 7.38%,respectively. Key words :organic Rankine cycle ;isolated network ;R245fa ;single screw expander ;system integration利用技术研究。

基于实验室朗肯循环装置的实验研究

基于实验室朗肯循环装置的实验研究

·实验技术·基于实验室朗肯循环装置的实验研究李维腾,李 季(华北电力大学 能源动力与机械工程学院,北京 102206)摘要: 朗肯循环是工程热力学课程最基本且最重要的动力循环。

该文通过实验室朗肯循环装置对朗肯循环进行了实验研究,测定不同排汽压力下的循环热效率、涡轮相对内效率、循环摩擦损失等参数。

实验结果表明,实验室朗肯循环装置能够模拟朗肯循环的基本热力过程,但是热效率较低、摩擦损失较大。

论文对实验结果进行了分析,循环热效率低的主要原因是涡轮摩擦损失大、主蒸汽参数低,同时提出了改进实验室朗肯循环装置的措施。

实验室朗肯循环将热力学理论与实验结合,有助于学生理解和分析热力学基本理论,提高实验动手操作能力,提高分析和解决实际问题的能力。

同时将自主实验和创新实验融入到实验教学中,激发了学生的学习热情和基础科研能力,为创新性实验教学提供了借鉴。

关 键 词:工程热力学;朗肯循环;循环热效率;相对内效率中图分类号:TK123 文献标志码:A DOI: 10.12179/1672-4550.20190414Experimental Research Based on Rankine Cycle Lab-EquipmentLI Weiteng, LI Ji(School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China )Abstract: Rankine Cycle is the most fundamental and important power cycle in Engineering Thermodynamics. This paper conducted Rankine Cycle experiments with Rankine Cycle Lab-Equipment, and measured thermal efficiency, turbine relative internal efficiency, cycle friction loss and other parameters. Results showed that Rankine Cycle Lab-Equipment can simulate the basic thermal processes of Rankine Cycle, but with relatively low thermal efficiency and huge cycle friction loss. The main reasons for low thermal efficiency were huge friction loss of steam turbine and low main-steam parameters. Measures to improve Rankine Cycle Lab-Equipment were proposed according to experimental results and analysis. Laboratory Rankine Cycle combined Thermodynamic theory with experiment to help students understand and analyze the fundamental theory of Thermodynamics, improve their hands-on ability to conduct experiments and problem-solving capability. At the same time, independent and innovative experiments were integrated into experimental teaching, which stimulated students’ learning enthusiasm and basic scientific research ability, and provided reference for innovative experimental teaching.Key words: engineering thermodynamics; Rankine Cycle; thermal efficiency; relative internal efficiency理想朗肯循环是蒸汽动力装置最基本的循环,热力发电厂各种复杂蒸汽动力循环包括再热循环和回热循环都是在朗肯循环的基础上发展而来的。

有机朗肯循环与再热式循环低温热源发电系统热力性能研究

有机朗肯循环与再热式循环低温热源发电系统热力性能研究

1 0 7 ;4 0 8 1 .中国船舶重工集 团公 司第 七。三研 究所,黑龙江
摘要 :针对 10℃ 以下的低温佘 热热源,探讨 了基 本有 机郎肯循环发 电系统和再 热式有机 朗肯循环发 电系统模型 的基本原理 。从热 2 力学第一 定律 角度出发,研究 了纯 工质 R 4 f 非共沸混合工质 R 1R 4 f 2 5a和 2 / 2 5a在基 本有 机郎肯循环系统 中,以及纯 工质 R2 5a在 4f 再热 式有机 郎肯循环 系统 中,三种 形式的有机 郎肯循环 系统 热力性 能随蒸发温度 的变化情 况。与纯工质 基本有机 郎肯循环系统相 比,再热式有 机郎肯循环最大可提 高系统净输 出功 70 %,而混合工质对提高整个 系统 热力性能具有较大的优势 ,净输 出功 和热效 .8
Absr c : An l z d t eb scf n a n a rn i l f o rg n r t n s s e mo e a e n b sc o a i n i ec c ea dr h a i g tat a y e a i d me t l i cp e o p we e e a i y tm d l s do a i r n cr k n y l n e t h u p o b g a e n o g n c r n i e c c e s e il o e e a u e l we h n 1 0 ℃ e h u th a o r e r a i a k n y l ,e p c a l f r tmp r t r o rt a y 2 x a s e ts u c .Ba e n f s lw f t e mo y a is u e s d o r t a o r d n m c ,p r i h wo k n u d R2 5 aa d z o r p cmi t r sR21R2 5 a i a i r a i n i ec c es se ,p r r i g f i 4 f h ai g o — r i g f i 4 f n e to i x u l e / 4 f b sco g n cr k n y l y tm n a ue wo k n u d R2 5 a i r e tn r l ne

