汽车转向系统设计说明书

汽车转向系统设计说明书
汽车转向系统设计说明书

目录

1.初选数据 (3)

2.转向系分析 (4)

3.机械式转向器方案分析 (8)

4.转向系主要性能参数 (9)

5.转向器设计计算 (14)

6.动力转向机构设计 (16)

7.转向梯形优化设计 (22)

8.结论 (24)

9.参考文献 (25)

设计任务书

1.转向系设计1.1整车参数

1.2基本要求

1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。

2.操纵轻便,作用于转向盘上的转向力小于200N。

3.转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上。

4.转向灵敏。

5.转向器和转向传动机构中应有间隙调整机构。

6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

2.转向系分析

2.1对转向系的要求[3]

(1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便;

(2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;

(3) 传给转向盘的反冲要尽可能的小;

(4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态;

(5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员.

2.2转向操纵机构

转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位

置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在

转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转

向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应

有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在

用机械转向系统而无动力转向装置。

图2-1转向操纵机构

Fig.2-1 the control mechanism of steering

1-转向万向节;2-转向传动轴;3-转向管柱;4-转向轴;5-转向盘1-steering universal shaft; 2-steering propeller ; 3-steering column ; 4-steering axis; 5-steering wheel

2.3转向传动机构[4]

转向传动机构包括转向臂、转向纵拉杆、转向节臂、转向梯形臂以及转向横拉杆等。(见图2-2)

转向传动机构用于把转向器输出的力和运动传给左、右转向节并使左、右转向轮按一定关系进行偏转。

图2-2 转向传动机构

1-转向摇臂;2-转向纵拉杆;3-转向节臂;4-转向梯形臂;5-转向横拉杆

2.4转向器[5]

机械转向器是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角转动比和力转动比进行传递的机构。

机械转向器与动力系统相结合,构成动力转向系统。高级轿车和重型载货汽车为了使

转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。

为了避免汽车在撞车时司机受到的转向盘的伤害,除了在转向盘中间可安装安全气囊外,还可在转向系中设置防伤装置。为了缓和来自路面的冲击、衰减转向轮的摆振和转向机构的震动,有的还装有转向减振器。

多数两轴及三轴汽车仅用前轮转向;为了提高操纵稳定性和机动性,某些现代轿车采用全四轮转向;多轴汽车根据对机动性的要求,有时要增加转向轮的数目,制止采用全轮转向 。

2.5转角及最小转弯半径

汽车的机动性,常用最小转弯半径来衡量,但汽车的高机动性则应由两个条件保证。即首先应使左、右转向轮处于最大转角时前外轮的转弯值在汽车轴距的2~2.5倍范围内;其次,应这样选择转向系的角传动比,即由转向盘处于中间的位置向左或右旋转至极限位置的总旋转全书,对轿车应不超过1.8圈,对货车不应超过3.0圈。

两轴汽车在转向时,若不考虑轮胎的侧向偏离,则为了满足上述对转向系的第(2)条要求,其内、外转向轮理想的转角关系如图2-3所示,由下式决定:

L

K

BD CO DO i o =-=

-θθcot cot (2-1) 式中:θo —外转向轮转角; θi —内转向轮转角;

K —两转向主销中心线与地面交点间的距离; L —轴距

内、外转向轮转角的合理匹配是由转向梯形来保证。

图2-3 理想的内、外转向轮转角间的关系

Fig 2-3 Relations between ideal inside and outside steering wheel corner

汽车的最小转弯半径R min 与其内、外转向轮在最大转角θmax i 与θmax o 、轴距L 、主销距K 及转向轮的转臂a 等尺寸有关。在转向过程中除内、外转向轮的转角外,其他参数是不变的。最小转弯半径是指汽车在转向轮处于最大转角的条件下以低速转弯时前外轮与地面接触点的轨迹构成圆周的半径。可按下式计算:

a L o R +=

θmax

min sin (2-2)

通常θmax i 为35o~40o,为了减小R min 值,θmax i 值有时可达到45o

操纵轻便型的要求是通过合理地选择转向系的角传动比、力传动比和传动效率来达到。

对转向后转向盘或转向轮能自动回正的要求和对汽车直线行驶稳动性的要求则主要是通过合理的选择主销后倾角和内倾角,消除转向器传动间隙以及选用可逆式转向器来达到。但要使传递到转向盘上的反向冲击小,则转向器的逆效率有不宜太高。至于对转向系的最后两条要求则主要是通过合理地选择结构以及结构布置来解决。

转向器及其纵拉杆与紧固件的称重,约为中级以及上轿车、载货汽车底盘干重的1.0%~1.4%;小排量以及下轿车干重的1.5%~2.0%。转向器的结构型式队汽车的自身质量影响较小。

3. 机械式转向器方案分析

3.1循环球式转向器

循环球式转向器有螺杆和螺母共同形成的落选槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副组成,如图3-1所示。

图3-1 循环球式转向器示意图

Fig 3-1Circulation-ball steering

循环球式转向器的优点是:在螺杆和螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可以达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度和螺杆、螺母上的螺旋槽经淬火和磨削加工,使之有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行,(图3-2);适合用来做整体式动力转向器。

图3-2 循环球式转向器的间隙调整机构

Fig 3-2 The gap adjusts the organizational structure of Recirculation-ball gears 循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。循环球式转向器主要用于商用车上。

4.转向系的主要性能参数

4.1转向系的效率

功率p

1从转向轴输入,经转向摇臂轴输出所求得的效率称为转向器的正效率,用符号

η

+表示,;反之称为逆效率,用符号η-表示。

正效率η

+

计算公式:

p p

p

12

1-

=

+

η(4-1)

逆效率η

-

计算公式:

p p

p

32

3-

=

-

η(4-2)

式中,p

1为作用在转向轴上的功率;p2为转向器中的磨擦功率;p3为作用在转向摇

臂轴上的功率。

正效率高,转向轻便;转向器应具有一定逆效率,以保证转向轮和转向盘的自动返回能力。但为了减小传至转向盘上的路面冲击力,防止打手,又要求此逆效率尽可能低。

影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 4.1.1转向器的正效率η+

影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 (1)转向器类型、结构特点与效率

在四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。

同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承。选用滚针轴承时,除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种轴向器的效率η+仅有54%。另外两种结构的转向器效率分别为70%和75%。

