C++实验十二

合集下载

实验十二 气体比热容比的测定

实验十二 气体比热容比的测定

气体比热容比测量实验目的1. 测定空气的定压比热容与定容比热容之比。

2. 掌握光电计时仪、微型气泵的使用方法。

实验仪器1. D H4602气体比热容测定仪2. 气泵及连接气管,精密玻璃瓶3. 螺旋测微计、物理天平实验原理气体的定压比热容C P 与定容比热容C V 之比γ=C P /C V 。

在热力学过程特别是绝热过程中是一个很重要的参数。

通过测定物体在特定容器中的振动周期来计算值γ。

实验基本装置如图1-1所示,振动物体小球的直径比玻璃管直径仅小0.01-0.02mm 。

它能在此精密的玻璃中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。

钢球A 的质量为m ,半径为r (直径为d ),当瓶子内压力P 满足下面条件时,钢球A 处于平衡状态。

这时P=+L P 2mg rπ, 式中为大气压力。

L P 为了补偿由于空气阻尼引起振动物体A 振幅的衰减,通过C 管一直注入一个小气压的气流,在精密玻璃管B 的中央开设有一个小孔。

当振动物体A处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A向上移动,而当物体A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。

以后重复上述过程,只要适当控制注入气体的流量,物体A 能在玻璃管B 的小孔上下做简谐振动,振动周期可利用光电计时装置来测得。

图1-1 若物体偏离平衡位置一个较小距离x Δ,则容器内的压力变化,物体的运动方程为:p Δ222d x m r p dtπΔ=Δ'PV (1-1) 因为物体振动过程相当快,所以可以看作绝热过程,绝热方程 =常数 (1-2)将(1-2)式求导得: p v p VγΔΔ=−, 2V r πx Δ=Δ (1-3) 将(1-3)式带入(1-1)式得:22420d x r p x dt mV πγΔ+Δ= 此式即为熟知的简谐振动方程,它的解为2Tπω== 即:2424464mV mV T pr T pd γ== (1-4) 式中各量均可以方便测得,因而可算出γ的值。

实验十二用线式电位差计测电池电动势

实验十二用线式电位差计测电池电动势
补偿状态? • 3.与检流计 G 串联的电阻 R 能起什么作用?
*
检流计
电键
*
11线电位差计
实验十二 用线式电位差计测电池电动势
• 【实验原理】补偿原理

1.当 侧)。
Ex > VCD
时,G 中有自右向左流动的电流(指针指向一

2.当 一侧)。
Ex < VCD
时,G 中有自左向右流动的电流(指针指向另
• 3.当 Ex = VCD 时,G 中无电流,指针不偏转。
*
计 G 中指针无偏转,记下此时电阻丝的长度 LS . • 5.稍稍改变一下 Rn 的阻值,重复实验步骤 3、4 . • 6.重复步骤 5,测出八组 Lx、LS 值。
*
实验十二 用线式电位差计测电池电动势
• 【预习思考题】 • 1.为什么要用 11 米长的电阻丝绕在木板上,用 1 米长的电阻丝
可不可以?结果如何? • 2.如何根据检流计指针的偏转情况,来断定在本实验中能够实现
• 【实验内容】 • 续按3下.滑将动K接2 倒头向DE,x ,直改到变 G插 中头的C指的针位不置偏,转并。同去时掉移保动护电D 阻,且R(断
合 此上时电C、键DK之3)间,的再电次阻微丝调长D度的L位x .置,使 G 中的指针无偏转。记下 • 开 下滑K43动.)接保,头持将DKRn2,不倒使变向检(E流S保,计持改 G主变 无回插偏路头转中C,工,后作按细电键调流(D不合的变上位)置,K3,先)并粗,断调使续(检按断流
实验十二用线式电位差 计测电池电动势
2020/8/24
实验十二 用线式电位差计测电池电动势
• 【实验目的】 • 1.测量电动势。 • 2.掌握电位差计工作原理和结构特点。 • 3.学会用补偿法测量物理量。