有机朗肯循环中低温余热发电技术(14.11.5)

作功介质先进入机内螺杆齿槽A,推动螺杆 转动,随着螺杆转动,齿槽A旋转到B、C、D逐 渐加长、容积增大,介质降压降温膨胀(或闪 蒸)做功,最后从齿槽E排出,功率从主轴阳螺 杆输出,亦可通过同步齿轮从阴螺杆输出,驱 动风机、压缩机、水泵或发电机发电等。
19
Depart. Thermal Energy & Refrigeration Eng.
20
Depart. Thermal Energy & Refrigeration Eng.
螺杆膨胀机作为余热回收动力机,具有的技术特点
(1)螺杆膨胀机适用于过热蒸汽、饱和蒸汽、汽水两相流 体、(带压)热水及无压热流体的动力机械,可以回收 不同种类的工业余热; (2)螺杆膨胀机还适用于高盐份的碱性流体,能除垢自洁 ,而且结垢有利于提高机器效率,因而对余热流体品质 要求不高,扩大了应用范围; (3)当余热热源不稳定,参数变化时,机组效率表现稳定 。螺杆膨胀机允许热源压力、流量在大范围内波动,对 机组效率影响不大;螺杆膨胀机为容积式工作原理机, 机内流速低,除泄漏损失外,很少其他损失,机组效率 较高,即使蒸汽参数或负荷变动仍能保持高效率。
混合工质用于有机朗肯循环的研究
可改善系统工作特性 可提高发电效率
34
Depart. Thermal Energy & Refrigeration Eng.
有机工质朗肯循环中低温余热发电 关键技术之一
发电系统优化设计
有机工质朗肯循环发电系统的优化设计
有机工质朗肯循环的热力系统设计(包括系 统热力参数的确定、工质选择、热交换器设计 等)。会直接影响系统的运行效率。在得到热 源的温度和流量等条件后,需要确定有机工质 的蒸发温度、冷凝温度以及换热温差等,这些 参数会对循环效率有较大的影响。

烟气余热有机朗肯循环发电系统介绍

烟气余热有机朗肯循环发电系统介绍烟气余热有机朗肯循环发电系统是一种利用烟气余热进行能量回收并产生电力的系统。

该系统以燃煤、燃气锅炉、燃气轮机和其他燃烧设备的烟气余热为能源,通过有机朗肯循环技术将烟气余热转化为电能,实现能源的高效利用。

有机朗肯循环是一种利用有机流体作为工质的热力循环系统。

其主要组成部分包括:热源、膨胀机、冷凝器、泵和蒸发器。

热源是烟气余热,通过换热器将烟气热量传递给有机流体,使其蒸发成为高温高压气体。

膨胀机将高温高压气体的动能转化为机械能,驱动发电机产生电能。

冷凝器将排出的低温废气与有机流体进行热交换,使有机流体冷凝成液体。

泵将冷凝液体压缩成高温高压液体,重新进入蒸发器进行循环。

1.高效利用烟气余热:传统的烟气余热回收系统主要采用水热交换方式,效率较低。

而有机朗肯循环系统可将烟气余热转化为电能,有效提高能源利用率。

据统计,烟气余热有机朗肯循环发电系统的热电转换效率可达20%以上,高于传统系统的效率。

2.适应性强:烟气余热有机朗肯循环发电系统适用于各类燃烧设备的烟气余热回收,包括燃煤锅炉、燃气锅炉、燃气轮机等。

无论是工业生产中的大型锅炉还是小型燃气轮机发电设备都可以使用该系统进行能量回收。

3.环境友好:烟气余热有机朗肯循环发电系统可将烟气中的大部分有害物质排放减至最低,有效控制大气污染。

同时,由于能源的高效利用,系统对环境的负荷也较低,可降低碳足迹,符合可持续发展的要求。

4.经济效益好:烟气余热有机朗肯循环发电系统可将燃气的热能转化为电能进行供电,降低企业的能源成本。

此外,该系统的投资回收周期相对较短,通常在数年内即可实现投资的回收。

然而,烟气余热有机朗肯循环发电系统也存在一些挑战和问题:1.设备成本较高:与传统的烟气余热回收系统相比,烟气余热有机朗肯循环发电系统的设备成本较高,投资规模较大。

