微波萃取技术
微波辅助萃取全部全解ppt课件

4.温度差: 是被提取组分扩散与传质的前提,没有浓度差或 浓度差很小,提取过程就不能进行
5.温度: 由于存在微波下的分子运动,因而温度不需要与传 统提取工艺过程中的一样高;也可能导致体系温度过度上 升,为减小温度的影响,可将微波提取过程分次进行 微波萃取在不同温度下的提取效果是不同的,当其他条件 一样时,热态比冷态的提取效果要好
微波辅助萃取 (Microwave Aided Extraction,MAE)
• 微波辅助萃取又称微波萃取(MAE),是微波和传统的溶剂 萃取法相结合后形成的一种新的萃取方法,因其具有快速 、高效、省溶剂、环境友好等优点,微波萃取是在有机分 析中得到了广泛的应用。
微波萃取机理
• 微波萃取技术是将微波技术和萃取技术相结合,利用极性 分子可以迅速吸收微波能量来加热一些具有极性的溶剂, 达到萃取样品中目标化合物、分离杂质的目的。微波加热 不同于一般的常规加热方式,常规加热是由外部热源通过 热辐射由表及里的传导方式加热。微波加热是材料在电磁 场中由介质吸收引起的内部整体加热。微波加热意味着将 微波电磁能转变成热能,其能量是通过空间或介质以电磁 波的形式来传递的,对物质的加热过程与物质内部分子的 极化有着密切的关系。
中
中
的
的
应
应
中 的 应
用
用
用
食品分析
食 旧方法 用 色 素 的 提 取
新方法
天然食用色素制备方法大致可分为溶剂提取法、组织 培养法、粉碎法,压榨法、酶反应法、微生物,发酵 法和人工化学合成天然色素法等。其中最常用的方法 是溶剂提取法即浸取法, 但传统的浸取方法存在着浸 取时间长、劳动强度大、原料预处理能耗大、热敏性 组分易破坏等缺点
1. 微波革取用于天然产物提取的应用前景 2. 进一步缩短样品处理的时间 3. 进一步探讨萃取机理 4. 开发微波萃取新技术和其他技术联用 5. 开发微波萃取在线检测新技术 6. 将微波萃取的实验室研究扩大为工业化研究
十一、微波萃取

主要参考文献:
1. Basheer C., Obbard J.P., Lee H.K. Analysis of persistent organic pollutants in marine sediments using a novel microwave solvent extraction and liquid-phase microextraction technique. J. Chromatogr. A, 2005,1068, 221-228 2. Nevado J.J.B.N., MartÍ n-Doimeadios R.C.R., Bernardo .FJ.G., et al. Determination of mercury species in fish reference materials by gas chromatography-atomic fluorescence deterction after closed-vessel microwave-assisted extraction. J.Chromatogr.A, 2005, 1093, 21-28 3. Li H., Chen B., Zhang Z.,et al. Focused microwave-assisted solvent extraction and HPLC determinationof effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta, 2004, 36, 659-665 4. 杨玲,郑成,战宇。微波萃取技术及其在中草药方面的应用。广州大学学报 (自然科学版),2004,3:519-522。 