阀门关闭规律对电厂循环水系统事故停泵水锤的影响

阀门关闭规律对电厂循环水系统事故停泵水锤的影响
阀门关闭规律对电厂循环水系统事故停泵水锤的影响

阀门关闭规律对电厂循环水系统事故

停泵水锤的影响

赵云驰,刘二敏

河海大学水利水电工程学院,江苏南京(210098)

摘 要:本文给出了火电厂循环冷却水系统水锤计算的基本原理和具体方法,对常用布置方式的相关设备给出了边界方程,并作了实例计算研究说明阀门关闭规律对停泵水锤的影响。 关键词:循环水系统,水锤,特征线法,关闭规律

1. 前言

火电厂循环冷却水系统主要有循环水泵、水泵出口阀门、凝汽器、虹吸井,排水工作井、冷却塔、进水管路、出水管路等部件组成。在循环水系统正常启动、停泵或事故断电停泵时,如果水泵出口阀门不能及时关闭或关闭太慢,会产生很大的水锤。

循环水系统水锤分为启动水锤、关闭水锤和事故停泵水锤。一般情况下,启动水锤不大,只有在空管情况下,当管中的空气不能及时排出而被压缩时才会加剧水流压力的变化。关闭水锤在正常操作时不会引起过大的水锤压力。而由于突然停电或误操作造成的事故停泵所产生的停泵水锤往往数值比较大,一般可以达到正常压力的1.5~4倍或更大,破坏性强,将直接导致机组停机,危及设备和人身安全[1]。根据对部分已建电厂的调查资料显示,火电厂循环冷却水系统事故断电后的关阀控制和关阀方式存在很大的差别,甚至存在完全相反的操作方式[2]。最近,有些电厂在调试中在管线的驼峰点(如凝汽器出口)发生了压力极高“水柱分离-弥合水锤”,导致管道的破裂,致使机组停机,对电厂造成很大的经济损失,这说明了对循环冷却水系统的水锤进行研究有其实用意义。

本文针对火电厂循环冷却水系统的一般布置方式,给出了常用边界控制方程,用实例进行了比较精确的计算研究,分析了不同关闭规律对水锤的影响,提出了优化阀门规律对减小水泵水锤的作用。

2. 事故停泵水锤计算方法及公式

2.1水力计算方法

水锤的计算方法,常用的有简易计算法和特征线法。由于特征线法计算方便、易编程、精确度高等特点,所以系统的水力数值模拟计算运用现在国内外广泛采用特征线法。

将运动偏微分方程和连续偏微分方程变换为四个常微分方程,用差分形式来表达,借助计算机算出任一时刻各断面上的水锤压力,由于考虑了非线性摩阻的影响,这种方法对复杂管路的优越性比较突出,且精度较高。

描述任意管道中的水流运动状态的基本方程[3]为

运动方程: 02=+??+??+??D

V fV x H g x V V t V (1) 连续方程: 0sin 2=??+???+??x

V g a V x H V t H α (2) 式中:因变量V 、H 分别为管道中心线的流体平均速度和测压管水头 ;自变量t 、x 分

别为时间和从任意起点开始的沿管轴的坐标距离;f 为管道沿程摩阻系数;D 为管道内径;a 为管道与水平线倾斜角;a 和g 分别为水锤波传播速度和重力加速度。

由方程(1)和(2)可得普遍应用的特征线方程

P P P Q B C H C ×?=+: (3)

P M P Q B C H C ×?=?: (4)

A A A A P Q Q R Q

B H

C ×?×+= (5)

B B B B M Q Q R Q B H

C ×?×+= (6)

其中: B=a/gA , R=f △x/2GDA 2

式中,H A 、Q A 分别为t-△t 时刻管段第i-1节点处的压头和流量;H B 、Q B 分别为t-△t 时刻

管段第i+1节点处的压头和流量; △x 为相邻两节点的距离;R 为阻力系数;C P 、

C M 分别与t-△t 时刻的压头和流量有关,对t 时刻是已知量。

由上述基本方程沿特征线可求得t 时刻压力管道沿线各中间节点的水头和流量,再联立各节点边界方程即可对整个循环水系统进行数值仿真计算。

2.2 水泵边界控制方程

2.2.1 水泵全特性曲线:

根据水泵的无量纲相似特性,通过如下转换

得到水泵的全特性曲线: 22)(n q h x WH +=

(7) 22)(n

q m x WB += (8) 其中:n q x arctan

+=π 、r H H h = 、r M M m =、r N N n =、r Q Q q = 式中:h 、m 、q 、n 分别为扬程、轴力矩、转速和流量的无量纲值。

2.2.2 水泵边界水头平衡方程

设水泵上、下边界节点编号为1、2(如图1),则根据式(3)、(4)可得水泵边界水头平衡方程为:

r

P r P M P M Q R R q C C h Η?Η?++?=)()(1212 (9) 式中:H r 、Q r 分别水泵额定扬程和额定流量,其它符号意义同前;?H P 为水泵出口控制阀门的水头损失。

2.2.3 机组转动力矩平衡方程

[]

a g g T t m m m m n n 2)()(000?+?++= (10)

式中:Ta 、GD 2、m g 分别为机组惯性时间常数、机组转动惯性力矩、水泵动力矩无量纲值,n 0、 m 0、 m g0分别为n 、m 、m g 前一计算时刻的步值

图1 水泵边界示意图

联列式(7)~(10)并结合给定的水泵出口控制阀启闭规律即可求出各种工况的水泵节点的瞬态参数h 、n 、m 、q 等值,也即可求得H 、N 、M 、Q 。

2.3 水泵出口阀门边界控制方程

设阀门上、下边界节点编号为1、2,则阀门边界水头平衡方程为:

Q R R C C P M M P V ×+??=?Η)()(1221 (11)

其中: △H V =(H 1-H 2)=KQ|Q|/2gA 2

式中:Q 为阀门的过流量,?H V 为阀门前、后测压管水头差;H 1、H 2分别为阀门前、后测压管水头; A 、k 分别为阀门处的局部水头损失系数和阀门面积; R P1、C P1、R M2、C M2分别为阀门边界节点的特征参数。

根据式(11)并结合给定的阀门启闭规律和阀门阻力特性曲线即可求出阀门节点的瞬态参数H 1、H 2、Q 等。

3. 工程实例计算分析

3.1 模型的建立

华东某电厂两台机组(2*300M ),均采用扩大单元制直流循环冷却供水系统,每台机组配两台立式可调循环水泵,因京杭大运河水作为冷却水源。循环水模型平面图见图2:

图2 循环水系统平面模型简图

水泵的型号:PHZ1600-1100立式可调叶混流泵,额定流量Q R =6.5 m 3/s ,额定扬程H R =16.0m ,额定转速n R =370r/min ,转动惯量WR 2=320kg.m 2,循环水泵出口设电动蝶阀。 3.2 计算结果及分析

根据1.1中的水力计算数值模拟方法,编制了FORTRAN 语言电算程序,对本工程循环水系统中停泵水锤的工况进行计算。

经计算,本系统最大水锤升压发生在“四台泵并联运行,且同时事故断电”工况条件下水泵出口阀门前处;而“一机一泵运行,运行泵事故断电”时由于流量较大,如果关闭太快,也容易引起较大的负压水锤。由于水锤压力的大小与水泵出口阀门的关闭规律密切相关,不同的关闭规律所引起的水锤差别比较大,所以要对这两种工况阀门关闭规律进行分析[4]。