实验十二使用电路产生脉冲信号

实验十二使用电路产生脉冲信号

实验十二使用门电路产生脉冲信号—自激多谐振荡器—一、实验目的1、掌握使用门电路构成脉冲信号产生电路的基本方法2、掌握影响输出脉冲波形参数的定时元件数值的计算方法3、学习石英晶体稳频原理和使用石英晶体构成振荡器的方法二、实验原理与非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。

电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT时,门的输出状态即发生变化。

因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。

4、非对称型多谐振荡器如图12-1所示,非门3用于输出波形整形。

非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度t w1═RC tw2═1.2RC T═2.2RC调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改变电位器R实现输出频率的细调。

图12-1 非对称型振荡器图12-2 对称型振荡器2、对称型多谐振荡器如图12-2所示,由于电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。

改变R和C的值,可以改变输出振荡频率。

非门3用于输出波形整形。

一般取R≤1KΩΩ,当R=1KΩ,C=100pf~100µf时,f=nHz~nMHz,脉冲宽度tw1=tw2=0.7RC,T=1.4RC3、带RC电路的环形振荡器电路如图12-3所示,非门4用于输出波形整形,R为限流电阻,一般取100Ω,电位器Rw 要求≤1KΩ,电路利用电容C的充放电过程,控制D点电压V D ,从而控制与非门的自动启闭,形成多谐振荡,电容C的充电时间tw1、放电时间tw2和总的振荡周期T分别为t w1≈0.94RC, tw2≈1.26RC, T ≈2.2RC调节R和C的大小可改变电路输出的振荡频率。

图12-3 带有RC电路的环形振荡器以上这些电路的状态转换都发生在与非门输入电平达到门的阈值电平VT的时刻。

在VT 附近电容器的充放电速度已经缓慢,而且VT本身也不够稳定,易受温度、电源电压变化等因素以及干扰的影响。

新教材人教版高中物理 精品资料实验十二 测量电源的电动势和内阻

新教材人教版高中物理 精品资料实验十二 测量电源的电动势和内阻

实验十二 测量电源的电动势和内阻1.实验原理闭合电路的欧姆定律。

2.实验器材电池、电压表、电流表、滑动变阻器、开关、导线、坐标纸和刻度尺。

3.实验步骤(1)电流表用0.6 A 的量程,电压表用3 V 的量程,按图1连接好电路。

图1(2)把滑动变阻器的滑片移到使阻值最大的一端。

(3)闭合开关,调节滑动变阻器,使电流表有明显示数并记录一组数据(I 1,U 1)。

用同样的方法再测量几组I 、U 值,填入表格中。

(4)断开开关,拆除电路,整理好器材。

1.用实验数据求E 、r 的处理方法(1)列方程求解:由U =E -Ir 得⎩⎨⎧U 1=E -I 1rU 2=E -I 2r ,解得E 、r 。

(2)用作图法处理数据,如图2所示。

图2①图线与纵轴交点为E 。

②图线与横轴交点为I 短=Er 。

③图线的斜率表示r =|ΔUΔI |。

2.注意事项(1)为了使路端电压变化明显,可使用内阻较大的旧电池。

(2)电流不要过大,应小于0.5 A ,读数要快。

(3)要测出不少于6组的(I ,U )数据,变化范围要大些。

(4)若U -I 图线纵轴刻度不从零开始,则图线和横轴的交点不再是短路电流,内阻应根据r =|ΔUΔI |确定。

3.误差来源(1)偶然误差:用图像法求E 和r 时作图不准确。

(2)系统误差:电压表分流。

(3)本实验中测量结果是:E 测<E 真,r 测<r 真。

命题点一 教材原型实验【真题示例1 (2020·山东卷,14)实验方案对实验测量的精度有直接的影响,某学习小组对“测量电源的电动势和内阻”的实验方案进行了探究。

实验室提供的器材有:干电池一节(电动势约1.5 V ,内阻小于1 Ω); 电压表V(量程3 V ,内阻约3 kΩ); 电流表A(量程0.6 A ,内阻约1 Ω); 滑动变阻器R (最大阻值为20 Ω); 定值电阻R 1(阻值2 Ω); 定值电阻R 2(阻值5 Ω); 开关一个,导线若干。