这对于一些中小企业来说可能存在一定的经济压力。

3.适用范围受限:由于烟气余热有机朗肯循环发电系统对烟气温度和压力的要求较高,因此并非所有的燃烧设备都适用于该系统。

有机工质郎肯循环用在太阳能热发电技术中的应用

有机工质郎肯循环技术及其应用有机工质郎肯循环用在太阳能热发电技术中的应用有机工质郎肯循环用在太阳能热发电技术中的应用摘要: 作者通过文献阅读,综述了目前国内及国外学者对于基于低温有机工质郎肯循环的太阳能热发电系统的研究现状。

文章开篇首先介绍了有机工质朗肯循环的基础概念,并简单介绍了有机工质的物理特性及理论特征。

作为工程应用及实验对象,作者也叙述了如何选取合适的工质作为太阳能有机郎肯循环的循环工质关键词:有机工质;朗肯循环;太阳能发电Low-temperature Solar Powered Rankine Cycle System Based on OrganicWorking FluidAbstract:Based on referring to articles, the author summarized both domestic and international research results about low-temperature solar powered Rankine cycle system.The most suitable organic working fluid for low-temperature solar powered Rankine cycle will also be given.Key words: organic working fluid, Rankine Cycle, Solar-powered1引言能源是人类赖以生活的物质基础,也是国家安全发展及社会繁荣稳定的物质基础。