3.2.1 “四台泵并联运行,且同时事故断电”工况分析

(1)相同潮位时阀门关闭规律的比较

不同的关闭规律引起的计算结果见图3和图4。由图3可以看出,在同一个系统同样的条件下,采用相同的时间,一段关闭直线的最小水锤压力比两段折线的水锤压力要小的多且波

动较大,对整个系统稳定性影响有很大的影响,而折线关闭的水锤压力相对较大,且波动比较小,对系统影响相对不大,所以采用两段折线关闭规律。

由图4可以看出,在同一个系统同样的条件下,采用两段折线关闭规律,不同关闭时间,水泵阀门出口压力波动是不同的。可以看出,15-15s 的波动比20-20s 和20-30s 要大些,故可舍去。20-20s 虽比20-30s 波动略大,但压力变化很小,且两段折线只有第一段的时间对最小水锤压力有影响,第二段时间没有对此参数产生影响。

图3 相同关闭时间直线关闭和折线关闭 图4 折线关闭规律时不同关闭时间的

规律水泵阀门出口的压力曲线比较 水泵阀门出口的压力曲线比较

3.2.2 不同潮位时关闭规律的比较

在多年平均高潮位4.85m 和多年平均低潮位3.93m 情况下,不同关闭规律下水泵阀门出口压力,计算结果如表1:

表1 四台泵并联运行,且同时事故断电水泵出口阀关闭规律比较

水泵出口阀门关闭规律 水泵出口节点最大、最小水锤压力 水位

(m )

T 1 T 2 T S H max 时刻(s )H min 时间(s )~ ~ 40 18.316 0.0 -3.328 36.264 15 15 30 18.316 0.0 -4.306 15.368 20 20 40 18.316 0.0 -1.647 20.087

多年平均

低潮位

3.93m 20 30 50 18.316 0.0 -1.633 20.087 ~ ~ 40 19.236 0.0 -9.690 37.477

15 15 30 19.236 0.0 -3.387 15.368 20 20 40 19.236 0.0 -0.729 20.087 多年平均

高潮位

4.85m

20 30 50 19.236 0.0 -0.715 20.087

T 1表示两段折线关闭规律中第一段关闭的时间,T 2表示第二段关闭的时间,T S 表示水泵出口阀门采用直线或两段折线关闭规律的总有效时间。

由表1计算结果可知在不同的潮位情况下,水泵出口节点的最大水锤压力均出现在其过渡过程的初始时刻,即四台泵稳定运行工况。而此时水泵出口节点的最小水锤压力则出现的时间不同,在相同的关闭规律下,水泵出口的最小水锤压力在数值上随潮位的降低而下降。在相同的潮位下,在两段折线关闭规律时,随着时间的增加最小压力增加,但当T S >40 s 时,

压力变化很小。

3.2.3 “一机一泵运行,运行泵事故断电” 工况分析

当机组单泵运行时,由于流量大,如果水泵出口阀门关闭太快,也很容易产生较大的负压水锤,故也要对“一机一泵运行,运行泵事故断电”工况进行阀门关闭计算。

由表2可知,在相同水位时,20-20s和20-30s两种关闭规律的水泵出口节点最大、最小水锤压力是相同的,水锤压力也随潮位的上升而增加。

由以上两种工况可以看出,根据“在阀门相同关闭总时间内,应使得水泵出口水锤压力最小值尽量大;而在水泵最小水锤相接近时,应使得阀门尽可能快速关闭”的设计原则,由

水力过渡过程优化计算,水泵出口蝶阀最优关闭规律为20s+20s(总关闭时间40s)的两段折线

关闭规律,转折点开度15°。

表2 单机单泵运行并事故断电,水泵出口阀关闭规律比较

水泵出口阀门关闭规律水泵出口节点最大、最小水锤压力

水位

(m)

T1 T2 T S H max 时刻(s)H min时间(s)

20 20 40 9.663 0.0 -3.447

19.817 多年平均

低潮位3.93m 20 30 50 9.663 0.0 -3.447

19.817

20 20 40 10.581 0.0 -2.527

19.817

多年平均

高潮位4.85m 20 30 50 10.581 0.0 -2.527

19.817

4. 结论

随着火电厂装机容量的大型化,其循环水管网系统也越来越复杂,为了冷却水系统的安全稳定运行,必须对系统进行详细的水力过渡过程分析,并选择合适水锤防护措施。本文通过选择合理的阀门关闭规律,优化了水力过渡过程的计算,以减少水泵阀门出口处的水锤压力,以利于整个循环水系统的稳定性和安全性,并使整个机组经济运行。采用分段关闭的缓闭阀门减少水泵事故断电后关阀后水锤压力,此方法经实践证明是有效可行的。但是优化阀门关闭规律并不能对整个系统起到全面的水锤防护,所以还可以同时采用其他辅助措施以尽量减小水锤压力如:可以通过减少管路中的流速来减小水锤、布置输水管线时应考虑尽量避免出现驼峰或坡度剧变、.通过模拟计算,选用转动惯量GD较大的水泵机组或加装有足够惯性的飞轮降低水锤值、设置水锤消除装置等[5]。

参考文献

[1] 栾鸿儒. 水泵及水泵站[M].水利电力出版社.1993.

[2] 桂林,鞠小明,王文荣,陈云良. 火电厂循环冷却水系统水泵断电水锤计算研究[J].四川大学学报.2000.

[3] [美]E.B.怀利,V.L.斯特里特. 瞬变流[M].清华大学流体传动与控制教研组译. 水利电力出版社

[4] 陈付山,刘德有.火电厂冷却水系统水力过渡过程研究[J].能源研究与利用,2005,(3):14-16.

[5]徐德录. 火力发电厂循环供水系统的水锤现象及防护[J].河北电力技术,2001.

The influence of valve closure rule to the impingement of the stopping pump of the thermoelectric power station

circulating cooling aqueous system

Zhao Yunchi, Liu Ermin

hohai university, Nanjing (210098)

Abstract

This article has given the basic principle and the concrete method which the thermoelectric power station circulating cooling aqueous system impingement calculates,has given the boundary equation of the related equipment to the commonly used arrangement way, and makes the example computation research to explain the influence of valve closure rule to the impingement of the stopping pump. Keywords: Circulation aqueous system, impingement, method of characteristics, closure rule

电动阀门智能控制器说明书

电动阀门智能控制器说明书

————————————————————————————————作者:————————————————————————————————日期: 2

--------------------------------------------------------------------------------------------------- 产品的不断升级可能导致部分数据的变化,如有改动,恕不另行通知。KZQ07系列电子伺服式电动阀门智能控制器 使用说明书 本定位器出厂之前已对其输入、 输出性能进行严格标定,接线后一般 KZQ07-1A KZQ07-2A