转向摇臂轴的轴承采用滚针轴承比采用滑动轴承可使正或逆效率提高约10%。 (2)转向器的结构参数与效率

如果忽略轴承和其经地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆类转向器,其效率可用下式计算

)

tan(tan 00

ρη+=

+a a (4-3)

式中,a 0为蜗杆(或螺杆)的螺线导程角;ρ为摩擦角,ρ=arctanf ;f 为磨擦因数。 4.1.2转向器的逆效率η-

根据逆效率不同,转向器有可逆式、极限可逆式和不可逆式之分。

路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向轮和转向盘自动回正,既可以减轻驾驶员的疲劳,又可以提高行驶安全性。但是,在不平路面上行驶时,传至转向盘上的车轮冲击力,易使驾驶员疲劳,影响安全行驾驶。

属于可逆式的转向器有齿轮齿条式和循环球式转向器。 不可逆式和极限可逆式转向器

不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员

又缺乏路面感觉,因此,现代汽车不采用这种转向器。

极限可逆式转向器介于可逆式与不可逆式转向器两者之间。在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。

如果忽略轴承和其它地方的磨擦损失,只考虑啮合副的磨擦损失,则逆效率可用下式计算

0tan )

tan(a a ρη-=

- (4-4)

式(4-3)和式(4-4)表明:增加导程角a 0,正、逆效率均增大。受η-

增大的影响,

a

不宜取得过大。当导程角小于或等于磨擦角时,逆效率为负值或者为零,此时表明该转

向器是不可逆式转向器。为此,导程角必须大于磨擦角。

4.2传动比变化特性

4.2.1转向系传动比

转向系的传动比包括转向系的角传动比0ωi 和转向系的力传动比p i 。 转向系的力传动比: F F i W p /2= (4-5)

=79.23

转向系的角传动比: k

k k w d d dt d dt d i β?

β?ωωω===

//0 (4-6)

转向系的角传动比0ωi 由转向器角传动比ωi 和转向传动机构角传动比ωi '组成,即

ω

ωωi i i '=0 (4-7) 转向器的角传动比: p

p p w d d dt d dt d i β?

β?ωωω===

// (4-8) =18

转向传动机构的角传动比: k

p

k p k p d d dt d dt d i ββββωωω

=

=='// (4-9) 1≈

4.2.2力传动比与转向系角传动比的关系

转向阻力F W 与转向阻力矩M r 的关系式:

a

M Fw r

=

(4-10) 作用在转向盘上的手力F h 与作用在转向盘上的力矩M h 的关系式:

40.0094509021.5422

h h sw F M D ?=

== (4-11)

将式(4-10)、式(4-11)代入 h W p F F i /2=后得到

147623450

24.79021.54298

r sw p h M D i M a ?=

==? (4-12)

如果忽略磨擦损失,根据能量守恒原理,2Mr/M h 可用下式表示

02ωβ?i d d M M k

h r == (4-13) 将式(4-10)代入式(4-11)后得到

a

D i i sw

p 20ω=

(4-14) 当a 和D sw 不变时,力传动比p i 越大,虽然转向越轻,但0ωi 也越大,表明转向不灵敏。

4.2.3转向器角传动比的选择

转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的主要因素是转向轴负荷大小和对汽车机动能力的要求。

若转向轴负荷小或采用动力转向的汽车,不存在转向沉重问题,应取较小的转向器角传动比,以提高汽车的机动能力。若转向轴负荷大,汽车低速急转弯时的操纵轻便性问题突出,应选用大些的转向器角传动比。

汽车以较高车速转向行驶时,要求转向轮反应灵敏,转向器角传动比应当小些。汽车高速直线行驶时,转向盘在中间位置的转向器角传动比不宜过小。否则转向过分敏感,使驾驶员精确控制转向轮的运动有困难。

转向器角传动比变化曲线应选用大致呈中间小两端大些的下凹形曲线,如图4-1所示。

图4-1转向器角传动比变化特性曲线

Fig 4-1 Change characteristic property curve of Steering angle transmission ratio

4.3转向器传动副的传动间隙△t

传动间隙是指各种转向器中传动副之间的间隙。该间隙随转向盘转角的大小不同而改变,并把这种变化关系称为转向器传动副传动间隙特性(图4-2)。

研究该特性的意义在于它与直线行驶的稳定性和转向器的使用寿命有关。

传动副的传动间隙在转向盘处于中间及其附近位置时要极小,最好无间隙。若转向器传动副存在传动间隙,一旦转向轮受到侧向力作用,车轮将偏离原行驶位置,使汽车失去稳定。

传动副在中间及其附近位置因使用频繁,磨损速度要比两端快。在中间附近位置因磨损造成的间隙过大时,必须经调整消除该处间隙。

为此,传动副传动间隙特性应当设计成图4-2所示的逐渐加大的形状。

图4-2 转向器传动副传动间隙特性

Fig 4-2 Drive gap characteristic property of steering

转向器传动副传动间隙特性图中曲线1表明转向器在磨损前的间隙变化特性;曲线2表明使用并磨损后的间隙变化特性,并且在中间位置处已出现较大间隙;曲线3表明调整后并消除中间位置处间隙的转向器传动间隙变化特性。

4.4转向盘的总转动圈数

转向盘从一个极端位置转到另一个极端位置时所转过的圈数称为转向盘的总转动圈

数。它与转向轮的最大转角及转向系的角传动比有关,并影响转向的操纵轻便性和灵敏性。轿车转向盘的总转动阁数较少,一般约在3.6圈以内;货车一般不宜超过6圈。

5.转向器设计计算

5.1转向系计算载荷的确定[8]

为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷,地面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。

精确地计算这些力是困难的,为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力距M r (N ?mm),即

P

f

G M r 1

3

3

=

(5-1)

=147623 N ?mm

式中,f 为轮胎和路面见的摩擦因素,一般取0.7;G 1

为转向轴负荷(N );p 为轮胎气

压(MPa ) 转向系主要参数

作用在转向盘上的手力为

12

22280147623

40.095

29845020.575r

h SW

L M F i L D ωη

+

=

??=

=???%

(5-2)