5. Ericssion M. and ColmsjÖ A. Dynamic micromave-assisted extraction coupled online with solid -phase extraction and large-volume injection gas chromatography: determination of organophosphate ester in air samples. Anal. Chem., 2003, 75, 1713-1719 6. Shu Y.Y., Tey S.Y., Wu D.K.S. Analysis of polycyclic aromatic hydrocarbons in airborne particle using open-vessel focused micromave-assisted extraction. Anal. Chim. Acta, 2003, 495, 99-108
微波萃取的原理

微波萃取的原理
微波萃取,是一种新的从固体混合物中分离生物大分子的方法。
微波萃取是指用微波辐射作为萃取剂,使物质在几秒钟内从一个相转移到另一个相,从而达到分离混合物的目的。
微波萃取法与常规萃取法相比,具有提取效率高、反应速度快、选择性好、节能等特点。
其主要原理是:
(1)利用微波选择性加热的特性,使待分离物质中的大分
子成分(如蛋白质、核酸等)在几秒钟内被微波迅速加热,导致物质中的大分子成分(如蛋白质)受热而迅速分解,从而破坏物质的结构和细胞结构。
(2)利用微波可使物料在较短时间内达到沸点的特点,使
物料中的溶剂在极短时间内(几秒钟或几十秒钟)蒸发并与物质分离。
(3)利用微波可使物质快速升温至沸点,使液体中的溶质
快速从液相转移到固相,从而加快溶质分子在固相中的扩散速度,缩短萃取时间。
(4)利用微波加热速度快、升温快、不需要溶剂等特点,
避免了热传递、化学反应和扩散等复杂过程,从而大大缩短萃取时间。
—— 1 —1 —。
微波萃取技术的基本原理

微波萃取技术的基本原理嘿,朋友!今天咱们来聊一聊一个超酷的技术——微波萃取技术。
你可能会想,这是啥呀?其实呀,它的原理就像我们平常泡茶一样有趣呢。
想象一下,你有一杯茶叶,想要把茶叶里的香味和营养都泡出来。
你会怎么做呢?当然是用热水去泡啦。
而在微波萃取技术里,微波就像是那杯热水。
微波是一种特殊的电磁波,它有一个很厉害的本事,就是能让物质里的分子变得超级活跃。
在微波的照射下,那些被萃取的物质,就像一群在操场上的小朋友,本来安安静静的,突然被老师喊着做运动,然后就开始跑来跑去,活力满满。
比如说,我们要从植物里萃取某种有用的成分,像从薄荷叶里萃取薄荷油。
植物里的细胞就像是一个个小小的房间,而我们要的薄荷油就住在这些房间里。
正常情况下,薄荷油可能不太愿意出来。
但是微波一来,就像给这些小房间来了一场“地震”,细胞里的分子们都开始剧烈运动。
这种运动让薄荷油分子变得不安分,它们就更容易冲破细胞这个小房间的束缚,跑到外面的溶剂里去。
这里的溶剂呢,就像是我们泡茶时的水。
它是专门用来接收那些从细胞里跑出来的有用成分的。
微波不断地刺激着植物里的分子,让更多的薄荷油分子跑到溶剂里,就像越来越多的茶香跑到水里一样。
从科学的角度来说,微波能让物质中的极性分子快速地摆动。
什么是极性分子呢?你可以把它们想象成一群有头有尾的小磁铁。
在微波的电磁场作用下,这些“小磁铁”就会按照电磁场的节奏快速地转向,这种快速转向产生的摩擦和碰撞,就会让物质内部的能量增加,温度升高。
就像我们在操场上跑步跑久了会出汗一样,分子运动剧烈了就会有更多的变化,那些我们想要的成分就更容易被萃取出来啦。