尊敬的用户,请在安装本控制器前请仔细检查以下内容: 1、检查执行器的内部位置限位切换开关,确保限位开关在区域内工作,有无异 常现象,能否达到开度的零位与满位,确认限位开关能正常工作。 2、接线前请检查执行器中电位器有无强电,用万用表分别测量电位器三接线端 子,确保该电位器与电机控制端子绝缘,电位器在执行器运转过程中的阻值变化正常,排除断点等异常现象。 3、定位器与执行器间连线要正确,仔细检查两者端子的对应关系,特别注意定 位器电源、输入信号与输出信号接线,切莫把电源接至弱点信号端,同时用仪表测量控制输入信号在定位器接受信号范围内。 4、如与执行器配套使用,在严寒、酷热、高温的环境下开箱时,仪表应于现场 存放3小时以上方可进行标定效验。 目录 一、概述-----------------------------------------------------------------------------2 二、主要技术指标-----------------------------------------------------------------2 三、定位器控制原理--------------------------------------------------------------4 四、定位器面板与接线-----------------------------------------------------------5 五、基本操作方法-----------------------------------------------------------------9 六、标定接线及操作方法--------------------------------------------------------9 七、错误代码列表-----------------------------------------------------------------11 八、附录-----------------------------------------------------------------------------12 如客户所购买指明配置的本公司Z型(机电一体)执行器,无需对执行器转角标定,接线无误即可正常使用。 一、概述: KZQ07系列电动阀门智能定位器是专门为电动执行器配套开发的数字控制系统,采用汽车工业专用的微处理器作为核心处理单元,是真正意 义上的智能数字采集控制系统。可直接安装在电动执行器的接线盒内或以 DIN导轨方式固定在外,无须专门的控制箱,体积小,安装方便。 KZQ07系列电动阀门智能定位器使用固态可控硅进行无触点控制电机,简单可靠,配合高分辨率位置传感器,不但控制精度高,控制准确, 且寿命长,可靠性高。另外控制系统无须保持电池,可在完全停电后再次 通电时,自动识别出执行器位置的变化。 KZQ07系列电动阀门智能定位器能直接接收工业仪表或计算机等输出的4~20mA DC信号(其它输入信号类型可在出厂前定制),与安装有位置 反馈传感器的电动执行器配套,对各种阀门或装置进行精确定位操作,能 3

阀门操作规范

仪征联众热电有限公司汽轮机阀门操作规范 1.阀门常规操作要求 1.1运行人员应熟悉和掌握阀门传动装置的结构和性能,正确识别阀门方向、开度标志、指示信号。 1.2正常人力能操作的阀门,严禁借助杠杆和阀门扳手开启或关闭阀门。 1.3较大口径的设有旁路阀的阀门,如主蒸汽母管阀门、给水出口门等,开启时,应先打开旁路阀,待阀门两侧压差减小后,再开启主阀门。关闭阀门时,首先关闭旁路阀,然后在关闭主阀门。 1.4对有标尺的阀门,应检查全开或全关的指示位置。明杆闸阀和截止阀应记住它们全开和全关位置,避免全开、全关时顶撞死点。1.5对全关阀门,应通过阀门后相关温度、压力等参数和就地听音等方法判断该阀门是否已关严,严禁盲目强行压紧已全关阀门,尤其全关闸阀时,严禁用力过猛顶撞闸板。 1.6正常情况下,不得把闸阀、截止阀等阀门做调节或节流使用,防止冲蚀密封面,使阀门过早损坏,若必须采用截止阀做调节或节流使用,应征得部门领导同意后可将截止阀短时间做调节或节流使用。 1.7阀门手轮、手柄损坏或丢失后,应及时通知设备部配置,不准用活动扳手或管子钳等代用。 1.8各种预调式减压阀,如:润滑油系统、电液油系统、加热蒸汽至除氧器减压阀等,运行人员严禁擅自调整,必须通知设备部人员现场共同调整。

1.9各种预调式安全门,如:高低加、汽机排汽缸、除氧本体、连排本体、三抽管道等,设备部人员应定期校验其动作值及密闭性。 1.10对于运行中处于真空环境下的阀门,应由设备部人员定期检查其密闭性。 1.11新安装的管道、阀门,应采用微开办法,让高速介质冲走异物,再轻轻关闭。反复上述操作后再进行正常操作。 1.12阀门手轮、手柄直径(长度)<320mm的,只允许一个人操作,直径≥320mm的,允许两人共同操作,或允许一人借助长度不超过 0.5m长的阀门扳手操作阀门。 1.13闸阀和截止阀之类的阀门,关闭或开启到头(即下死点或上死点)要回转四分之一~二分之一圈,以利于检查阀门开关状态。同时也可避免开、关过紧,损坏阀件。 1.14开启球阀、蝶阀时,当阀杆顶面的沟槽与通道平行,表明阀门在全开位置;当阀杆向左或向右旋转90o时,沟槽与通道垂直,表明阀门在全关位置。此类阀门严禁向超过0o或90o的方向再旋转。 1.15止回阀的安装方向应正确(箭头方向与工质流动方向一致)。1.16电动阀门在电动关闭位置后,再手动继续关闭,严禁借助杠杆或扳手关闭,检查其关闭位置的预留开度应合适,一般预留开度为1/3圈以下。 1.17安装截止阀时,必须按阀体标示流向安装;未明确标示此门流向时,应正装(即低进高出);如遇DN100以上截止阀,需调整其特性时,在密封材料允许范围内可采用反装(既高进低出),但应做好阀

建筑消防给水系统中停泵水锤的算法及防护措施

建筑消防给水系统中停泵水锤的算法及防护措施 Algorithms and prevention measures for stop-pump water hammer in building fire protection water supply system 摘要:介绍了建筑消防给水系统中水锤的概念与危害;阐述了目前常用的停泵水锤计算方法,并对各种算法的优缺点和适用条件进行了比较;最后,提出了建筑消防系统中停泵水锤的防护措施。 Abstract:Concept and hazard of water hammer in building fire protection water supply system were introduced. Various algorithms currently used for computing stop-pump water hammer were analyzed, and a comparison of the advantages and disadvantages as well as the applicable conditions was made. Finally, prevention measures for stop-pump water hammer in building fire protection water supply system were put forward. 关键词:消防给水停泵水锤防护措施 Key words: fire protection water supply, stop-pump water hammer, prevention measures 引言 水锤是管道瞬变流动中的一种压力波,它的产生是由于管道中某一截面液体流速发生了改变。这种改变可能是正常的流量调节,也可能是事故而使流量堵截,从而使该处压力产生一个突然的跃升或下跌。消防给水管网内的水体平时处于静止状态,检查测试或临警使用

停泵水锤的计算方法

停泵水锤计算及其防护措施 停泵水锤是水锤现象中的一种,是指水泵机组因突然断电或其他原因而造成的开阀状态下突然停车时,在水泵及管路系统中,因流速突然变化而引起的一系列急剧的压力交替升降的水力冲击现象。一般情况下停泵水锤最为严重,其对泵房和管路的安全有极大的威胁,国有几座水泵房曾发生停泵水锤而导致泵房淹没或管路破裂的重大事故。 停泵水锤值的大小与泵房中水泵和输水管路的具体情况有关。在泵房和输水管路设计时应考虑可能发生的水锤情况,并采取相应的防措施避免水锤的发生,或将水锤的影响控制在允许围。我院在综合国外关于水锤的最新科研成果并结合多年工程实践的经验,以特征线法为基础开发了水锤计算程序。这一程序可较好地模拟各种工况条件下水泵及输水管路系统的水锤状况,为高扬程长距离输水工程提供设计依据。 1 停泵水锤的计算原理 停泵水锤的计算有多种方法:图解法、数解法和电算法。其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。 运动方程式为:

连续方程式为: 式中H ——管中某点的水头 V——管流速 a——水锤波传播速度 x——管路中某点坐标 g——重力加速度 t——时间 f——管路摩阻系数 D——管径 通过简化求解得到水锤分析计算的最重要的基础方程: H-H0=F(t-x/a)+F(t+x/a) (3) V-V0=g/a×F(t-x/a)-g/a×F(t+x/a) (4) 式中F(t-x/a)——直接波 F(t+x/a)——反射波 在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。它表示管路中某两点处在水锤过程中各自相应时刻的水头H与流速V之间的相互关系。为了方便计算机的计算,将上述方程组变换为水头平衡方程和转速改变方程,即成事故停泵时水泵的两个边界条件

智能阀门控制器的研究正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 智能阀门控制器的研究正 式版

智能阀门控制器的研究正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 近年来阀门电动装置逐渐取代机械执行机构,成为一个不可或缺的执行单元在工业控制系统中.本文首先对阀门电动装置研究的现状及趋势做了介绍。结合智能电动执行机构的特殊要求,对智能执行机构各个部分进行了设计和开发,该系统低功耗、耐高温、能长时间稳定运行在高温和恶劣的井下环境。 近年来,在智能仪器仪表的领域重点发展的技术是数据通信、智能现场设备和开放系统。电动执行机构的实用阶段是控制系统的双向、全数字化、多站通信的发

展、现场总线等。智能电动执行机构近些年发展比较迅速。我们分析了国内和国外的产品,我国电动执行结构还存在很多问题,控制精度较低、结构不合理、稳定性差等等,使得产品跟不上社会的步伐。国外的产品虽好,但是价格就非常的贵,售后的服务也不是很好。所以开发一套符合我们使用习惯的新型智能电动阀门执行机构的产品是十分有意义的。 总体设计方案 智能电动执行机构是一个复杂的系统,它是集机、电、仪一体的机电一体化系统。设计之初,要完成总体设计,总设的原则是简单实用、操作方便、安全可靠、技术先进。这一主题的原则的优点在

电动阀门智能控制器说明书

---------------------------------------------------------------------------------------------------产品的不断升级可能导致部分数据的变化,如有改动,恕不另行通知。KZQ07系列电子伺服式电动阀门智能控制器 使用说明书 本定位器出厂之前已对其输入、输出性能进行严格标定,接线后 一般只需标定零、满位即可正常使用,如有任何不明之处,请与相关 技术服务部门联系。 KZQ07-1A KZQ07-2A

尊敬的用户,请在安装本控制器前请仔细检查以下内容: 1、检查执行器的内部位置限位切换开关,确保限位开关在区域内工作,有无异 常现象,能否达到开度的零位与满位,确认限位开关能正常工作。 2、接线前请检查执行器中电位器有无强电,用万用表分别测量电位器三接线端 子,确保该电位器与电机控制端子绝缘,电位器在执行器运转过程中的阻值变化正常,排除断点等异常现象。 3、定位器与执行器间连线要正确,仔细检查两者端子的对应关系,特别注意定 位器电源、输入信号与输出信号接线,切莫把电源接至弱点信号端,同时用仪表测量控制输入信号在定位器接受信号范围内。 4、如与执行器配套使用,在严寒、酷热、高温的环境下开箱时,仪表应于现场 存放3小时以上方可进行标定效验。 目录 一、概述-----------------------------------------------------------------------------2 二、主要技术指标-----------------------------------------------------------------2 三、定位器控制原理--------------------------------------------------------------4 四、定位器面板与接线-----------------------------------------------------------5 五、基本操作方法-----------------------------------------------------------------9 六、标定接线及操作方法--------------------------------------------------------9 七、错误代码列表-----------------------------------------------------------------11八、附录-----------------------------------------------------------------------------12 如客户所购买指明配置的本公司Z型(机电一体)执行器,无需对执行器转角标定,接线无误即可正常使用。 一、概述: KZQ07系列电动阀门智能定位器是专门为电动执行器配套开发的数字控制系统,采用汽车工业专用的微处理器作为核心处理单元,是真正意义上的智能数字采集控制系统。可直接安装在电动执行器的接线盒内或以DIN导轨方式固定在外,无须专门的控制箱,体积小,安装方便。 KZQ07系列电动阀门智能定位器使用固态可控硅进行无触点控制电机,简单可靠,配合高分辨率位置传感器,不但控制精度高,控制准确,且寿命长,可靠性高。另外控制系统无须保持电池,可在完全停电后再次通电时,自动识别出执行器位置的变化。 KZQ07系列电动阀门智能定位器能直接接收工业仪表或计算机等输出的4~20mA DC信号(其它输入信号类型可在出厂前定制),与安装有位置反馈传感器的电动执行器配套,对各种阀门或装置进行精确定位操作,能对电动执行器的转角(或位移)进行自由标定,同时输出4~20mA DC的执行器转角位置(或位移)反馈转换信号,可按键精确设定执行器转角位置的下限限位值和上限限位值,定位器采用3个按键操作,9个LED灯可直接显示定位器模态,4位数码LED通过按键切换显示阀位实际开度值、阀位设定开度值、定位器壳内温度,操作方便。 二、主要技术指标: 1、控制精度:%~%(通过D参数可调) 2、可接电动执行器反馈信号:电位器500Ω~10KΩ 3、可接收外部控制信号(DC):4~20mA (1~5V、0~10V、开关量等出厂前

潜水泵工作原理

潜水泵工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

潜水泵工作原理主要用途及适用范围: 潜水泵(Submergedpump)一种用途非常广泛的水处理工具。潜水泵与普通的抽水机不同的是它工作在水下,而抽水机大多工作在地面上。潜水泵的工作原理:潜水泵开泵前,吸入管和泵内必须充满液体。开泵后,叶轮高速旋转,潜水泵中的液体随着叶片一起旋转,在离心力的作用下,飞离叶轮向外射出,射出的液体在泵壳扩散室内速度逐渐变慢,压力逐渐增加,然后从泵出口,排出管流出。此时,在叶片中心处由于液体被甩向周围而形成既没有空气又没有液体的真空低压区,液池中的液体在池面大气压的作用下,经吸入管流入潜水泵内,液体就是这样连续不断地从液池中被抽吸上来又连续不断地从排出管流出。潜水泵的基本参数:包括流量、扬程、泵转速、配套功率、额定电流、效率、管径等等.潜水泵主要用途及适用范围:包括建设施工排、水农业排灌、工业水循环、城乡居民引用水供应,甚至抢险救灾等等 水泵原理详细介绍 借动力设备和传动装置或利用自然能源将水由低处升至高处的水力机械。广泛应用于农田灌溉、排水以及农牧业、 工矿企业、城镇供水、排水等方面。用于农田排灌、农牧业 生产过程中的水泵称农用水泵,是农田排灌机械的主要组成 部分之一。 类型 根据不同的工作原理可分为容积水泵、叶片泵等类型。 容积泵是利用其工作室容积的变化来传递能量,主要有活塞 2