实验十二、 大肠杆菌生长曲线的制作

实验十二、 大肠杆菌生长曲线的制作

五、作业
1、结果 P88 记录不同大肠杆菌培养液的OD600值,并绘制 大肠杆菌的生长曲线。
2、思考题 第1题
根据微生物的生长曲线可以明确微生物的 生长规律,对生产实践具有重大的指导意义。 根据对数期的生长规律可以得到培养菌种 时缩短工期的方法:接种对数期的菌种,采用最 适菌龄,加大接种量,用与培养菌种相同组成 的培养基。 根据稳定期的生长规律,可知稳定期是产 物的最佳收获期,也是最佳测定期,通过对稳 定期到来原因的研究还促进了连续培养原理的 提出和延迟期 特点:生长速率常为零、菌体粗大、 RNA含量增加、代谢活力强、对不良环境 的抵抗能力下降。 成因:微生物刚刚接种到培养基之上 ,其代谢系统需要适应新的环境,同时要 合成酶、辅酶、其他代谢中间代谢产物等 ,所以此时期的细胞数目没有增加。
2、对数期 特点:生长速率最快、代谢旺盛、酶系 活跃、活细菌数和总细菌数大致接近、细胞 的化学组成形态理化性质基本一致。 成因:经过调整期的准备,为此时期的微 生物生长提供了足够的物质基础,同时外界 环境也是最佳状态。
3、稳定期
特点:活细菌数保持相对稳定、总细菌数 达到最高水平、细胞代谢产物积累达到最高峰 、是生产的收获期。 成因:营养的消耗使营养物比例失调、有 害代谢产物积累、PH值等理化条件不适宜。
4、衰亡期 特点:细菌死亡速度大于新生成的速度、 整个群体出现负增长、细胞开始畸形、细 胞死亡出现自溶现象。 成因:主要是外界环境对继续生长越 来越不利、细胞的分解代谢大于合成代谢、 继而导致大量细菌死亡。
一、实验目的
• 了解大肠杆菌的生长特性与规律,绘制生 长曲线 • 掌握光电比浊法测量细菌数量的方法
二、实验原理
生长曲线
将少量纯种单细胞微生物接种到定量的 液体培养基中,定时取样测定细胞数量, 以培养时间为横坐标,以菌数为纵坐标作 图,得到一条反映单细胞微生物在整个培 养期间菌数变化规律的曲线。 一个典型的生长曲线分为延迟期、对数期、 稳定期和衰亡期四个时期

实验十二混合碱组成的分析及各组分含量的测定

实验十二混合碱组成的分析及各组分含量的测定

实验十二混合碱组成的分析及各组分含量的测定原理:混合碱主要由碳酸钠、碳酸氢钠、氯化钠、氯化钾等组成。

本实验将采用酸碱滴定法,标准化NaOH与HCl,再用所得的标准溶液分别滴定样品溶液,从而分析样品中碳酸钠、碳酸氢钠、氯化钠、氯化钾的含量,并计算出各组分的质量分数。

仪器与试剂:仪器:滴定管、容量瓶、计量筒、移液管、磁力搅拌器等。

试剂:纯化水、0.1mol/L NaOH溶液、0.1mol/L HCl溶液、甲基橙指示剂、苯酚酞指示剂、标准氯化钾溶液、标准碳酸钠溶液、样品(混合碱)。

步骤:1.标定NaOH溶液:取约0.1g的标准碳酸钠,精确称量,加入100ml容量瓶中,用纯化水溶解,摇匀,称取25ml,加5~6滴甲基橙指示剂,滴加于滴定管中,再分别滴加NaOH 溶液,直至溶液由黄转红。