而且啊,微波萃取技术还有一个很大的优点,就是速度快。
还是拿泡茶来说,用热水泡茶可能要等个几分钟才能泡出味道来,但是微波萃取就像是用了一个超级热水,能让有用成分很快地被萃取出来。
比如说,在一些工业生产中,传统的萃取方法可能要花费好几个小时甚至几天,而微波萃取可能只需要几十分钟就搞定了。
微 波 萃 取 技 术

常规的微波萃取方法是把极性溶剂(如 丙酮)或极性溶剂和非极性溶剂混合物(如丙 酮+正己烷,或甲醇+乙酸等),与被萃取样品 混合,装入微波制样容器(一般为PFA杯)中, 在密闭状态下,放入微波制样系统中加热。 根据被萃取组分的要求,控制萃取压力或温 度和时间;加热结束时,把样品过滤,滤液 直接进行测定,或作相应处理后进行测定。 一般情况下,微波萃取加热时间约5~10分 钟,萃取溶剂和样品总体积不超过制样杯体 积的1/3。
(2)另一类由非极性分子组成,它们基本上不吸 收或很少吸收微波,这类物质有聚四氟乙烯、聚丙 烯、聚乙烯、聚砜等、塑料制品和玻璃、陶瓷等, 它们能透过微波,而不吸收微波。这类材料可作为 微波加热用的容器或支承物。
(3)金属导体材料能很好的反射微波,可做其密封 材料。
二、微波萃取设备及萃取步骤
1.设备 带有控温附件的微波制样设备,微波萃取用
3. 萃取时间
微波萃取时间与被测物样品量、溶剂体积和 加热功率有关。一般情况下,萃取时间在1015min内。在萃取过程中,一般加热开始1-2min即 可达到所要求的萃取温度。
4. 溶液pH值
溶液的pH值也会对微波萃取的效率产生一定 的影响,针对不同的萃取样品,溶液有一个最佳 的用于萃取的酸碱度。有文献考察了从土壤中萃 取除草剂三嗪时分别用NaOH、NH3-NH4Cl、HAc、 NaAc和HCl调节溶剂pH值对回收率的影响。研究 结果表明:当溶剂的pH值介于4.7~9.8时,除草剂 三嗪的回收率最高。
2. 微波的特性
1) 金属材料不吸收微波,只能反射微波。 2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如
玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、 石英、纸张等,它们对微波是透明的,微波可以穿透它 们向前传播。 3)极性分子的物质会吸收微波(属损耗因子大的物质), 如:水烯材料)。
微波萃取法的原理

微波萃取法的原理微波萃取法是一种常用的分离和提取技术,它基于微波辐射对样品中的目标成分产生热效应,从而实现目标成分的快速、高效提取。
本文将介绍微波萃取法的原理及其在实际应用中的重要性。
微波萃取法的原理是基于微波辐射与物质之间的相互作用。
微波辐射是一种电磁波,其频率通常在300 MHz至300 GHz之间。
当微波辐射与样品中的分子发生相互作用时,会引起分子的振动和转动,从而产生热效应。
这种热效应可以使样品中的目标成分溶解或挥发,从而实现其分离和提取。
微波萃取法的过程通常包括以下几个步骤:样品的制备、样品的加热、目标成分的提取和分离、溶剂的回收等。
首先,需要将待提取的样品制备成适当的形式,例如粉末或液体。
然后,将样品放置在微波萃取仪器中,并加入适量的溶剂。
接下来,通过调节微波辐射的功率和时间,使样品受热并实现目标成分的提取。
最后,通过分离技术将目标成分与溶剂分离,并回收溶剂以便再次使用。
微波萃取法在许多领域中得到了广泛的应用。
例如,在环境监测中,可以使用微波萃取法提取土壤或水样中的有机污染物,以便进行分析和检测。
在食品工业中,微波萃取法可以用于提取食品中的营养成分或添加剂,以实现食品质量的监控和控制。
此外,微波萃取法还可以应用于药物分析、天然产物提取等领域。
与传统的提取方法相比,微波萃取法具有许多优点。