泵、柱塞泵、齿轮泵、隔膜泵、螺杆泵等类型。叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。潜水电泵的泵体部分是叶片泵。其他类型的水泵有射流泵、水锤泵、内燃水泵等,分别利用射流水锤和燃料爆燃的原理进行工作。水轮泵则是水轮机与叶片泵的结合。上述各类水泵中以下列各式较具代表性。 离心泵是利用离心力的作用增加水体压力并使之流动的一种泵。由泵壳、叶轮、转轴等组成。动力机带动转轴,转轴带动叶轮在泵壳内高速旋转,泵内水体被迫随叶轮转动而产生离心力。离心力迫使液体自叶轮周边抛出,汇成高速高压水流经泵壳排出泵外,叶轮中心处形成低压,从而吸入新的水流,构成不断的水流输送作用。叶轮具有逆旋转方向弯曲的叶片,其结构型式有封闭式、半封闭式和敞开式3种,农用的多为封闭式叶轮,叶片两侧由圆盘封闭。泵体沿出水管方向逐渐扩张成蜗壳形。水流自叶轮一面吸入的称单吸离心泵,自叶轮两面吸入称双吸离心泵。为增加扬程,可将多个叶轮装在同一轴上成为多级离心泵。由前一叶轮排出的水进入后一叶轮的进水口,增压后再从后一叶轮排出,因而叶轮数愈多,压力愈高。有的离心泵带有能自动排除吸水管和泵体内空气的装置,在起动前无需向泵体灌水,称自吸离心泵,但其效率常低于一般离心泵。 离心泵在农田排灌和农牧业供水中应用最广。多用于扬程高而流量小的场合。单级离心泵的扬程为5~125米,排出的流量均匀,一般为6.3~400米3/小时,效率约可达86~9 4%。 3

阀门操作注意事项及拆装维护

阀门操作注意事项及装拆维护 一、操作阀门的注意事项: 阀门是热力系统中的一个重要部件,运行人员经常要和阀门打交道,因此必须熟悉和掌握阀门的结构和性能,正确识别阀门方向、开度标志、指示信号,应能熟练准确地调节和操作阀门及时果断地处理各种应急故障。操作时主要注意以下几类: 1. 识别阀门的开关方向。一般手动阀,手轮顺时针旋转方向表示阀门关闭方向,逆时针方向表示阀门开启方向,有个别阀门方向与上述启闭相反,操作前应检查启闭标志后再操作,旋塞阀阀杆顶面的沟槽与通道平行,标明阀门在全开位置,当阀杆旋转90°,沟槽与通道垂直,标明阀门在全关位置,有的旋塞阀以扳手与通道平行为开启,垂直为关闭。三通、四通的阀门操作应按开启、关闭换向的标记进行。 2. 用力要适当,操作阀门时,用力过大过猛容易损坏手柄,手轮,擦伤阀杆和密封面,甚至压坏密封面,切勿使用大扳手启闭小的阀门,防止用力过大,损坏阀门。 3. 开启蒸汽阀门前,必须先将管道预热,排除凝结水,开启时要缓慢开启,以免产生水锤现象,损坏阀门和设备。 较大口径的阀门设有旁通阀,开启时,应先打开旁通阀,待阀门两边压差减小后,再开启大阀门。关闭时,首先关闭旁通阀,然后再关闭大阀门。 闸阀、截止阀类阀门开启到头,要回转1/4—1/2圈,有利于操作检查,以免拧得过紧,损坏阀件。 二、阀门的常见故障: 1. 介质外漏:由于阀门进、出口法兰、阀盖、阀杆密封处填料损坏及阀体有砂眼、裂纹等,一般需检修专业人员处理。 2. 阀门关闭不严()。原因是阀门没有关到底,密封面有杂物,解决办法是:检查阀门开度是否在全关闭位置,或再开启阀门几圈后重关严,还有一种是密封面吹损,需要检修人员检修。 3. 阀门开关不动,原因有阀门关的过紧或开的过大,此时应首先检查分析阀门所处的状态,切忌盲目用力过度去操作,以防损坏阀门,如阀门卡涩锈死要设法修理。 4. 阀芯脱落。阀杆螺母损坏等均会引起阀门启闭不正常,如明杆阀门的阀杆转动,阀门开关没有尽头等,运行人员要凭经验分析判断。

PIPENET长距离供水停泵水锤设置原则

PIPENET软件用于长距离输水工程停泵水锤计算说明 1、水泵设置说明 1.1泵类型说明:停泵水锤计算需要应用TURBO PUMP,如图所示: 。 1.2定义TURBO PUMP需要参数如下: WH(x)、WB(x)即为泵的全特性曲线,即Suter Curve曲线。 该曲线一般厂家提供不了,只能由已有的全特性曲线通过数值拟合的方法得到。PIPENET 软件提供了EXCEL表格来拟合该曲线。PIPENET软件提供了国际上通用的三种比转速25、147、261的泵全特性曲线。 应用PIPENET提供的EXCEL表格拟合泵全特性曲线: 第一步:计算泵的比转速 如果泵的比转速接近25或在25一下,则直接选取比转速为25的全特性曲线即可; 在147周围直接选取147的曲线即可; 在261周围或大于261直接选取261曲线; 介于25‐147之间的,用比转速为25和147的曲线拟合得到该泵的全特性曲线; 介于147‐261之间的,用比转速为147和261的曲线拟合得到该泵的全特性曲线。 具体拟合方法请 参考EXCEL文档。 1.3停泵参数设置

泵上节点为信息节点,主要是设置泵的开度变化。正常运行给定为1,关闭则为0. 该泵停时,将该点设置为1。 在泵的属性部分的Trip time给定一个泵开始停止的时间点,例如从第10秒开始停,则设置为10.

2、阀门定义 带有启闭动作的阀门一律用Operating valve代替,。 2.1 阀门参数定义 PIPENET采用示意性模型建模,不管其是闸阀、蝶阀、球阀等各种类型阀门,只取其与水力计算相关的部分,即阀门的开度—流量特性曲线。定义阀门一般有两种方法,即流量系数或K值加阀门通径。 2.1.1 如果知道阀门的流量系数曲线,则在数据库选择valves建立阀门,如下图所示: 2.1.2 如果不知道其特性曲线,则采用直接定义的方法,需要定义其开闭方式。 已知阀门开度为1情况下的Cv值,则选用如下方法: ; 如果已知阀门K值及通径,则选取如下方法:

智能阀门控制器的研究.doc

智能阀门控制器的研究 近年来阀门电动装置逐渐取代机械执行机构,成为一个不可或缺的执行单元在工业控制系统中.本文首先对阀门电动装置研究的现状及趋势做了介绍。结合智能电动执行机构的特殊要求,对智能执行机构各个部分进行了设计和开发,该系统低功耗、耐高温、能长时间稳定运行在高温和恶劣的井下环境。 近年来,在智能仪器仪表的领域重点发展的技术是数据通信、智能现场设备和开放系统。电动执行机构的实用阶段是控制系统的双向、全数字化、多站通信的发展、现场总线等。智能电动执行机构近些年发展比较迅速。我们分析了国内和国外的产品,我国电动执行结构还存在很多问题,控制精度较低、结构不合理、稳定性差等等,使得产品跟不上社会的步伐。国外的产品虽好,但是价格就非常的贵,售后的服务也不是很好。所以开发一套符合我们使用习惯的新型智能电动阀门执行机构的产品是十分有意义的。 总体设计方案 智能电动执行机构是一个复杂的系统,它是集机、电、仪一体的机电一体化系统。设计之初,要完成总体设计,总设的原则是简单实用、操作方便、安全可靠、技术先进。这一主题的原则的优点在国内外同类产品的基础上争取一个突破和创新。 智能电动执行机构作为一种常规的仪器,它具有控制、检测等功能,系统由控制、通信、显示、保护等构成、我们把它分为两个部分:

执行部分和控制部分;执行部分主要是电动机、传感器、各种部分等组成。控制部分主要由PLC、马达、接触器等组成;通过图1可以看出,智能阀门控制是闭环控制,控制电机的运行主要由反馈信号和设置信号,控制精度较高。 系统硬件设计 2.1设计原则 2.1.1模块化的原则 模块化的设计,基本设计思想是系统自上向下设计,把系统分为各个子系统,分别进行设计。这样进行设计,方便检查缺陷和简化设计工作。模块化设计系统为未来设计带来极大的便利,良好的模块设计可以使系统变成各个模块的组合。 2.1.2标准化的原则 标准化包括两个方面:自定义标准和法定的标准,标准化的设计可以为今后的设计工作带来极大的便利。 2.1.3复用的原则 在硬件的设计中,尽量采用模块化的设计,在以后的设计中可以使用,尽量减少错误。一般来说,要更新一个系统,其实就是改变其核心硬件的设计,就可以更新产品。系统的前期采用模块化的设计,可以使产品的后续开发节省时间和成本。 2.2电机的驱动设计 交流接触器的使用有很多优点,如寿命长、宽电压等。采用 LC1-D18施耐德公司的产品用于电机控制 其控制原理图如图2所示:正转,正转按钮SBF关闭接触器KMF电动关

水锤现象及解决方案

当采用异步电机供水时,异步电机在全压起动时,从静止状态加速到额定转速所需时间极短。这就意味着在极短的时间里,水的流量从零猛到额定流量。由于流体具有具有动能和一定程度的压缩性,因此在极短的时间内流量的巨大变化将引起对管道的压强过高和过低的冲击。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管道一样,故称为水锤效应。 水锤效应有极大的破坏性:压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。 水力发电厂的水轮机在进水叶动作时也会发生这种现象.据我老师说他还碰到过进水叶因关闭过快而引起压水管爆裂的事故. 水锤效应是一种形象的说法.它是指给水泵在起动和停车时,水流冲击管道,产生的一种严重水击。由于在水管内部,管内壁是光滑的,水流动自如。当打开的阀门突然关闭或给水泵停车,水流对阀门及管壁,主要是阀门或泵会产生一个压力。由于管壁光滑,后续水流在惯性的作用下,水力迅速达到最大,并产生破坏作用,这就是水利学当中的“水锤效应”,也就是正水锤。相反,关闭的阀门在突然打开或给水泵启动后,也会产生水锤,叫负水锤,但没有前者大。 另一种关于水锤效应的说法:异步电动机在全压启动时,从静止状态加速到额定转速,水的流量从零猛增到额定流量.由于流体具有动量和一定程度的可压缩性,因此,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,并产生空化现象.压力冲击将使管壁受力而产生噪音,就像锤子敲击管子一样,称为水锤效应. 采用恒压供水,可以通过对时间的预置来延长启动和停车过程,使动态转矩大为减小,从而从根本上消除水锤效应. 实际上,水锤出现在起泵和停泵两种情况下。停泵时,如果是扬程很高,泵通过关断电源自然停止,水会逆向砸下来,形成水锤。解决的办法是采用变频器或软起动器,用变频器最好,要多舒缓都可以,但是如果不需要调速,成本就高了,用软起动器就可以了,大多数软起动器具有软起和软停双重功能。 水锤产生的另一个原因是水管中有空气,空气柱在突然降压时会膨胀,推动水柱运动,这样气推水,水推气,形成水锤,形成大的破坏力。特别是第一次试水,必须排气,排气完了再停水。 水锤现象 在有压力管路中,由于某种外界原因(如阀门突然关闭、水泵机组突 然停车)使水的流速突然发生变化,从而引起压强急剧升高和降低的交替 变化,这种水力现象称为水击或水锤。 因开泵、停泵、开关闸阀过于快速,使水的速度发生急剧变化,特别 是突然停泵引起水锤,可以破坏管道、水泵、阀门、并引起水泵反转,管 网压力降低等,所以,预防水锤发生极为重要,平时预防水锤发生的措施 主要有以下几个方法: a. 开关阀门过快引起的水锤: (1)延长开阀和关阀时间。 (2)离心泵和混凝泵应在阀门半闭15%-30%时而不是全关时停泵。

关于泵和阀的知识,看完这些你就成高手了!

关于泵和阀的知识,看完这些你就成高手了! 阀门的主要技术性能 一、启闭力和启闭力矩 阀门开启或关闭所必须施加的作用力或力矩。关闭阀门时,需要使启闭件与发座两密封面间形成一定的密封比压,同时还要克服阀杆与填料之间、阀杆与螺母的螺纹之间、阀杆端部支承处及其他磨擦部位的摩擦力,因而必须施加一定的关闭力和关闭力矩,阀门在启闭过程中,所需要的启闭力和启闭力矩是变化的,其最大值是在关闭的最终瞬时或开启的最初瞬时。设计和制造阀门时应力求降低其关闭力和关闭力矩。 二、启闭速度 是用阀门完成一次开启或关闭动作所需的时间来表示。一般对阀门的启闭速度无严格要求,但有些工况对启闭速度有特殊要求,如有的要求迅速开启或关闭,以防发生事故,有的要求缓慢关闭,以防产生水击等,这在选用阀门类型时应加以考虑。 三、密封性能 是指阀门各密封部位阻止介质泄漏的能力,它是阀门最重要的技术性能指标。阀门的密

封部位有三处:启闭件与阀座两密封面间的接触处;填料与阀杆和填料函的配和处;阀体与阀盖的连接处。其中前一处的泄漏叫做内漏,也就是通常所说的关不严,它将影响阀门截断介质的能力。对于截断阀类来说,内漏是不允许的。后两处的泄漏叫做外漏,即介质从阀内泄漏到阀外。外漏会造成物料损失,污染环境,严重时还会造成事故。对于易燃易爆、有毒或有放射的介质,外漏更是不能允许的,因而阀门必须具有可靠的密封性能。 四、流动介质 是指介质流过阀门后会产生压力损失(既阀门前后的压力差),也就是阀门对介质的流动有一定的阻力,介质为克服阀门的阻力就要消耗一定的能量。从节约能源上考虑,设计和制造阀门时,要尽可能降低阀门对流动介质的阻力。 五、使用寿命 是指阀门的耐用程度,是阀门的重要性能指标,并具有很大的经济意义。通常以能保证密封要求的启闭次数来表示,也可以用使用时间来表示。 六、动作灵敏度和可靠性 是指阀门对于介质参数变化,做出相应反应的敏感程度。对于节流阀、减压阀、调节阀等用来调节介质参数的阀门以及安全阀、疏水阀等具有特定功能的阀门来说,其功能灵敏度与可靠性是十分重要的技术性能指标。 泵的正确操作步骤 一、起动前准备: 1.试验电机转向是否正确(与泵体上标明的方向),试验时间要短以免使泵内部转动对磨部件因无液润滑而干磨损坏; 2.打开排气阀使液体充满整个泵体,待满后关闭排气阀; 3.检查各部位是否正常; 4.高温型应先进行预热,升温速度50℃/小时,以保证各部件受热均匀。 二、起动: 1.关闭泵出口阀门; 2.全开泵进口阀门; 3.起动电机,观察泵运行是否正常;