记录所用NaOH滴定液体积V1。

重复上述操作3次,并计算出NaOH的平均标准值S(NaOH)。

5.计算各组分的质量分数:根据下式计算各组分的质量分数:钠的质量分数:w(Na)=[(V3-V1)×C×23]/m其中,V3、V4为样品的滴定体积,单位为ml;C为标准NaOH、HCl溶液的浓度,单位为mol/L;23、35.5、106、84为各离子化学计量系数;m为样品的质量,单位为g。

结果与分析:本实验中,标定的NaOH溶液平均体积为24.8ml,标定的HCl溶液平均体积为24.9ml。

而样品的滴定体积为NaOH 22.5ml,HCl 12.8ml。

根据上面的式子,可计算出钠的质量分数为12.70%,氯的质量分数为20.05%,碳酸钠的质量分数为38.66%,碳酸氢钠的质量分数为14.31%。

通过上述实验可以看出,本次实验中混合碱样品中氯化物和钠含量较高,而碳酸钠含量较多,提示样品可能是曲捏龙碱(Na2CO3·NaHCO3·2H2O)。

结论:。

实验十二呋喃甲醇和呋喃甲酸的制备

呋喃甲醇的制备在搅拌下加入约10ml水至固体全溶注意将溶液转移入分液漏斗中用乙醚分三次12ml7ml5ml萃取合并萃取液加1g无水硫酸镁干燥15min过滤后水浴蒸馏乙醚然后蒸馏呋喃甲醇分两次收集169172的馏分称重
实验十二 呋喃甲醇和 呋喃甲酸的制备
编辑课件
一、目的要求
学习由呋喃甲醛制备呋喃甲醇 和呋喃甲酸的原理和方法,加深 对Cannizzaro反应的认识。
编辑课件
二、基本原理
本实验是由呋喃甲醛(又称糠醛)和氢氧化 钠的作用,从而制备呋喃甲醇和呋喃甲酸的。
2
C H O + N a O H
O
OC H 2 O H +OC O O N a
C O O N a+H C l O
C O O H +N aC l O
产品性状:呋喃甲醇的沸点为171℃, 呋喃甲酸的 溶点为133~134℃。
编辑课件Βιβλιοθήκη 在搅拌下加入约10mL水至固体全溶(注意 2) ,将溶液转移入分液漏斗中,用乙醚分 三次(12mL,7mL,5mL)萃取,合并萃取 液,加1g无水硫酸镁干燥(15min),过滤后 水浴蒸馏乙醚,然后蒸馏呋喃甲醇(分两 次),收集169~172℃的馏分,称重。
水层也要保留。
编辑课件
2.呋喃甲酸的制备
编辑课件
注意(3)
(3)酸量要加足,保证pH=3,使呋喃甲 酸充分游离出来。这是影响呋喃甲酸收率的 关键。
编辑课件
THE END
编辑课件
(1)反应开始后很剧烈,同时放出大量的 热,溶液颜色变暗。若反应温度高于12℃时, 则反应温度极易升高,难以控制.致使反应 物呈深红色。若低于8℃,则反应速度过慢, 一旦发生反应,反应就会过于猛然而使温度 升高,最终也使反应物变成深红色。

实验十二-水硬度的测定

实验⼗⼆-⽔硬度的测定实验⼗⼆⽔硬度的测定⼀实验⽬的1、了解硬度的常⽤表⽰⽅法;2、学会⽤配位滴定法测定⽔中钙镁含量,钙含量的原理和⽅法3、掌握铬⿊T,钙指⽰剂的使⽤条件和终点变化。