首先,微波萃取法的操作简单、快速,可以在较短的时间内完成样品的提取过程。
其次,微波萃取法可以实现目标成分的高效提取,提取率通常较高。
此外,微波萃取法还可以减少溶剂的使用量,降低对环境的影响。
微波萃取法是一种重要的分离和提取技术,其原理基于微波辐射与样品中的目标成分之间的相互作用。
通过微波萃取法,可以实现样品中目标成分的快速、高效提取,广泛应用于环境监测、食品工业、药物分析等领域。
随着科学技术的不断发展,微波萃取法在实际应用中的重要性将进一步凸显。
微波萃取

微波萃取的特点
1. 试剂用量少,节能,污染小。 2. 加热均匀,且热效率较高。传统热萃取是以热传导、热 辐射等方式自外向内传递热量,而微波萃取是一种“体加 热”过程,即内外同时加热,因而加热均匀,热效率较高。 微波萃取时没有高温热源,因而可消除温度梯度,且加热 速度快,物料的受热时间短,因而有利于保护物质不受过
其变性或失活。微波萃取过程中细胞因受热而破裂,一些不
希望得到的组分也会溶解于溶剂中,从而使微波萃取的选择
性显著降低。
方法与设备
原料
预处理
溶剂与物料 混合
微波萃取
冷却
过滤
溶剂 萃取组分
溶剂与萃取 组分分离
滤液
微波萃取工艺流程
方法与设备 常压法:
常压法一般是指在敞开容器中进行微波萃取的一 种方法。直接使用普通家用微波炉或用微波炉改装成 的微波萃取设备,通过调节脉冲间断时间的长短来调 节微波输出能量,目前国内外大部分的实验室研究都 采用这种设备。
ቤተ መጻሕፍቲ ባይዱ
6
方法与设备
5 4 7 8
1.微波炉 2.瓶架 3.蒸馏瓶 4.搅拌器 5. 铜管
1
6.冷凝管 8.控制面板
7.开关
3
2
常压微波回流装置示意图
方法与设备
高压法:
高压法是使用密闭萃取罐的微波萃取法,其优点是
萃取时间短,试剂消耗少,这种方法是目前报道最多
的一种方法。高压法的装置一般要求为带有功率选择, 有控制温度、压力和时间附件的微波制样设备。
方法与设备
一般由聚四氟乙烯材料制成专用密闭容器作为萃取罐,
它能允许微波自由通过、耐高温高压且不与溶剂反应。
用于微波协助萃取的设备有两类:一类是微波萃取罐;另 一类为连续微波萃取器。两者的主要区别是:一个是分批 处理物料,类似于多功能提取罐;另一个是以连续方式 工作的萃取设备,具体参数一般由生产厂家根据使用厂家 要求设定。使用的微波频率一般为2450MHz或915MHz。
微波萃取技术.

而微波加热是一个内部加热过程,微波直接
作用于内部和外部的介质分子,使整个物料
被同时加热,即为“体加热”过程,从而可
克服传统的传导式加热方式所存在的温度上 升较慢的缺陷。
一、微波萃取原理
传导加热
对流加热
微波加热
微波加热示意图
传统加热示意图
图 1 两种加热方式的比较
一、微波萃取原理
微波萃取离不开合适的溶剂,因此微波 萃取可作为溶剂提取的辅助措施。溶剂提取 法是根据中草药中各种成分在溶剂中的溶解
微波炉
微波炉的基本外形和构造
①门安全联锁开关--确保炉门打开,微波炉不能工作,炉门关上, 微波炉才能工作;
②视屏窗--有金属屏蔽层,可透过网孔观察食物的烹饪情况;
③通风口--确保烹饪时通风良好;
④转盘支承--带动玻璃转盘转动; ⑤玻璃转盘--装好食物的容器放在转盘上,加热时转盘转动,使食 物烹饪均匀; ⑥控制板--控制各档烹饪; ⑦炉门开关--按此开关,炉门打开。
一、微波萃取原理
微波萃取主要是利用微波强烈的热效应, 但微波加热方式不同于传统的加热方式。在 传统的加热方式中,容器壁大多由热的不良 导体制成,热由器壁传导至溶液内部需要一
定的时间;此外,液体表面气化而引起的对
流传热将形成自内而外的温度梯度,因而仅
一小部分液体与外界温度相当。
一、微波萃取原理