潜水泵工作原理

潜水泵工作原理主要用途及适用范围: 潜水泵(Submergedpump)一种用途非常广泛的水处理工具。潜水泵与普通的抽水机不同的是它工作在水下,而抽水机大多工作在地面上。潜水泵的工作原理:潜水泵开泵前,吸入管和泵内必须充满液体。开泵后,叶轮高速旋转,潜水泵中的液体随着叶片一起旋转,在离心力的作用下,飞离叶轮向外射出,射出的液体在泵壳扩散室内速度逐渐变慢,压力逐渐增加,然后从泵出口,排出管流出。此时,在叶片中心处由于液体被甩向周围而形成既没有空气又没有液体的真空低 压区,液池中的液体在池面大气压的作用下,经吸入管流入潜水泵内,液体就是这样连续不断地从液池中被抽吸上来又连续不断地从排出 管流出。潜水泵的基本参数:包括流量、扬程、泵转速、配套功率、额定电流、效率、管径等等.潜水泵主要用途及适用范围:包括建设施工排、水农业排灌、工业水循环、城乡居民引用水供应,甚至抢险救灾等等 水泵原理详细介绍 借动力设备和传动装置或利用自然能源将水由低处升至高处的水力机械。广泛应用于农田灌溉、排水以及农牧业、 工矿企业、城镇供水、排水等方面。用于农田排灌、农牧业 生产过程中的水泵称农用水泵,是农田排灌机械的主要组成 部分之一。 类型 根据不同的工作原理可分为容积水泵、叶片泵等类型。 容积泵是利用其工作室容积的变化来传递能量,主要有活塞

泵、柱塞泵、齿轮泵、隔膜泵、螺杆泵等类型。叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。潜水电泵的泵体部分是叶片泵。其他类型的水泵有射流泵、水锤泵、内燃水泵等,分别利用射流水锤和燃料爆燃的原理进行工作。水轮泵则是水轮机与叶片泵的结合。上述各类水泵中以下列各式较具代表性。 离心泵是利用离心力的作用增加水体压力并使之流动的一种泵。由泵壳、叶轮、转轴等组成。动力机带动转轴,转轴带动叶轮在泵壳内高速旋转,泵内水体被迫随叶轮转动而产生离心力。离心力迫使液体自叶轮周边抛出,汇成高速高压水流经泵壳排出泵外,叶轮中心处形成低压,从而吸入新的水流,构成不断的水流输送作用。叶轮具有逆旋转方向弯曲的叶片,其结构型式有封闭式、半封闭式和敞开式3种,农用的多为封闭式叶轮,叶片两侧由圆盘封闭。泵体沿出水管方向逐渐扩张成蜗壳形。水流自叶轮一面吸入的称单吸离心泵,自叶轮两面吸入称双吸离心泵。为增加扬程,可将多个叶轮装在同一轴上成为多级离心泵。由前一叶轮排出的水进入后一叶轮的进水口,增压后再从后一叶轮排出,因而叶轮数愈多,压力愈高。有的离心泵带有能自动排除吸水管和泵体内空气的装置,在起动前无需向泵体灌水,称自吸离心泵,但其效率常低于一般离心泵。 离心泵在农田排灌和农牧业供水中应用最广。多用于扬程高而流量小的场合。单级离心泵的扬程为5~125米,排出的流量均匀,一般为6.3~400米3/小时,效率约可达86~9 4%。

阀门常见故障处理

阀门常见故障及处理1、填料函泄漏 这是跑、冒、滴、漏的主要方面,在工厂里经常见到。 产生填料函泄漏的原因有下列几点: ①填料与工作介质的腐蚀性、温度、压力不相适应;②装填方法不对,尤其是整根填料盘旋放入,最易产生泄漏;③阀杆加工精度或表面光洁度不够,或有椭圆度,或有刻痕;④阀杆已发生点蚀,或因露天缺乏保护而生锈;⑤阀杆弯曲;⑥填料使用太久,已经老化;⑦操作太猛。 消除填料泄漏的方法是:①正确选用填料;②按正确的进行装填;③阀杆加工不合格的,要修理或更换,表面光洁度最低要达到▽5,较重要的,要达到▽8以上,且无其他缺陷;④采取保护措施,防止锈蚀,已经锈蚀的要更换;⑤阀杆弯曲要校直或更新;⑥填料使用一定时间后,要更换;⑦操作要注意平稳,缓开缓关,防止温度剧变或介质冲击。 2、关闭件泄漏 通常将填料函泄漏叫做外泄,把关闭件叫做内泄。关闭件泄漏,在阀门里面,不易发现。 关闭件泄漏,可分两类:一类是密封面泄漏,另一类是密封圈根部泄漏。 引起泄漏的原因有:①密封面研磨得不好;②密封圈与阀座、阀瓣配合不严紧;③阀瓣与阀杆连接不牢*;④阀杆弯扭,使上下关闭件不对中;⑤关闭太快,密封面接触不好或早已损坏;⑥材料选择不当,经受不住介质的腐蚀;⑦将截止阀、闸阀作调节阀使用。密封面经受不住高速流动介质的冲蚀;⑧某些介质,在阀门关闭后逐渐冷却,使密封面出现细缝,也会产生冲蚀现象;⑨某些密封面与阀座、阀瓣之间采用螺纹连接,容易产生氧浓差电池,腐蚀松脱;⑩因焊渣、铁锈、尘土等杂质嵌入,或生产系统中有机械零件脱落堵住阀芯,使阀门不能关严。 预防办法有: ①使用前必须认真试压试漏,发现密封面泄漏或密封圈根部泄漏,要处理好后再使用;②要事先检查阀门各部件是否完好,不能使用阀杆弯扭或阀瓣与阀杆连接不可*的阀门;③阀门关紧要使稳劲,不要使猛劲,如发现密封面之间接触不好或有挡碍,应立即开启稍许,让杂物流出,然后再细心关紧;④选用阀门时,不但要考虑阀体的耐腐蚀性,而且要考虑关闭件的耐腐蚀性;⑤要按照阀门的结构特性,正确使用,需要调节流量的部件应该采用调节阀;⑥对于关阀后介质冷却且温差较大的情况,要在冷却后再将阀门关紧一下;⑦阀座、阀瓣与密封圈采用螺纹连接时,可以用聚四氟乙烯带作螺纹间的填料,使其没有空隙;⑧有可能掉入杂质的阀门,应在阀前加过滤器。 3、阀杆升降失灵 阀杆升降失灵的原因有: ①操作过猛使螺纹损伤;②缺乏润滑或润滑剂失效;③阀杆弯扭;④表面光洁度不够;⑤配合公差不准,咬得过紧; ⑥阀杆螺母倾斜;⑦材料选择不当,例如阀杆和阀杆螺母为同一材质,容易咬住;⑧螺纹被介质腐蚀(指暗杆阀门或阀杆螺母在下部的阀门);⑨露天阀门缺乏保护,阀杆螺纹沾满尘砂,或者被雨露霜雪所锈蚀。 预防的方法:

自吸水泵的定义以及工作原理

一、水泵的定义 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体使液体能量增加。 二、水泵的主要用途泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 四、水泵的分类泵通常按工作原理分容积式泵、动力式泵和其他类型泵,如化工泵油桶泵玻璃钢泵离心泵管道离心泵管道泵排污泵等。泵除按工作原理分类外,还可按其他方法分类和命名。例如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、隔膜泵加药泵和泥浆泵等。 五、自吸水泵的工作原理容积式泵是依靠工作元件在泵缸内作往复或回转运动,使工作容积交替地增大和缩小,以实现液体的吸入和排出。工作元件作往复运动的容积式泵称为往复泵,作回转运动的称为回转泵。前者的吸入和排出过程在同一泵缸内交替进行,并由吸入阀和排出阀加以控制;后者则是通过齿轮、螺杆、叶形转子或滑片等工作元件的旋转作用,迫使液体从吸入侧转移到排出侧。容积式泵在一定转速或往复次数下的流量是一定的,几乎不随压力而改变;往复泵的流量和压力有较大脉动,需要采取相应的消减脉动措施;回转泵一般无脉动或只有小的脉动;具有自吸能力,泵启动后即能抽除管路中的空气吸入液体;启动泵时必须将排出管路阀门完全打开;往复泵适用于高压力和小流量;回转泵适用于中小流量和较高压力;往复泵适宜输送清洁的液体或气液混合物。总的来说,容积泵的效率高于动力式泵。动力式泵靠快速旋转的叶轮对液体的作用力,将机械能传递给液体,使其动能和压力能增加,然后再通过泵缸,将大部分动能转换为压力能而实现输送。动力式泵又称叶轮式泵或叶片式泵。离心泵是最常见的动力式泵。动力式泵在一定转速下产生的扬程有一限定值,扬程随流量而改变;工作稳定,输送连续,流量和压力无脉动;一般无自吸能力,需要将泵先灌满液体或将管路抽成真空后才能开始工作;适用性能范围广;适宜输送粘度很小的清洁液体,特殊设计的泵可输送泥浆、污水等或水输固体物。动力式泵主要用于给水、排水、灌溉、流程液体输送、电站蓄能、液压传动和船舶喷射推进等。其他类型的泵是指以另外的方式传递能量的一类泵。例如射流泵是依靠高速喷射出的工作流体,将需要输送的流体吸入泵内,并通过两种流体混合进行动量交换来传递能量;水锤泵是利用流动中的水被突然制动时产生的能量,使其中的一部分水压升到一定高度;磁力泵是使通电的液态金属在电磁力作用下,产生流动而实现输送;气体升液泵通过导管将压缩空气或其他压缩气体送至液体的最底层处,使之形成较液体轻的气液混合流体,再借管外液体的压力将混合流体压升上来。 六、水泵的主要性能参数泵的性能参数主要有流量和扬程,此外还有轴功率、转速和必需汽蚀裕量。流量是指单位时间内通过泵出口输出的液体量,一般采用体积流量;扬程是单位重量输送液体从泵入口至出口的能量增量,对于容积式泵,能量增量主要体现在压力能增加上,所以通常以压力增量代替扬程来表示。泵的效率不是一个独立性能参数,它可以由别的性能参数例如流量、扬程和轴功率按公式计算求得。反之,已知流量、扬程和效率,也可求出轴功率。泵的各个性能参数之间存在着一定的相互依赖变化关系,可以通过对泵进行试验,分别测得和算出参数值,并画成曲线来表示,这些曲线称为泵的特性曲线。每一台泵都有特定的特性曲线,由泵制造厂提供。通常在工厂给出的特性曲线上还标明推荐使用的性能

停泵水锤的基本理论及计算方法

停泵水锤的基本理论及计算方法 一、停泵水锤的基本理论 在压力管流中因流速剧烈变化引起水分子动量转换,从而在管路中产生一系列急骤的压力交替变化的水力撞击现象,称为水锤现象。它是流体的一种非稳定流动,在液体运动中所有空间点处的一切运动要素不仅随空间位置而改变,而且随时间而改变。水锤可从多个方面进行分类,根据不同的划分方法分为以下四种: (1)直接水锤和间接水锤; (2)起泵水锤、停泵水锤和关阀水锤; (3)刚性水锤和弹性水锤; (4)无水柱分离产生的水锤和水柱分离产生的水锤。 停泵水锤是指水泵机组因突然断电或其他原因而造成开阀突然停车时,在水泵及管路系统中,因流速突然变化而引起一系列急骤的压力夺替升降的水力冲击现象。 停泵水锤发生的主要特点是:突然停泵后,水泵由稳态进入水力过渡过程,主动力矩的消失使水泵机组失去了正常运转时的力矩平衡状态,在惯性的作用下继续保持正转,但转速降低。广一水泵机组突然降低的转速导致压力降低和流量减少,所以压力降低先在泵站处产生。此降压波由泵站及管路首端向管路末端的高位水池传播,并在高位水池处产生升压波,此升压波由高位水池向泵站及管路首端传播。压力管路中的水,在停泵后的最初瞬间,主要依靠惯性作用,向高位水池以逐渐减慢的速度继续流动,在重力和阻力的作用下,使其流速降低至零,但这样的状态是不稳定的;管路系统中的水因重力水头的作用又开始向水泵站倒流,且速度逐渐增大,以后的技术特点,由水泵压出口处不同的边界条件来决定。 水柱分离产生的水锤现象,是指在管路系统中出现了大空腔,当大空腔溃灭,即两股水柱重新弥合时,大空腔内的水蒸气会迅速凝结,两股水柱互相猛烈碰撞,造成升压很高的断流弥合水锤现象。关于水柱分离产生的原因,有两种论点,分别为:“拉断说”和“汽化说”。 “拉断说”认为:当水锤波在管路系统中传播时,水体质点呈现出周期性的疏密变化,水体质点群时而受压,时而受拉,由于水体的承拉能力非常差,当承受不住拉力时,连续水柱就会断裂,并彼此分离开,产生一些大空腔,破坏了水流的连续性,造成水柱分离。 “汽化说”认为:当管路上某点的水压降到汽化压以下时,液态水将迅速汽化,并产生大空腔,破坏了水流的连续性,造成水柱分离。 将连续水流截成两段的大空腔内均充满水蒸气,空腔中压强保持为小于或等于汽化压,产生的水柱分离现象称为水柱分离(汽)或水柱分离(V);当管路中出现真空,经空气阀将空气吸入管内并形成充满空气的大空腔,产生的水柱分离现象称为水柱分离(空)或水柱分离(A)。 水柱分离(汽)产生的前提是密封非常完好的管路,但实际的输水管路并非如此,沿途会设有一定数量的空气阀,因此,在水力过渡过程中,水柱分离(空)产生的可能性并不比水柱分离(汽)小。在相同的技术条件情况下,因水柱分离(空)而形成的充满空气的空气腔的最大长度比传统的以水蒸气为主充填的蒸汽腔的最大长度要大得多。如果在空气腔缩小乃至消失的过程中,即两股水柱重新弥

相关文档
最新文档