能源安全不仅仅是简单的能源问题或者是经济问题,而是一个涉及国家安全及对外战略等多层面的国家战略问题,亦是一个关乎国际能源供求和地缘政治与国际战略问题。

在全球范围内,近年来发生了许多由能源引发的问题,诸如资源纷争和区域战争、能源价格飙升和燃料市场博弈、全球气候暖化及减排战略谈判等。

有机朗肯循环低温余热发电系统综述

现代商贸工业2020年第9期199㊀基金项目:西南科技大学城市学院2019年学科建设项目(校级)(2019X K J S 03),项目负责人:刘东.作者简介:赵俊林,西南科技大学城市学院大三在读学生;秦虹(1991-),女,汉族,重庆人,硕士,助教,从事能源环境㊁工业节能㊁流动稳定性㊁制冷与热泵技术,风路结构优化等方面的研究(通讯作者).有机朗肯循环低温余热发电系统综述赵俊林㊀秦㊀虹(西南科技大学城市学院,四川绵阳621000)摘㊀要:当下我国能源形势日趋严峻.我国有大量低温余热资源没有得到有效利用,包括太阳能㊁地热能㊁工业余热等低温余热资源.以工业余热为例,我国工业能耗的50%左右没有得到利用,而是通过各种形式的余热直接排放.导致严重的能源和环境问题.在低温余热的研究中,学者发现,余热发电不仅可以实现余热资源的循环利用,而且有利于环境保护.现有的回收技术对低温余热资源回收率较低.因此,提出了有机朗肯循环低温余热发电(O R C )技术,以实现低温余热的有效利用,并提高能源利用率,改善环境问题,具有显著的社会效益和经济效益.介绍了有机朗肯循环发电的原理,有机工质㊁膨胀机㊁工质泵和换热器的优选,以及O R C 余热发电技术的发展前景.关键词:有机朗肯循环;低温余热回收;利用率;膨胀机的优选中图分类号:T B ㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀d o i :10.19311/j.c n k i .1672G3198.2020.09.0950㊀引言我国低温余热资源丰富,其中工业余热资源可回收率高达60%,尤其是在钢铁㊁化工㊁石油与石化等行业.目前,我国余热资源回收利用率较低,大型钢铁企业余热利用率最高仅为50%,提高余热利用率的潜力较大.1㊀有机朗肯循环发电系统简介有机朗肯循环发电系统(O r g a n i cR a n k i n eC yc l e ,简称O R C )主要由换热器㊁膨胀机㊁发电机和工质泵四部分组成.有机工质从蒸发器的余热中吸收热量,产生具有一定压力和温度的蒸气.推动膨胀机运转,推动发电机发电.膨胀机排出的废气将热量释放到冷凝器的冷却水中,冷凝成液态,最后在工质泵的帮助下返回换热器,完成一个热力循环,从而实现对低温余热的回收利用.图1所示为O R C 低温余热发电系统示意图.图1㊀有机朗肯循环低温余热发电系统示意图1.1㊀低温余热资源简介低温余热资源是指企业在生产过程中产生的热量没有得到有效利用.它具有分散性强㊁形式多样㊁产业分布不均㊁资源质量差异大等特点.低温余热可通过有机朗肯循环转化为机械能㊁电能加以利用,对降低企业能耗㊁减少不可再生能源消耗㊁环境保护具有重要意义.我国的低温余热资源总量巨大,余热主要来源于钢铁㊁水泥㊁玻璃㊁等工业余热,以及地热㊁生物质能㊁太阳能等可再生低温能源,节能潜力巨大.因此,加强低温余热资源的回收利用,不仅可以降低我国的能源消耗,还可以提高能源利用水平,而且有效解决了环境和生态问题.1.2㊀O R C 低温余热发电技术研究利用现状国外对于低温余热的研究开始于20世纪70年代,其中对O R C 系统进行研究的更早,早在20世纪20年代初期,就有人开始研究使用苯醚为工质的有机朗肯循环系统.总结了国外一部分O R C 系统设备生产商及相应的技术参数,研究发现比较适合用于300ħ以下的余热热源.工业余热资源回收潜力和余热发电环保效应巨大,美国M T I 公司曾经建造了利用炼油厂为余热(110ħ)的O R C 系统,该系统运用单级向心透平,有机工质为R 113,输出功率约为1174KW .O R MA T 公司和日本曾建造了以工业废热为热源的O R C 系统,最终取得了良好的社会和经济效益.太阳能有着资源丰富,对环境无任何污染的优点,缺点是太阳能具有即时性,不易保存,且能流密度低,热源温度低,但将太阳能和O R C 系统结合起来发电是具有可行性的.最具代表的是美国的S E G S ,总发电量达到354MW ,单系统的最大装机容量为80MW ,是目前世界上最大的太阳能热电系统.烟气余热O R C 发电系统,在国内有辊道炉热空气工程管理与技术现代商贸工业2020年第9期200㊀㊀低温余热O R C 发电项目,介质是从辊道炉排放的热空气,为了对企业多余热量的热空气加以利用,考虑了采用P u r eC y c l eO R C 低温发电机组回收该部分余热进行发电,这也促进了节能减排的进一步发展.美国O R MA T 公司是目前地热O R C 发电技术最为先进的公司,该公司大多数项目平均发电量都在10MW 以上.但地热源缺点是存在钻探困难㊁水中矿物杂质难以分离等问题,我国西藏那曲地热电站采用了O R MA T 公司的设备,于1993年11月正式投入生产,后因结垢问题严重未能正常运行,最终关停.2㊀有机工质的选择在O R C 低温余热发电系统中,有机工质的研究和选择是最重要的内容之一,因为有机工质的物理性质对热源的回收效率起着决定性的作用,并对系统组件的设计难度有重要影响.