普通的外加热方式将热量由外向内传递,
微波炉
微波炉的加热时间: 要视材料及用量而定,还和食物新鲜程度、含水量有 关。由于各种食物加热时间不一,故在不能肯定食物 所需加热时间时,应以较短时间为宜,加热后可视 食物的生熟程度再追加加热时间。否则,如时间太长, 会使食物变得发硬,失去香、色、味。按照食物的种类 和烹饪要求,调节定时及功率(温度)旋钮,可以仔细 阅读说明书,加以了解。 食品放入微波炉解冻或加热,若忘记取出,如果时 间超过2小时,则应丢掉不要,以免引起食物中毒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波萃取技术节选自:郭振库金钦汉《微波萃取技术》(吉林大学化学系,长春,130023)摘要:微波萃取技术在有机污染物和有害金属分离的研究和应用方面出现了令人鼓舞的进展。
微波萃取方法具有方便、快速、试剂消耗低、回收率高和可用水作萃取溶剂的优点。
本综述介绍了微波萃取技术的原理、方法、设备和应用研究现状。
关键词:微波萃取技术设备方法综述一、概述现在,绝大多数的分析样品需要使用原子吸收光谱仪(AAS)、电感耦合等离子体发射光谱仪(ICP-AES)、气/液相色谱仪(GC/LC)、质谱仪、分子光谱仪等进行其中成分或元素的测定。
这些检测仪器一般都需用均匀液体样品,因此需要对原始样品进行消解、萃取、抽提或分离,然后才可能用上述仪器加以测定。
目前,常规样品萃取方法有分液漏斗法、超声萃取法或Soxhlet(索氏)提取法。
这些萃取法一般要用几小时或一天的时间,有些样品所需的萃取时间更长。
这些常规前处理方法不仅制样时间长,试剂用量大并对环境造成一定程度的污染,而且准确性和精密性已经不适应现代快速测定的要求。
此外,常规前处理方法长的制样时间,不能满足需要确定样品有效成分组成和结构的分析研究要求。
自Ganzler等人[1]报导用微波加热促进溶剂萃取污染土壤中的有机化合物以来,分析样品的微波萃取法由于萃取时间短、选择性好、回收率高、试剂用量少、污染低、可用水作萃取剂[2]的优点和可自动控制制样条件等而得到了分析工作人员的认同[3],因而在设备研究、应用开发、机理探讨方面均有可喜的研究报导。
虽然微波萃取土壤中的有机污染化合物已有标准方法EPA3546[4],但就目前而言,微波萃取的应用对象还比较少,与微波消解技术相比,微波萃取技术及其应用研究工作还处于最初的阶段[5],微波萃取法还是一种相对年轻的样品处理方法[6]。
要使微波萃取法成为一个分析样品制备的常规方法,还需要做更多的技术研究和应用研究工作。
粮食、蔬菜、水果、茶叶、咖啡豆、中药、化妆品和乳制品是日常生活中的必需品,这些商品的品质和有害物质检验,样品数量多,要求快速测定,这是微波萃取技术最有应用前景的领域。
微波萃取设备与分析测定仪器的成功连用实现在线萃取,将使这种技术获得更为广阔的应用。
本文介绍了微波萃取技术及其方法的机理和特点,并对近十多年来国内外微波萃取应用研究进展作一综述。
二、微波萃取方法的原理和特点根据物质与微波作用的特点,可把物质大致分为三种类型,即吸收微波、反射微波和透过微波的三种物质。
简而言之,吸收微波的物质是可以把微波转化为热能的物质,如水、乙醇、酸、碱和盐类,这些物质吸收微波后,自身温度升高,并使共存的其他物质一起受热。
透过微波的物质是很少吸收微波能的物质,从分子结构特性上讲是一些非极性物质,如烷烃、聚乙烯等,微波穿过这些物质时,其能量几乎没有损失。
反射微波的物质是金属类物质,微波接触到这些物质时发生反射,根据一定的几何形状,这些物质可把微波传输、聚焦或限制在一定的范围内。
根据微波与物质的作用,微波帮助萃取的高效性主要来自于三个方面:1.微波与被分离物质的直接作用。