式中, L 1为转向摇臂长;L 2为转向节臂长;D SW 为转向盘直径;i ω为转向器角传动比;

η+

为转向器正效率。

5.2转向器设计

5.2.1参数的选取[9]

摇臂轴直径/mm 22 钢球中心距D/mm 20 螺杆外径D 1/mm 20 钢球直径d /mm 5.556 螺距P /mm 7.938 工作圈数W 1.5 螺母长度L /mm 41 导管壁厚 /mm

1.5 钢球直径与导管内径之间的间隙e/mm

0.5 螺线导程角0a /o 7

法向压力角

a /o

20 接触角θ/o 45 环流行数

2

5.2.2计算参数

1.螺母内径D 2应大于D 1,一般要求

D D

D %)10~%5(1

2

=- (5-3)

D 2

=D

1

+(5%~10%)D=20+8%*20

=21.6

2. 钢球数量n

n =

0πDW πDW π20 1.5

16.95d cos d 5.556

a ??≈==个 (5-4)

≈17个

3. 滚道截面半径R 2

R 2=(0.51~0.53)d=0.52?5.556=2.889 mm (5-5)

5.3循环球式转向器零件强度计算[10]

5.3.1钢球与滚道之间的接触应力σ

σ=k 32

22

223)

()(r R r R E F - (5-6) =2253.34

式中,k 为系数,根据A/B 值查表,A=[(1/r )-(1/2R )]/2, B=[(1/r)+(1/1R )]/2; 2R 为滚道截面半径,k 取2.271;r 为钢球半径;1R 为螺杆外径;E 为材料弹性模量,等于2.1?105

MP a ;

3

F 为钢球与螺杆之间的正压力,即

3F =

o

a n F θcos cos 02

(5-7)

=342.43

式中,

a 为螺杆螺线的导程角;o θ为接触角;n 为参与工作的钢球数;F 2

为作用在螺杆上

的轴向力当接触表面硬度为58~64HRC ;拍-时,许用接触应力[σ]=2500 MP a 由于σ<[σ],因此满足强度。

5.3.2转向摇臂直径的确定

转向摇臂直径d 为

2.0τR

KM d =

式中,K 为安全系数,根据汽车使用条件不同可取2.5~3.5;M R 为转向阻力矩;0τ为扭转

强度极限。

摇臂轴用20CrMnTi 钢制造,表面渗碳,渗碳层深度在0.8~1.2mm 。对于前轴负荷大的汽车,渗碳层深度为1.05~1.45mm 。表面硬度为58~63HRC

6.动力转向机构设计

6.1对动力转向机构的要求[11]

1.运动学上应保持转向轮转角和驾驶员转动转向盘的转角之间保持一定的比例关系。

2.随着转向轮阻力的增大(或减小),作用在转向盘上的手力必须增大(或减小),称之为“路感”。

3.当作用在转向盘上的切向力F h ≥0.025~0.190kN 时,动力转向器就应开始工作。

4.转向后,转向盘应自动回正,并使汽车保持在稳定的直线行驶状态。

5.工作灵敏,即转向盘转动后,系统内压力能很快增长到最大值。

6.动力转向失灵时,仍能用机械系统操纵车轮转向。

7.密封性能好,内、外泄漏少。

6.2液压式动力转向机构的计算

6.2.1动力缸尺寸计算

动力缸的主要尺寸有动力缸内径、活塞行程、活塞杆直径和动力缸体壁厚。 动力缸产生的推力F 为

L

F L

F 1

1

=

式中,L 1为转向摇臂长度;L 为转向摇臂轴到动力缸活塞之间的距离。

推力F 与工作油液压力p 和动力缸截面面积S 之间有如下关系

pL

S L

F 1

1

=

(6-1)

因为动力缸活塞两侧的工作面积不同,应按较小一侧的工作面积来计算,即

)(4

2

2d D p S -=

π

(6-2)

式中,D 为动力缸内径;d p 为活塞杆直径,初选d p =0.35D ,压力p =6.3Mpa 。 联立式(6-1)和式(6-2)后得到

d L F p pL

D 2

1

14+=

π (6-3)

=63 mm 所以d=22mm

活塞行程是车轮转制最大转角时,由直拉杆的的移动量换算到活塞杆处的移动量得到的。

活塞厚度可取为B=0.3D 。动力缸的最大长度s 为

s D D s 13.0)6.0~5.0(10+++= (6-4)

=130mm

动力缸壳体壁厚t,根据计算轴向平面拉应力

σ

z

来确定,即

n Dt p s z t D

σσ≤+=])

(4[

2

2

(6-5) 式中,p 为油液压力;D 为动力缸内径;t 为动力缸壳体壁厚;n 为安全系数,n=3.5~5.0;

σ

s

为壳体材料的屈服点。壳体材料用球墨铸铁采用QT500-05,抗拉强度为500MPa,屈服点为350MPa 。

t=5mm

活塞杆用45刚制造,为提高可靠性和寿命,要求表面镀铬并磨光。

6.2.2分配阀的参数选择与设计计算

分配阀的要参数有:滑阀直径d 、预开隙e 1密封长度e 2、滑阀总移动量e 、滑阀在中间位置时的液流速度v 、局部压力降和泄漏量等。 1.油泵排量与油罐容积的确定

转向油泵的排量应保证转向动力缸能比无动力转向时以更高的转向时汽车转向轮转向,否则动力转向反而会形成快速转向的辅加阻力。油泵排量要达到这一要求,必须满足如下不等式:

d

d D t

s c

V

Q 24)1(π

η≥

?-

式中 Q —油泵的计算排量;

ηV

—油泵的容积,计算时一般取ηV

=0.75~0.85;

?—泄漏系数,?=0.05~0.10; D c —动力缸缸径;

d

d t

s

/—动力缸活塞移动速度;

d

d t

s

/=απ0tan n d h s

式中

n h —转向盘转动的最大可能频率,计算时对轿车取n h =1.5~1.7s 1

-;则动力转向系

的油泵排量Q 可表达为

η

απV

h s

c

n d D Q )1(4t a n 0

2

2

?-≥

(6-6)

=45L/s 2.预开隙e 1

预开隙e 1,为滑阀处于中间位置时分配阀内各环形油路沿滑阀轴向的开启量,也是为使分配阀内某油路关闭所需的滑阀最小移动量。e 1值过小会使油液常流时局部阻力过大;

e 1

值过大则转向盘需转过一个大的角度才能使动力缸工作,转向灵敏度低。一般要求转向

盘转角??=5~2?时滑阀就移动e 1的距离。

e 1

t 360

?

t ?