例如,工质的冷凝压力高,会导致密封系统设计难度高.由于O R C 系统回收的是低温余热,为了使工作介质在较低温度下汽化,应采用沸点较低的有机工作介质.同时,低沸点有机工作介质还应具有以下理想特性:低临界压力和临界温度,良好的干湿性能,低粘度,低表面张力,高循环效率,较高的安全性和环境友好性.在这一方面的研究就有:王怀信等人设计了以低温地热为热源的热电联产系统,并对不同工质展开了研究,最后推荐采用E -170,R-600,R-141b 作为该系统工质.王辉涛等人运用热动力循环的分析方法,分析了10种干流体有机工质,最后推荐R-227e a 为中低温地热发电O R C 系统的有机工质.不同的有机工质适合于不同的应用条件,因此不同文献推荐使用的有机工质也各有不同.国内研究根据各自情况采用较多的有机工质是R-245f a ㊁R-123和R-134a .3㊀设备选型3.1㊀工质泵的选择工质泵是O R C 低温余热发电系统的基本组成部分,是将冷凝器的低温低压液体有机工质经绝热增压后,高压输送到蒸发器入口的装置.作为一种成熟的产品,市场上有多种工质泵.研究发现,以下泵适用于O R C 低温余热发电系统:液压隔膜泵,具有压力高㊁适用于危险化学介质㊁维护简单等特点;立式离心泵采用变频调速㊁机械密封;多级离心泵可实现更高的扬程和设定压力;多级离心泵是在离心泵级内安装两台或两台以上具有相同功能的离心泵,相对于活塞泵等往复泵能输送更多的流量.3.2㊀膨胀机的选择膨胀机是O R C 余热发电系统中的核心设备,它是将蒸发器出口的高温高压的有机饱和蒸气的热能转化为机械能从而对外做功的设备.膨胀机按工作性质和结构的不同,可分为速度式和容积式膨胀机.速度式膨胀机适用于大流量场合,其输出功率和转速相应较高.小流量,大膨胀比的场合采用容积型膨胀机较为合适.现目前研究较多的是螺杆膨胀机和径流式透平膨胀机.螺杆膨胀机有较为成熟的工业应用,适合行业较多,目前我国已成功研制出了10KW 和40KW 的单螺杆膨胀机的样机.在国外代表厂家有GMK 和E l c t r a t h e r m 等.最后是径流式透平膨胀机,其等熵膨胀效率较高,可达85%;密封性良好,应用范围广泛,有着流量大㊁装机功率大等特点.不足之处是价格昂贵㊁投资回收期长.3.3㊀发电机的选择一般O R C 发电系统选择使用异步电机,考虑因素是系统控制问题,异步电机对转速控制要求不高,在热源不稳定的情况下,电机对机组有较大工况的变化范围适应性较强.O R C 发电机组的装机容量和对电网的冲击较小,并网更方便,功率较大,运用范围更广.3.4㊀换热器的选择蒸发器和冷凝器统称为换热器,其作用和工作原理一样.在O R C 发电系统中换热器类型的选用对机组效率与经济技术性影响较大.现目前运用于O R C 发电系统的换热器有管壳式换热器和板式换热器,相对而言,管壳式换热器较平板式换热器运用更多,而板式换热器与常规的管壳式换热器相比,传热系数较高,在一定的范围内有取代管壳式换热器的趋势.4㊀结论本文介绍了有机朗肯循环发电系统的基本原理,分析了O R C 低温余热发电技术的现状,展开了对该系统设备选型,有机工质选择等方面的研究,现得出以下结论:(1)我国低温余热资源潜力巨大,回收利用率有待提升,O R C 发电技术市场潜力大.(2)目前国内O R C 低温余热发电技术发展空间很大,仍有多项关键技术需要解决.(3)不同的余热源所适应的条件也不同,要根据余热条件和需求,具体分析,综合利用,系统优化设计对于O R C 发电系统意义重大.(4)O R C 余热发电技术实现对低温余热的有效应用,提高能源的利用效率,改善环境问题,具有显著的社会和经济效益.(5)应多展开实验方面的研究,在成熟可靠的基础上加快O R C 发电技术的实际运用,早日并入电网,实现大规模的商业化运行,缓解我国传统能源发电的压力.参考文献[1]王大彪,段捷,胡哺松,等.有机朗肯循环发电技术发展现状[J ].节能技术,2015,33(03):235G242.[2]C U O T a o ,WA N G H u a i x i n ,Z HA N G S h e n g j u n .F l u i d sa n d p a Gr a m e t e r s o p t i m i z a t i o n f o ran o v e l c o g e n e r a t i o ns y s t e m d r i v e nb yl o w Gt e m p e r a t u r e g e o t h e r m a ls o u r c e s [J ].E n e r g ,2011,36(5):2639G2649.[3]王辉涛,王华,葛众.中低温地热发电有机朗肯循环工质的选择[J ].昆明理工大学学报:自然科学版,2012,37(1):41G46.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013 年第 10 期 ( 总第 373 期)
— 38 — ENERGY CONSERVATION