由于微波具有穿透能力,因而可以直接与样品中有关物质分子或分子中的某个基团作用,被微波作用的分子或基团,很快与整个样品基体或其大分子上的周围环境分离开,从而使分离速度加快并提高萃取率。
这种微波与被分离物质的特殊作用,可以称为微波的激活作用。
Haswell和Howarth对固相分离过程中非热微波效应的研究,证明了微波在萃取分离中存在着这种特殊作用[7]。
2.微波萃取使用极性溶剂比用非极性溶剂更有利,因为极性溶剂吸收微波能,从而提高溶剂的活性,使溶剂和样品间的相互作用更有效。
Ganzler等人[8]的研究成果表明萃取溶剂的电导率和介电常数大时,在微波萃取中显著提高萃取率。
不过,近来的研究表明,采用吸收微波的材料做成搅拌子可克服此缺陷。
3.应用密闭容器,使微波萃取可在比溶剂沸点高得多得温度下进行,从而显著地提高微波萃取的速率。
由于在高的温度和压力下化学反应速率比在常温和低压下高得多,因此,密闭容器带来的高温非常明显地提高了微波萃取的萃取率并减少了制样所需的时间[9]。
由于微波的特点,在微波萃取中,与传统的Soxhlet提取法不同,萃取剂不能完全使用非极性溶剂,Remoe[10]的研究充分说明这一点。
对微波萃取法最认真的评价是Lopec-A的报导[3]。
他们就EPA方法8250中涉及到的94种化合物通过Soxhlet法,超声萃取法,超临界萃取(SFE)和微波辅助萃取法(MAE)四种方法进行萃取并作了比较。
所用萃取溶剂是MAE和Soxhlet法用己烷和丙酮(1+1)、超声萃取法用二氯甲烷和丙酮(1+1)、超临界萃取用含10%甲醇的超临界二氧化碳。
在94种被萃取的化合物中,MAE法的回收率51种大于80%、33种在50-79%、8种在20-49%,仅有2种小于19%;Soxhlet提取给出了相近的结果。
超声法回收率略好,而SFE法回收率最低,其中37种回收率大于80%、、37种在50-79%、12种在20-49%,8种小于19%。
在萃取精度方面,MAE法最好,94种化合物中有90种RSDs小于或等于10%,Soxhlet 法精度最差,94种中仅有52种RSDs小于或等于10%。
Andrzej对传统(索氏)萃取法和微波萃取法萃取时间及萃取回收率进行了比较[11],其研究成果表明微波法不仅比传统法取得更好的产率,而且萃取时间仅为传统法的三十分之一。
微波萃取技术的特殊优点使其成为样品萃取的有力工具,并已被应用于土壤、食品、肉类、蔬菜、油脂、蛋类、奶制品、沉积物等样品以萃取多环芳烃(PAHs)、农药残留、油脂、芳香油、微量元素及其化合物等组分。
三、微波萃取设备及其方法现在实验室应用最多的微波萃取装置有多模腔体式河单模聚焦式两种,工作频率均为2450MHz。
微波萃取设备的主要部件是特殊制造的微波加热装置、萃取容器和根据不同应用要求配备的控压、控温装置,对于密闭式微波萃取系统最少应具有控压装置,有控温和挥发性溶剂监测附件最好。
常规的微波萃取方法是把极性溶剂(如丙酮)或极性溶剂和非极性溶剂混合物(如丙酮+正己烷,或甲醇+醋酸等),与被萃取样品混合,装入微波制样容器中,在密闭状态下,放入微波制样系统中加热。
根据被萃取组分的要求,控制萃取压力或温度和时间:加热结束时,把样品过滤,滤液直接进行测定,或作相应处理后进行测定。
一般情况下,微波萃取加热时间约5-10分钟。
萃取溶剂和样品总体积不超过制样杯体积的三分之一。
四、微波萃取技术的应用微波萃取技术已应用于土壤、沉积物中多环芳烃、农残、有机金属化合物、植物中有效成分、有害物质、霉菌毒素、矿物中金属的萃取以及血清中药物、生物样品中农药残留的萃取研究。
根据微波萃取在不同领域中的应用分类如下:1.微波萃取农药残留一般样品中的农残含量很低(ppm-ppt),用微波萃取法同等样品量只需用较少的萃取溶剂(约1/10)即可,实际上提高了分析方法的灵敏度。