?

?3605~2 (6-7) =0.3mm

式中 ?—相应的转向盘转角,(°); t —转向螺杆的螺距,mm. 3.滑阀总移动量

滑阀总移动量e 过大时,会使转向盘停止转动后滑阀回到中间位置的行程长,致使转向车轮停止偏转的时刻也相应“滞后”,从而使灵敏度降低;如e 值过小,则使密封长度

e e

e 1

2

-=过小导致密封不严,这就容易产生油液泄漏致使进、回油路不能完全隔断而使

工作油液压力降低和流量减少。通常,当滑阀总移动量为e 时,转向盘允许转动的角度约为20°左右。

t e ?

?

=

36020 (6-8) =0.46mm

4.局部压力降p ?

当汽车宜行时,滑阀处于中间位置,油液流经滑阀后再回到油箱。油液流经滑阀时产

生的局部压力降p ?(MPa)为

v

v

p 2

4

2

10

8.132

-?==?ρξ

(6-9)

式中 ρ—油液密度,kg/m 3 ;

ξ—局部阻力系数,通常取ξ=3.0; v —油液的流速,m/s 。

p ?的允许值为0.03~0.04MPa 。

5.油液流速的允许值[v]

由于p ?的允许值[p ?]=0.03~0.04MPa,代入上式,则可得到油液流速的允许值

[v]=

s m p /38.5~66.48.13][10

4

=??- (6-10)

6.滑阀直径d

v

v d e Q e Q 1

m a x 1

m a x 7.3761

2=?=π (6-11) =110mm 式中

Q

max

—溢流阀限制下的油液最大排量,L/min,—般约为发动机怠速时油泵排量的1.5倍;

e 1

—预开隙,mm;

v —滑阀在中间位置时的油液流速,m/s 7. 滑阀在中间位置时的油液流速v

e Q e Q

d d v 1

m a x 1m a x

7.3761

2=?=π (6-12) =5m/s

8.分配阀的泄漏量Q ?

e p

p Q 2

3

12μπδ

???=? (6-13)

=2.2610

10

-?cm/s

式中 δ—滑阀也阀体建的径向间隙,一般 δ=0.0005~0.00125cm; p ?—滑阀进、出口油液的压力差; d —滑阀直径; e 2 —密封长度;

μ—油液的动力粘度。

6.3动力转向的评价指标

1.动力转向器的作用效能 用效能指标'=F

F h

h

s 来评价动力转向器的作用效能。现有动力转向器的效能指标

s=1~15。

2.路感

驾驶员的路感来自于转动转向盘时,所要克服的液压阻力。液压阻力等于反作用阀面积与工作液压压强的乘积。在最大工作压力时,轿车:换算以转向盘上的力增加约30~50N 。

3.转向灵敏度

转向灵敏度可以用转向盘行程与滑阀行程的比值i 来评价

δ

?

2D

sw

i = (6-14)

比值i 越小,则动力转向作用的灵敏度越高。。 4.动力转向器的静特性

动力转向器的静特性是指输入转矩与输出转矩之间的变化关系曲线,是用来评价动力转向器的主要特性指标。因输出转矩等于油压压力乘以动力缸工作面积和作用力臂,对于已确定的结构,后两项是常量,所以可以用输入转矩M φ与输出油压p 之间的变化关系曲线来表示动力转向的静特性,如图6-1示。 常将静特性曲线划分为四个区段。在输入转矩不大的时候,相当于图中A 段;汽车原地转向或调头时,输入转矩进入最大区段(图中C 段);B 区段属常用快速转向行驶区段;D 区段曲线就表明是一个较宽的平滑过渡区间。

要求动力转向器向右转和向左转的静特性曲线应对称。对称性可以评价滑阀的加工和装配质量。要求对称性大于0.85。

汽车总体设计说明书

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机械工程系 专业:车辆工程 题目:一汽大众宝来乘用车总体设计及各总成选型综合成绩: 指导教师:职称: 教授 2013年 12 月 30 日

中北大学 课程设计任务书 2013/2014 学年第 1 学期 学院(系):机械工程 专业:车辆工程 学生姓名:学号: 课程设计题目:一汽大众宝来乘用车整体设计及各总成选型起迄日期:12 月20 日~ 1 月 3 日 课程设计地点: 指导教师 系主任: 下达任务书日期: 2013 年12月20日

课程设计任务书 1.课程设计教学目的: (1)培养学生专业思想。使学生了解以前所学理论知识和参加过得金工实习、工艺实习及专业生产实习等环节,都是为今后的专业设计、生产做准备,每一个环节都是为了培养一名合格的车辆工程专业人才而设置,车辆工程专业需要有扎实的专业基础知识和实践能力。 (2)提高结构设计能力。通过课程设计,使学生学习和掌握汽车驱动桥的主减速器设计的程序和方法,树立正确的工程设计思想,培养独立的、全面的、科学的工程设计的能力。 (3)在课程设计实践中学会查找、翻阅和使用标准、规范、手册、图册和相关技术资料等。 2.课程设计的内容和要求: 1、内容:一汽大众宝来乘用车整体设计及各总成选型 2、具体参数: 车型7 长宽高 /mm 前悬/后悬 /mm 前轮距/后轮 距 / mm 轴距 /mm 总质 量/kg 整备质 量/kg 一汽大众宝来4376 1735 1446 873/990 1513/1494 2513 1830 1280 额定 承 载人数发动机 型号 排量 /mL 发动机功率 /kW 轴数 最高车速 /(km/h) 轮胎规格 5 BJH 1595 74 2 182 195/65R15 3、要求: 为给定基本设计参数的汽车进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数,详细计算指定总成的设计参数,绘出指定总布置草图和乘员舱布置草图。(1)驱动形式及主要参数的选择:驱动形式,布置形式,汽车主要参数的选择(2)发动机的选择 (3)外形设计及总体布置:整车布置的基准线(面)—零线的确定,各部件的布置3.课程设计成果形式及要求: 完成内容: (1)总布置草图1张(1号图) (2)驾驶舱布置草图1张(3号图) (3)零件图1张(3号图) (4)设计计算说明书1份