卡诺循环 T - S 图如图 2 所示。根据热力过程 的关系式, 在循环过程中, 有: Q 1 = T1 ( s b - s a ) Q 2 = T2 ( s c - s d ) ( 2) ( 3)
[5 - 7 ]
复合系统是未来的发展趋势。 我国各大高校科研工作者近年来在有机朗肯 循环发电系统的工质选择和系统热力学方面也进 行深入的研究, 比如天津大学在双螺杆有机朗肯循 环发电系统、 中国科技大学在太统等, 但是目前我国科研工作者主要从事理论研 究, 而应用方面的成果相对较少, 这与受我国地热 资源本身限制外, 还与有机朗肯循环 ( ORC ) 发电 应加强在系统科学问题 系统科学问题相关。因此, 方面的研究和提高系统在低品位热源发电方面的 实际应用。 3 结论 利用有机朗肯循环发电系统将各种工业余热 , 太阳能及地热能等低品位能源转换为电能是国内 外科学研究的热点技术。 理想发电循环系统的效率与系统所处的冷热 源温度相关, 与系统工质等因素无关; 实际有机朗 肯循环发电系统性能受工质、 系统形式等影响形式
, 文献中针对不同热源论述
ORC 系统有机工质筛选相对较多, 但主要以 3 种 优化目标为主: 以热效率或透平输出功为目标; 以 第二定律效率为目标; 以设定第一定律及第二定律 效率等多参数目标。 而有机工质的替代路线主要 有 3 种: 1 ) 不含氯离子的卤代烃碳氢化合物纯质, 如 HFC - 134a; 2 ) 自然工质, 如 NH3 和碳氢化合物;
引言 我国能源供应以化石能源为主, 按照国家《烟 [1 ] 气余热资源量计算方法与利用导则 》 估算, 仅我 国电站锅炉和工业锅炉排放的烟气余热量就高达 1. 8 亿吨标煤。目前, 我国仅水泥业采用以水为介 质的发电技术回收温度大于 300℃ 的烟气 余 热。 高耗能行业 ( 如玻璃、 陶瓷等 ) 大量的低品位余热 没有得到充分有效利用, 直接排向大气, 能耗高且 污染大。 欧洲是可再生能源利用的主体, 可再生能源市 场发展和产业的年平均增长速度都大于 20% , 预 计到 2050 年可再生能源在欧洲国家的能源利用构 成比例中要达到 50% 。而我国可再生能源以直接 利用为主( 如太阳能、 地热能等以提供热水或冬季 采暖等方式为主 ) , 且利用受到区域、 地质及政策 等因素的制约。 有机工质的沸点相对较低, 可在低品位热源下 获得相对较高的蒸汽压力, 蒸汽进入膨胀机推动做 功, 具有对环境污染小的特点, 因此对低于 300℃ 低品位热源, 有机朗肯循环系统发电的综合效益明 。 显比普通蒸汽动力循环高 目前有机朗肯循环 ( ORC ) 发电是低品位余热 利用的主流核心技术之一, 也是科研工作者研究的 热点, 因此大幅度地提高有机朗肯循环 ( ORC ) 发
3 ) 用 HFC ( 含氢、 氟、 碳的不完全卤代烃 ) 或 HCFC 物质组成的混合物。 由于影响工质选择的因素较多及研究目标不 同, 对低于 300℃ 的低品位热源, 文献中根据系统 效率为优 化 目 标 优 选 出 相 对 较 好 的 有 机 工 质 为 R134a 和 R245fa。但是到目前发表的研究成果中 没有提出优选工质的准则和优选出被广泛认可的 具有优良性能的有机工质。 因此根据不同热源参 数的特性和热源的物性, 优选出合适的有机工质是 ( ORC ) 有机朗肯循环 发电系统研究的关键之一。 在发电循环系统形式上, 主要以亚临界有机朗 超临界有机朗肯循环发电系统及 肯循环发电系统、 多级循环发电系统研究为主。 不同系统循环形式 及其相应的工质选择是研究的重点 , 其中由于超临 界有机朗肯循环发电系统中工质在蒸发时工质无 汽液两相状态的变化, 从而减少蒸发器的不可逆损
2013 年第 10 期 节 能 ENERGY CONSERVATION ( 总第 373 期) — 39 — 较大, 但是由于影响系统因素及考虑目标参数不 同, 未能优选某一合适的工质。系统形式的研究已 从单一发电系统到耦合应用于节能行业中 。 因此针对不同热源参数特点, 优选出适应的发 电系统形式及合适工质, 为有机朗肯循环发电系统 设计和应用提供科学依据, 是保证其有效应用的前 提和关键。 参考文献
[ 1] GB / T17719 - 2009 , 工业锅炉及火焰加热炉烟气余热 S] . 资源量计算方法与利用导则[ [ 2] Bahaa Saleh, Gerald Koglbaue, M artin Wendland, et al. Working fluids for low temperature organic Rankine cycles [ J] . Energy , 2007 , 32 : 1210 - 1221. [ 3]Jian Sun, Wenhua Li. Operation optimization of an Organic Rankine Cycle ( ORC ) heat recovery pow er plant [ J] . Applied Thermal Engineering , 2011 , 31 : 2032 - 2041. . 北京: [ 4] 廉乐明, 李丽能, 吴家正, 等. 工程热力学[M] 1999. 中国建筑工业出版社, [ 5] Huijuan Chen, D. Yogi Gosw ami, M uhammad M . A supercritical Rankine cycle using zeotropic mixture w orking fluids for the conversion of low grade heat into pow er[ J] . Energy , 2010 , 36 : 549 - 555. [ 6] Rayegan R, Tao YX. A procedure to select w orking fluids for solar Organic Rankine Cycles ( ORC) [J] . Renew able Energy , 2011 , 36 ( 2 ) : 659 - 670. [ 7] Papadopoulos AI, Stijepovic M , Linke P. On the systematic design and selection of optimal w orking fluids for Organic Rankine Cycles [J] . Applied Thermal Engineering , 2010 , 30 ( 6 - 7 ) : 760 - 769. [ 8] Wang H, Peterson R, Herron T. Design study of configurations on system COP for a combined ORC ( Organic Rankine Cycle) and VCC ( Vapor Compression Cycle ) [ J] . Energy , 2011 , 36 : 4809 - 4820. [ 9] Heberle F, Bruggemann D. Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and pow er generation [J] . Applied Thermal Engineering , 2010 , 30 : 1326 - 1332. [ 10] Romeo LM , Lara Y , Gonzalez A. Reducing energy penalties in carbon capture w ith Organic Rankine Cycles [ J] . Applied Thermal Engineering , 2011 , 31 : 2928 - 2935. [ 11]Kosmadkis G , M anolakos D , Papadakis G. Simulation and economic analysis of a CPV / thermal system coupled w ith an Organic Rankine Cycle for increased pow er generation [ J] . Solar Energy , 2011 , 85 : 308 - 324. 作者简介: 刘广林( 1982 - ) , 男, 山东潍坊人, 硕士, 助理工 从事新能源利用技术的研究 。 程师, 收稿日期: 2013 - 07 - 22 ; 修回日期: 2013 - 08 - 29
[4 ]