但微波萃取不同基体中的农药残留,需要选用与常规法不同的萃取溶剂,以使溶剂不仅能较好地吸收微波能,而且可有效地从样品中把农药残留成分萃取出来。
Silgoner和其同事的研究表明[14],用异辛烷、正己烷/丙酮、苯/丙酮(2;1)、甲醇/醋酸、甲醇/正己烷、异辛烷/乙腈等作溶剂,在土壤或沉积物有一定湿度的条件下,微波萃取方法仅用3分钟就可获得与Soxhlet提取法用6小时才能取得的相同的有机氯农药残留回收率。
影响密闭容器微波萃取不同样品中农药残留的条件[9],除了溶剂外,还有萃取温度、萃取时间和溶剂体积等条件,经过实验选择最佳萃取条件,萃取土壤中12种农残(艾氏剂、α-六六六,β-六六六、4,4’-DDT,狄氏剂,硫丹I、硫丹II、异狄氏剂、七氯、环氧七氯、七氯苯、七氯环戊二烯)的回收率结果与常规EPA方法进行对照,结果表明微波萃取10分钟的回收率和精密度均好于EPA规定的索氏法。
已应用过微波法萃取农药残留的其他样品有肉类、鸡蛋和奶制品[15],土壤、砂子、吸尘器所得灰尘、水和沉积物,猪油[16],蔬菜(甜菜、黄瓜、莴苣、辣椒和西红柿)[17],大蒜和洋葱[18]。
2.有机污染物的微波萃取土壤、河泥、海洋沉积物、环境灰尘以及水中的有机污染物一般指高聚物、多环芳烃、氯化物、苯、除草剂、润滑油和酚类等。
微波萃取不同基体中有机污染物的优点是只需用常规萃取方法十分之一的溶剂,约5-20分钟萃取时间即可。
微波萃取有机污染物的应用技术有二种,一种是采用多模腔体,这种技术应用最多,此法的特点是一次可以制备多个样品,萃取时间短。
这种技术应用到土壤样品中多环芳烃[19],酚类化合物[20],河泥、海洋沉积物、环境灰尘中有机污染物[21],水中的多氯联苯[22]和其他有机污染物[23]。
另一种是用开口单模聚焦式微波器件,土壤中的烷烃、多环芳烃和除草剂[25],水,沉积物和生物组织中的多环芳烃都已用过这种方法。
3.金属及其化合物的微波萃取土壤、河泥、沉积物、海洋生物和一些植物样品中重金属元素及有毒元素(如锡、汞、铅、锌、砷、锑等)都是需要经常检测的项目。
微波萃取方法富集和分离出这些元素或其化合物,不仅试剂消耗少,制样快,而且检测灵敏度高。
影响微波萃取不同基体中金属及其化合物的主要因素为萃取温度、溶剂中酸的量、萃取时间和溶剂(甲苯)量。
微波帮助萃取土壤、海洋沉积物、矿物和矿渣中的金属元素或其化合物,然后用发射光谱或质谱仪器等进行测定[26],结果令人满意。
Donard[27]及其同事用4种不同的溶剂,异辛烷、甲醇、去离子水和人造海水,在不同的微波功率下,考察了丁基和苯基锡衍生物的稳定性和萃取回收率,如沉积物中的BuSnCl3(MBT),Bu2SnCl2(DBT),Bu3SnCl(TBT),PhSnCl3(MPT),Ph2SnCl2(DPT),Ph3SnCl(T PT)和Ph2SnCl(TP2T)。
其研究表明,微波帮助萃取复杂基体中的有机金属化合物,不仅方法可行,费用低,而且整个分析测试所需时间可显著缩短到原来的约二十至二百分之一。
不同基体中元素的微波萃取研究,在海洋生物中甲基汞和砷[26],生物和植物样品中铜、镁、锌和铅,河泥中有机砷、有机锡和重金属元素(Cu,Cr,Ni,Pb和Zn),土壤中的汞、铅、锌和铜,煤中砷和硒。
4.植物中有效成分的萃取天然植物中有效成分的萃取是化学研究的重要内容,这方面微波萃取法也显示了独特的优点,已见于文献的研究报告有:迷迭香和薄荷中含有迷迭香或薄荷油混合物的提取[28],蔬菜类植物中吡咯双烷基生物碱,不同植物中的嘧啶糖甙、棉子酚和生物碱的提取,粮食和牛奶中维生素B的提取[29],植物中的香精香料,中药中的重楼皂甙[30]的提取。