汽车转向桥桥设计说明书

汽车转向桥设计说明书 任务书要求: (1)了解汽车转向桥的结构,功能 (2)进行汽车转向桥的受力分析 (3)总体方案设计 (4)画出转向节的零件图 (5)画出转向桥的总装图 一、概述 转向桥是利用转向节使车轮偏转一定的角度以实现汽车的转向,同时还承受和传递汽车与车架及车架之间的垂直载荷、纵向力和侧向力以及这些力形成的力矩。转向桥通常位于汽车的前部,因此也常称为前桥。 各类汽车的转向桥结构基本相同,主要有前轴(梁)、转向节、主销和轮毂 (1)前轴:由中碳钢锻造,采用抗弯性较好的工字形断面。为了提高抗扭强度,接近两端略呈方形。前轴中部下凹使发动机的位置得以降低,进而降低汽车质心,扩展驾驶员视野,减小传动轴与变速器输出轴之间的夹角。下凹部分的两端制有带通孔的加宽平面,用以安装钢板弹簧。前轴两端向上翘起,各有一个呈拳形的加粗部分,并制有通孔。 (2)主销:即插入前轴的主销孔内。为防止主销在孔内转动,用带有螺纹的楔形销将其固定。 (3)转向节:转向节上的两耳制有销孔,销孔套装在主销伸出的两端头,使转向节连同前轮可以绕主销偏转,实现汽车转向。为了限制前轮最大偏转角,在前轴两端还制有最大转向角限位凸块(或安装限位螺钉)。 转向节的两个销孔,要求有较高的同心度,以保证主销的安装精度和转向灵活。为了减少磨损,在销孔内压入青铜或尼龙衬套。衬套上开有润滑油槽,由安装在转向节上的油嘴注入润滑脂润滑。为使转向灵活轻便,还在转向节下耳的上方与前轴之间装有推力轴承11;在转向节上耳与前轴之间,装有调整垫片8,用以调整轴向间隙。

左转向节的上耳装有与转向节臂9制成一体的凸缘,在下耳上装有与转向节下臂制成一体的凸缘。两凸缘上均制有一矩形键与左转向节上、下耳处的键槽相配合,转向节即通过矩形键及带有键形套的双头螺栓与转向节上下臂连接。 (4)轮毂:轮毂通过内外两个滚锥轴承套装在转向节轴颈上。轴承的松紧度可以由调整螺母调整,调好后的轮毂应能正、反方向自由转动而无明显的摆动。然后用锁紧垫圈锁紧。在锁紧垫圈外端还装有止推垫圈和锁紧螺母,拧紧后应把止推垫圈弯曲包住锁紧螺母或用开口销锁住,以防自行松动。 轮毂外端装有冲压的金属端盖,防止泥水或尘土浸入。轮毂内侧装有油封(有的油封装在转向节轴颈的根部),有的还装有挡油盘。一旦油封失效,则外面的挡油盘仍可防止润滑脂进入制动器内。 本文设计的是JY1061A型采用前置后轮驱动的载货汽车转向桥,因此该转向桥为从动桥。从动桥的功用:从动桥也称非驱动桥,又称从动车轴。它通过悬架与车架(或承载式车身)相联,两端安装从动车轮,用以承受和传递车轮与车架之间的力(垂直力、纵向力、横向力)和力矩。并保证转向轮作正确的转向运动 1、设计要求: (1)保证有足够的强度:以保证可靠的承受车轮与车架之间的作用力。 (2)保证有足够的刚度:以使车轮定位参数不变。 (3)保证转向轮有正确的定位角度:以使转向轮运动稳定,操纵轻便并减轻轮胎的磨损。 (4)转向桥的质量应尽可能小:以减少非簧上质量,提高汽车行驶平顺性。 通过对CJ1061A型前桥的设计,可以加深我们的设计思想,即: (1)处理好设计的先进性和生产的可能性之间的关系; (2)协调好产品的继承性和产品的“三化”之间的关系。 2、结构参数选择 JY1061A型汽车总布置整车参数见表1:

农用车转向系统设计说明书

第一章前言 §1.1 四轮农用车的发展前景 中国改革开放以来,在农村实行家庭联产承包责任制的改革,使农村的经济空前的活跃。农村的货运量和人口的流动量急剧增加,加快运输机械化成为农村经济发展的迫切需要,正是这一市场的需要使具有中国特色的运输机械-农用运输车应运而生。它解决了农村运输的急需,填补了村际,乡际,城镇及城乡结合部运输网络的空白,活跃了农村经济,为农村富裕劳动力找了一条出路,从而使数以万计的农民走上了小康之路! 四轮农用运输车的竞争对手是轻型汽车。与汽车相比,四轮农用运输车有许多优点。入世后农用运输车没有受到多大冲击,因为它是中国特色的产业,符合国情,在国外几乎没人搞过。但是我们不能回避汽车与四轮农用运输车在市场的竞争,四轮农用运输车利用比较底的生产成本和微利经营的生产方式并引进先进的汽车技术,坚持“三低一高”的特色,注重产品质量,使之与在汽车行业的竞争中得以提高。 随着党和国家提出的的开发西部的政策落实,也给农用运输车厂商带来了无限商机使农用运输车的开发有广阔的前景,另一方面,我国有近13亿人口,特别是9亿以上的农村人口收入水平相对较低,需求量最大的是低档次的汽车。由于它比较适合中国国情,预计在未来的5~15年里,农用车在我国农村仍然具有广阔的发展前景。近年来农用车保有量增加很快,因此对柴油的需求很大。 农用车制造工艺简单,价格便宜,其中三轮车价格在4000~7000元/辆,四轮车价格在1~1.5万元/辆,购车农户一般半年左右即可收回10000元投资。另外,农用车的养路费为每月每吨70元,是汽车的30%,使用成本为同吨位汽车的1/3到1/2。公路快速建设也促进了农用车的发展。旧中国,全国公路仅13×104 km,而到1997年底,已达1.226×106 km,目前全国98%的乡和80%的村都通了公路,使得农用车有用武之地。公安车管部门1993年制定了《关于农用运输车道路交通管理的规定》,在不损害管理大局的前提下,