图1
卡诺循环 P - V 图
在整个循环过程中工质从热源吸收热量 Q 1 , 在冷源端放热 Q 2 , 对外输出功 W 。如果用 η t 表示 系统循环热效率, 则有: η t = W / Q 1 = ( Q 1 ·Q 2 ) / Q 1 = 1 - Q 2 / Q 1 ( 1) Q 2 越小, 从式( 1 ) 中可以看出, 若 Q 1 越大, 则 热效率 η t 越高, 这是影响热机效率中的主要因素, 它表明了热机中热量的有效利用程度 。
2013 年第 10 期 节 能 ENERGY CONSERVATION ( 总第 373 期) — 37 —
有机朗肯循环发电系统利用的研究
刘广林 ( 华北电力大学低品位能源多相流与传热北京市重点实验室 , 北京 102206 )
T2 —分别为对应图 2 中 a 点 ( b 点与之相 式中: T1 、 K; 同) 及 d 点( c 点与之相同) 温度, sa、 sb、 sc、 s d —分别对应图 2 中分 a 点、 b 点、 c kJ / ( kg· K) 。 点及 d 点的熵,
图2
卡诺循环 T - S 图
系统效率相对较高。 将有机朗肯循环 ( ORC ) 失, 系统与其他系统耦合, 达到对热能梯级利用的目 例 如: 有 机 朗 肯 循 环 ( ORC ) 冷 热 电 联 供 系 的, [8 - 9 ] , 统 采用有机朗肯循环 ( ORC ) 缓解碳捕获和
相关文档
最新文档