⼆、实验原理1、总硬度、钙硬度、镁硬度的概念及表⽰⽅法;⽔的硬度主要是指⽔中含可溶性的钙盐和镁盐。

总硬度通常以每L⽔中含的碳酸钙的mg数,即mg/L.钙硬度即每1L⽔中含的钙离⼦的mg数,mg/L.镁硬度即每1L⽔中含的镁离⼦的mg数,mg/L2 总硬度的测定条件与原理测定条件:以NH3-NH4Cl 缓冲溶液控制溶液pH=10,以铬⿊T为指⽰剂,⽤EDTA滴定⽔样。

原理:滴定前⽔样中的钙离⼦和镁离⼦与加⼊的铬⿊T指⽰剂络合,溶液呈现酒红⾊,随着EDTA的滴⼊,配合物中的⾦属离⼦逐渐被EDTA夺出,释放出指⽰剂,使溶液颜⾊逐渐变蓝,⾄纯蓝⾊为终点,由滴定所⽤的EDTA的体积即可换算出⽔样的总硬度。

3 钙硬度的测定条件与原理;测定条件:⽤NaOH溶液调节待测⽔样的pH为13,并加⼊钙指⽰剂,然后⽤EDTA 滴定。

原理:调节溶液呈强碱性以掩蔽镁离⼦,使镁离⼦⽣成氢氧化物沉淀,然后加⼊指⽰剂⽤EDTA滴定其中的钙离⼦,⾄酒红⾊变为纯蓝⾊即为终点,由滴定所⽤的EDTA的体积即可算出⽔样中钙离⼦的含量,从⽽求出钙硬度。

4、相关的计算公式总硬度=(CV1)EDTAMCaCO3/0.1 钙硬度=(CV2)EDTAMCa/0.1 镁硬度=C(V1-V2)MMg/0.1三实验步骤实验步骤思考题总硬度的测定⽤100mL吸管移取三份⽔样,分别加5mL NH3-NH4Cl 缓冲溶液,2~3滴铬⿊T指⽰剂,⽤EDTA标准溶液滴定,溶液由酒红⾊变为纯蓝⾊即为终点。

1、⽔硬度的测定包括哪些内容?如何测定?2、我国如何表⽰⽔的总硬度,怎样换算成德国硬度?3、⽤Zn2+标准溶液标定EDTA标准溶液有⼆种⽅法,⽔硬度的测定实验中所⽤EDTA应⽤哪种⽅法标定?4、怎样移取100mL⽔样?5、为什么测定钙、镁总量时,要控制pH=10?叙述它的测定条件。

实验十二真空镀膜

实验十二真空镀膜引言在真空中使固体表面(基片)上沉积一层金属、半导体或介质薄膜的工艺通常称为真空镀膜。

早在19世纪,英国的Grove和德国的Plücker接踵在气体放电实验的辉光放电壁上观察到了溅射的金属薄膜,这就是真空镀膜的萌芽。

后于1877年将金属溅射用于镜子的生产;1930年左右将它用于Edison唱机录音蜡主盘上的导电金属。

以后的30年,高真空蒸发镀膜又取得了飞速发展,这时已能在实验室中制造单层反射膜、单层减反膜和单层分光膜,而且在1939年由德国的Schott等人镀制出金属的FabryPerot干与滤波片,1952年又做出了顶峰值、窄宽度的全介质干与滤波片。

真空镀膜技术历经一个多世纪的发展,目前已普遍用于电子、光学、磁学、半导体、无线电及材料科学等领域,成为一种不可缺少的新技术、新手腕、新方式。

实验目的1.了解真空镀膜机的结构和利用方式。

2.掌握真空镀膜的工艺原理及在基片上蒸镀光学金属、介质薄膜的工艺进程。

3.了解金属、介质薄膜的光学特性及用光度法测量膜层折射率和膜厚的原理。

实验原理从镀膜系统的结构和工作机理上来讲,真空镀膜技术大体上可分为“真空热蒸镀”、“真空离子镀”及“真空阴极溅射”三类。

真空热蒸镀是一种发展较早、应用普遍的镀膜方式。

加热方式主要有电阻加热、电子束加热、高频感应加热和激光加热等。

1.真空热蒸镀的沉积条件(1)真空度由气体分子运动论知,处在无规则热运动中的气体分子要彼此发生碰撞,任意两次持续碰撞间一个分子自由运动的平均路程称为平均自由程,用λ表示,它的大小反映了分子间碰撞的频繁程度。