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

汽车理论课程设计汇本说明书

海南大学 《汽车理论》 课程设计说明书 题目:汽车动力性计算 学号:20140507310069 姓名:郭东东 年级:2014级 学院:机电工程学院 系别:汽车系 专业:车辆工程 指导教师:张建珍 完成日期:2017年6月1日

目录 1. 题目要求 (1) 1.1. 题目要求 (3) 1.2. 车型参数 (4) 2. 计算步骤 (5) 2.1. 绘制功率外特性和转矩外特性曲线 (5) 2.2. 绘制驱动力——行驶阻力平衡图 (7) 2.3. 绘制动力特性图 (11) 2.4. 绘制加速度曲线和加速度倒数曲线 (14) 2.5. 绘制加速时间曲线 (21) 2.5.1. 二挡原地起步连续换挡加速时间曲线 (22) 2.5.2. 最高档和次高档超车加速时间 (26) 3. 结论分析 (32) 3.1. 汽车的最高车速u amax (32) 3.2. 汽车的加速时间t (32) 3.3. 汽车能爬上的最大坡度i max (33) 4. 心得体会 (33) 参考资料34

1.题目要求 1.1.题目要求 (1)根据书上所给的发动机使用外特性曲线拟合公式,绘制功率外特性和转矩外特性曲线; (2)绘制驱动力---行驶阻力平衡图; (3)绘制动力特性图; (4)绘制加速度时间曲线和加速度倒数曲线; (5)绘制加速时间曲线,包括原地起步连续换挡加速时间和最高档和次高档加速时间、加速区间(初速度和末速度)按照国家标准 GB/T12543-2009规定选取,并在说明书中具体说明选取; (6)对动力性进行总体评价。

1.2.车型参数 汽车发动机使用外特性-n曲线的拟合公式为 式中,T q为发动机转矩(N·m);n为发动机转速(r/min)。 发动机的最低转速n min=600r/min,最高转速n max=4000r/min 装载质量2000kg 整车装备质量1800kg 总质量3880kg 车轮半径0.367m 传动系机械效率ηT=0.84 滚动阻力系数f=0.016 空气阻力系数×迎风面积C D A=2.77m2 主减速器传动比i0=5.97 飞轮转动惯量I f=0.218kg·m2 二前轮转动惯量I W1=1.798kg·m2

汽车转向柱说明书

摘要 随着福特第一辆T型车的出现,汽车越来越成为人么生活中的必需品,汽车改变了人们的生活,并且汽车也融入到了人们生活的方方面面,从人们出行驾驶的小型汽车、大巴车到运输货物的载货卡车,再到疾驰在赛场上的F1赛车,汽车都对我们的生活产生了巨大的影响。小型汽车的产量也在不断的增加,据不完全统计,世界最大的汽车生产商丰田的年销量可以达到930万部。虽然人们对小型汽车的需求是随着购买力的变化而变化的,但是人们对小汽车的性能的需求都是大致相同的,人们都希望小汽车有良好的驾驶体验,影响驾驶体验最直接的就是方向盘系统,在方向盘系统中,起到中枢作用的部件就是转向柱,方向盘的反馈的好换,转向时候的反应的快慢等因素都和转向柱的性能有着很大的关系。转向柱在小汽车的方向盘系统中是连接方向盘和,转向柱下方的助力和转向系统的部件,其性能的好坏对整个小汽车的驾驶体验影响最直接。 本文以汽车方向盘的转向柱为研究对象,根据具体的需求对转向柱的结构进行了设计,并对转向柱里的标准件和关键件进行了校验,设计出了一个合理的转向柱。 关键词:转向柱、结构设计 With the advent of the first vehicle of Ford's Model T cars, cars are more and become necessities of life car changed people's lives, and cars have come into people's life, from people to travel driving small cars and buses to transport goods by truck to gallop in the arena of F1 racing cars are on our life produced tremendous impact. Small car production is also increasing, according to incomplete statistics, the world's largest auto maker TOYOTA's annual sales can reach 9 million 300 thousand. Although the people's demand for small cars is changes with the variation of the force, but the needs of people on the car's performance is roughly the same, people hope that the car has good driving experience, driving under the influence of experience the most direct is the steering wheel system, in the square to the system disk to centrally acting parts is steering column, direction disc feedback for a good, to the speed of response time and other factors and steering column performance has a great relationship. Steering column in the car's steering wheel system is connected to the steering wheel and the steering column under the steering column under the power and steering components, its performance is good or bad for the entire car driving experience the most direct impact. The automobile steering wheel steering column as the research object, according to the specific needs of the steering column structure is designed and the steering column standard parts and key parts check, design a reasonable steering column.

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

汽车转向系统布置指南

整车技术部设计指南16 第2章转向系统布置 2.1 简述 汽车转向系是用来保持或者改变汽车行使方向的机构,在汽车转向行使时,还要保 证各转向轮之间有协调的转角关系。驾驶员通过操纵转向系统,使汽车保持在直线或转 弯运动状态,或者使上述两种运动状态相互转换。 2.2 汽车转向系统的基本形式和特征 2.2.1 转向系的基本形式 可根据转向轮、转向器、转向杆系布置以及动力转向能源进行分类。 表 2.1 2.2.2 电动转向系统 电动转向系统直接利用电动机完成转向助力功能,它由转矩传感器、车速传感器、 控制器、电动机、电磁离合器和减速机构等组成。

整车技术部设计指南17 根据电动机布置的位置分为转向轴助力式、齿轮助力式、单独助力式及齿条助力式 四种形式。 a)转向轴助力式 该电动转向系统的电动机固定在转向轴一侧,由离合器与转向轴相连接,直接驱动 转向轴助力转向。如下图中所示。 b)齿轮助力式 该电动转向系统的电动机和离合器与小齿轮相连,直接驱动齿轮助力转向。

整车技术部设计指南18 c)单独助力式 该电动转向系统的电动机和离合器固定在齿轮齿条转向器的小齿轮相对另一侧,单 独驱动齿条助力实现转向动作。 d)齿条助力式 该电动转向系统的电动机和与齿条为一体,电动机转动带动循环球螺母转动,使齿 条螺杆产生轴向位移,直接起助力转向作用。