P d kT22πλ=(8.2-1)式中:d为分子直径,T为环境温度(单位为K),P为气体压强。

在常温下,平均自由程可近似表示为:)(1055m P -⨯≈λ (8.2-2)式中:P 为气体平均压强(单位为Torr)。

表8.2-1列出了各类真空度(气体平均压强)下的平均自由程λ及其它几个典型参量。

实验十二迈克尔逊干涉仪的调节和使用

实验十二迈克尔逊干涉仪的调节和使用19世纪末,迈克尔逊为了确定当时虚构的光传播介质—“以太”的性质,设计和制造了该种干涉仪,并在1881年与莫雷合作在该干涉仪上进行了历史上有名的迈克尔逊—莫雷测“以太”风实验,实验得到了否定的结果,为爱因斯坦1905年创立相对论提供了实验基础。

迈克尔逊干涉仪是用分振幅的方法产生双光束以实现干涉的仪器。

它的主要特点是两相干光束完全分开,这就很容易通过改变一光束的光程来改变两相干光束的光程差,而光程差是可以以光波的波长为单位来度量的。

因此,迈氏干涉仪及其基本原理已被广泛应用于长度精密计量、光学平面的质量检验和傅里叶光谱技术等方面,是许多近代干涉仪的原型。

通过本实验希望同学们能了解迈氏干涉构造原理和调节方法,对单色光的等倾、等厚干涉条纹以及复色光的干涉条纹有一个直观的印象,掌握用迈氏干涉仪测量波长和波长差的方法。

【实验目的】1.掌握迈克尔逊干涉仪的调节和使用方法。

2.用迈克尔逊干涉仪测定氦-氖激光的波长。

【实验原理】图12-1 迈克尔逊干涉仪光学系统迈克尔逊干涉仪的光路如图15-1所示,干涉仪上各光学元件的名称已注明图上。

来自光源S的光经分光板P1分成强度大致相等而在不同方向传播的两束光(1)和(2),它们分别由反射镜M1、M2反射后,又经过分光板P1射向观察系统,由于(1)和(2)两束光是相干光波,所以在观察系统中将见到该两光束的干涉图样。

为了便于理解干涉条纹的形成和它的形态,根据分光板P1的半透半反膜及反射镜M1、M2在光路中的作用,将干涉仪的光路简化成图12-2的形式是合理的。

图中S′是S关于P1(反射膜)的像,M2´是M2关于P1的像,S1´和S2´分别是S′关于M1和M2´的像。

它们的相对位置决定于S、M1和M2相对于O点的距离。

在分析一点光源S发出的光线经过干涉仪以后的干涉时,只要看两个相干点源S1´和S2´发出的对应光线的干涉就可以了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.class Rectangle{ intleft,top; intright,bottom; public: Rectangle(int l=0,int t=0,int r=0,int b=0); ~Rectangle(){}; void Assign(intl,intt,intr,int b); voidSetLeft(int t){left=t;} voidSetRight(int t){right=t;} voidSetTop(int t){top=t;} voidSetBottom(int t){bottom=t;} void Show(); Rectangle operator+=(Rectangle&); Rectangle operator-=(Rectangle&); friend Rectangle operator-(Rectangle&, Rectangle&); friend Rectangle operator+(Rectangle&, Rectangle&); }; #include"rect.h" #include using namespace std; Rectangle::Rectangle(intl,intt,intr,int b){ left=l; top=t; right=r; bottom=b; } void Rectangle::Assign(intl,intt,intr,int b){ left=l; top=t; right=r; bottom=b; } void Rectangle::Show(){ cout<<"left-top point is("

相关文档
最新文档