整车技术部设计指南19 2.2.3 液压式助力转向系统的结构组成 液压式助力转向系统由:转向机、转向管柱、动力转向储液罐、转向泵、以及转向 管路等几部分组成。 储液罐转向泵 转向管柱 转向机 转向管路 图 2.1 2.3、布置设计应满足的基本要求 1)应满足整车最小转弯半径要求。 2)传动效率高,力矩波动小。 3)在发生碰撞的过程中能尽量保护乘员安全。 2.4、布置设计过程 2.4.1 转向梯形的确定 一般而言,在平台沿用的基础上,转向机构转向直拉杆内点B、C的位置,直拉杆 外点A、D的位置,优先考虑的是沿用原有平台车型的相关数据。如下图 2.2中所示。

汽车制造工艺学课程设计活塞设计说明书(精)

山东农业大学 机械与电子工程学院 汽车制造工艺学课程设计 课程名称:汽车制造工艺学设计课题:活塞零件的机械加工工艺规程的编制 指导老师:吕钊钦 专业:车辆工程班级: 3班姓名:高超学号: 20120667 2014年 12月 11日 序言 本次设计内容涉及了机械制造工艺及机床夹具设计、金属切削机床、公差配合与测量等多方面的知识。 活塞加工工艺规程及其夹具设计是包括零件加工的工艺设计、工序设计以及专用夹具的设计三部分。在工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量;然后进行专用夹具的设计,选择设计出夹具的各个组成部件,如定位元件、夹紧元件、引导元件、夹具体与机床的连接部件以及其它部件;计算出夹具定位时产生的定位误差,分析夹具结构的合理性与不足之处,并在以后设计中注意改进。 关键词:工艺、工序、切削用量、夹紧、定位、误差。 目录 序言 (3) 一. 零件分析 (4)

1.1 零件作用 (4) 1.2零件的工艺分析 (5) 二. 工艺规程设计 (6) 2.1确定毛坯的制造形式 (6) 2.2基面的选择 (7) 2.3制定工艺路线 (10) 2.4机械加工余量、工序尺寸及毛坯尺寸的确定 (11) 2.5确定切削用量及基本工时 (13) 三夹具设计 (16) 3.1问题的提出 (16) 3.2定位基准的选择 (17) 3.3定位误差分析 (19) 3.4夹具设计及操作简要说明....................................20 总结 (21) 参考文献…………………………………………………………22 (附)机械加工工艺过程卡片 *1套 机械加工工序卡片 *1套 绪论 我国的汽车行业正在飞速发展,汽车的动力部分也在不断改进,内燃机作为一种可移动的动力源已广泛应用于生产和生活的各个领域。活塞是内燃机的关键零

课程设计--汽车转向机构说明书

汽车运动机构课程设计说明书 温州大学机电工程学院 2013年6月

机械原理设计说明书 题目:汽车转向机构 学院:机电工程学院 专业:汽车服务工程 班级:11汽车服务本 姓名:叶凌峰俞科王栋柄 王璐吴海霞欧阳凯强 学号:11113003233 11113003243 11113003199 11113003209 11113003218 11113003174指导老师:李振哲

目录 一.设计题目 (1) 1.1课程设计目的和任务 (1) 1.2课程设计内容与基本要求 (2) 1.3机构简介 ........................................................................ 错误!未定义书签。 1.4参考数据 (5) 1.5设计要求 (5) 二. 设计方案比较 (6) 2.1设计方案一 (6) 2.2设计方案二 (7) 2.3设计方案三 (8) 2.4最终设计方案 ................................................................ 错误!未定义书签。 三.虚拟样机实体建模与仿真 (9) 四.虚拟样机仿真结果分析 (10) 4.1运动学仿真 (11) 4.1.1运动学仿真--转向盘位移仿真曲线 (11) 4.1.2运动学仿真--轮胎位移仿真曲线 (11) 4.1.3运动学仿真--转向盘速度仿真曲线 (12) 4.1.4运动学仿真--轮胎速度仿真曲线 (12) 4.1.5运动学仿真--转向盘加速度仿真曲线 (13) 4.1.6运动学仿真--轮胎加速度仿真曲线 (13) 4.2动力学分析 (14) 4.2.1转向盘受力仿真曲线 (14) 4.2.2轮胎受力仿真曲线 (14) 五. 课程设计总结 (15) 5.1机械原理课程设计总结 (15) 5.2设计过程 (15) 5.3设计展望 (16) 5.4设计工作分工表 (16) 5.5参考文献 (16)

汽车总布置设计说明书

目录 目录 ................................................................ I 摘要 .............................................................. I II 第1章、汽车形式的选择 . (1) 1.1汽车质量参数的确定 (1) 1.1.1汽车载客量和装载质量 ................................... 1 1.1.2质量系数ηmo ............................................ 1 1.1.3整车整备质量m o ......................................... 1 1.1.4汽车总质量m a ........................................... 1 1.2汽车轮胎的选择 ............................................... 2 1.3驱动形式的选择 ............................................... 2 1.4轴数的选择 ................................................... 3 1.5货车布置形式 ................................................. 3 第2章.汽车发动机的选择 (4) 2.1发动机最大功率 max e P (4) 2.2选择发动机 ................................................... 4 第3章、汽车主要参数选择 .. (7) 3.1汽车主要尺寸的确定 (7) 3.1.1外廓尺寸 ............................................... 7 3.1.2轴距L .................................................. 7 3.1.3前轮距B 1和后轮距B 2 ..................................... 7 3.1.4前悬L F 和后悬L R ......................................... 8 3.1.5货车车头长度 ........................................... 8 3.1.6货车车箱尺寸 ........................................... 8 3.2轴荷分配及质心位置的计算 ..................................... 8 第4章.传动比的计算和选 .. (13) 4.1驱动桥主减速器传动比0i 的选择 (13) 4.2变速器传动比 g i 的选择 (14) 4.2.1变速器头档传动比 1 g i 的选择 (14) 4.2.2变速器的选择 .......................................... 14 第5章.动力性能计算 (15) 5.1驱动平衡计算 (15) 5.1.1驱动力计算 ............................................ 15 5.1.2行驶阻力计算 .......................................... 15 5.1.3力的平衡方程 .......................................... 17 5.2动力特性计算 (17) 5.2.1动力因数D 的计算 (17)

16L爱丽舍转向系统设计说明书

1.摘要 汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。 这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。 关键词;转向器操纵稳定性循环球齿条-齿扇式转向器

目录 摘要 (1) 1绪论 (4) 2汽车转向系的组成及分类 (6) 2.1汽车转向系的类型和组成 (6) 2.1.1 机械式转向系 (9) 2.1.2 动力转向器 (10) 2.2 转向系主要性能参数 (11) 2.2.1转向器的效率 (11) 2.2.2传动比的变化特性 (12) 2.2.3转向盘自由行程 (17) 2.3 转向操纵机构及转向传动机构 (17) 2.3.1转向操纵机构 (17) 2.3.2转向传动机构 (18) 3转向器总成方案分析 (20) 3.1转向器设计要求 (20) 3.2转向器总成方案设计 (21) 4循环球式转向器主要尺寸参数的选择 (25) 5 转向器输出力矩的确定 (26) 6 轴的设计计算及校核 (27) 6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (27) 6.1.1材料的选择 (27) 6.1.2结构设计 (27) 6.1.3轴的设计计算 (27) 6.2 螺杆轴设计计算及主要零件的校核 (31) 6.2.1材料选择 (31) 6.2.2结构设计 (31) 6.2.3轴的设计计算 (32) 6.2.4钢球与滚道之间的接触应力校核 (34)

汽车转向系统EPS设计毕业论文

汽车转向系统EPS设计毕业论文 目录 1 引言 (1) 1.1汽车转向系统简介 (1) 1.2汽车转向系统的设计思路 (3) 1.3 EPS的研究意义 (4) 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 3 电助力转向系统的设计 (11) 3.1 动力转向机构的性能要求 (11) 3.2 齿轮齿条转向器的设计计算 (11) 3.3 转向横拉杆的运动分析[9] (21) 3.4 转向器传动受力分析 (22) 4 转向传动机构优化设计 (24) 4.1传动机构的结构与装配 (24) 4.2 利用解析法求解出外轮转角的关系 (25) 4.3 建立目标函数 (27) 5 控制系统设计 (29) 5.1 电助力转向系统的助力特性 (29) 5.2 EPS电助力电动机的选择 (30)

本科毕业设计(论文) 5.3 控制系统框图设计 (31) 结论 (32) 致谢 (34) 参考文献 (35)

1 引言 1.1汽车转向系统简介 汽车转向系统,顾名思义是为了能够使车辆按照驾驶员的意愿向左或者向右转弯或者直线行驶。转向装置有很多种,也一直在经历一个循序渐进不断更新不断创新的过程。从发明家本茨发明汽车的初期,转向系统知识最简单的形式来转向,其机构为单纯的扶把式,没有助力,所以笨重,费力,以及行驶状态不稳定。从在原始的雏形开始,各国人士不断创新改革,到现在为止,汽车转向系统的应用按先后顺序可以分为:机械转向装置、液压助力转向装置、电子控液压助力转向系统、电助力转向系统、四轮转向系统、主动前轮转向系统和线控转向系统[1]目前市场大部分中低档轿车采用的液压式转向器,当然电控的也很常见,所以在该种系统的转向器技术的发展如今已经遇到了瓶颈。随着人们对乘车舒适,节能,安全,稳定的期望,电控液压式转向系统逐渐取代了先前的版本,但随着科技的进步,越来越多的科学家期待有路感的转向系统问世,所以流量阀式液压助力转向器出现了,在不同车速下,驾驶员手握方向盘,感觉到了路感的存在,助力特性曲线描述的就是“路感”,但是美中不足的是这种液压式转向器依然存在很多缺陷,电机,液压泵,转向器,流量阀等等转向器在发动机旁的布置问题又出现了,还有就是液压油的泄漏问题越来越的突出尖锐。电助力EPS (Electronic Power steering system)是在纯机械转向机构的前提下,设计加装了扭矩和车速等信号传感器、电子控制单元和转向助力装置等[2]。所以电助力式转向器弥补了上述的不足,而且节能环保,易于线性控制,所以现在很多研究人员把目光转向了电助力式转向机,瞬时其成为了国际汽车工业转向系统新的研究主题,且这种系统也正在慢慢实现整车量产状态。

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

汽车齿轮齿条式转向器设计分解

" 汽车设计课程设计说明书 题目:汽车齿轮齿条式转向器设计(3) - 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 、 日期: 2012年7月

汽车齿轮齿条式转向器设计 摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 ^ 。

` 目录 序言............................................. 错误!未定义书签。 1.汽车转向装置的发展趋势........................... 错误!未定义书签。 2.课程设计目的..................................... 错误!未定义书签。 3.转向系统的设计要求............................... 错误!未定义书签。 4.齿轮齿条式转向器方案分析......................... 错误!未定义书签。… 5.确定齿轮齿条转向器的形式......................... 错误!未定义书签。 6.齿轮齿条式转向器的设计步骤....................... 错误!未定义书签。 已知设计参数.................................... 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定.............................................. 错误!未定义书签。 确定线传动比、转向器的转向比.................... 错误!未定义书签。 小齿轮的设计.................................... 错误!未定义书签。 小齿轮的强度校核................................ 错误!未定义书签。 齿条的设计...................................... 错误!未定义书签。 ~ 齿条的强度计算.................................. 错误!未定义书签。 主动齿轮、齿条的材料选择........................ 错误!未定义书签。 7.总结............................................. 错误!未定义书签。参考文献........................................... 错误!未定义书签。致谢............................................. 错误!未定义书签。 $

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 部 件 名 称 传动效率(%) 4-6档变速器 95 辅助变速器(副变速器或分动器) 95 单级减速主减速器 96 传动轴万向节 98 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 轮胎种类 滚动阻力系数 中重型载货车用子午线轮胎 0.007-0.008 中重型载货车用斜交轮胎 0.010-0.012 轻型载货车用子午线轮胎 0.008-0.009 轻型载货车用斜交轮胎 0.010-0.012 轿车用子午线轮胎 0.012-0.017 轿车用斜交轮胎 0.015-0.025 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

相关文档
最新文档