坐标平面上的直线知识点归纳
《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。
3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。
8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。
(完整版)平面直角坐标系知识点归纳.doc

平面直角坐标系知识点归纳1 、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2 、 坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对 ( a,b )一一对应;其中, a 为横坐标, b 为纵坐标坐标;3 、 x 轴上的点,纵坐标等于 0 ; y 轴上的点,横坐标等于0 ;Y坐标轴上的点 不属于 任何象限;b P(a,b)4 、四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y-3-2 -1 0 1ax-1 第一象限正 正 -2 第二象限负正-3第三象限 负 负 第四象限正负小结:( 1 )点 P ( x, y )所在的象限 横、纵坐标 x 、 y 的取值的正负性;( 2 )点 P ( x, y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y 5 、在平面直角坐标系中,已知点P (a,b) ,则a点 P 到 x 轴的距离为bP ( a, b )(1 ) b ; ( 2 )点 P 到 y 轴的距离为 a ;(3 ) 点 P 到原点 O 的距离为 PO =a 2b 2b6 、平行直线上的点的坐标特征:Oaxa) 在与 x 轴平行的直线上,所有点的纵坐标相等;YA B点 A 、 B 的纵坐标都等于 m ;mXb)在与 y 轴平行的直线上,所有点的横坐标相等;YC点 C 、 D 的横坐标都等于n ;nDX7 、对称点的坐标特征:a)点 P (m, n)关于x轴的对称点为P1(m, n),即横坐标不变,纵坐标互为相反数;b)点 P (m, n)关于y轴的对称点为P2( m, n),即纵坐标不变,横坐标互为相反数;c) 点 P (m, n)关于原点的对称点为P3 ( m, n) ,即横、纵坐标都互为相反数;y y yPn P2 n P n PO mX mmm XO m X OnP1n P3关于 x 轴对称关于 y 轴对称关于原点对称8 、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P(m,n)在第一、三象限的角平分线上,则m n ,即横、纵坐标相等;b) 若点 P(m,n)在第二、四象限的角平分线上,则m n ,即横、纵坐标互为相反数;y yn P P nO m X m O X 在第一、三象限的角平分线上在第二、四象限的角平分线上基本练习:练习 1 :在平面直角坐标系中,已知点P(m 5,m 2 )在 x 轴上,则P点坐标为练习 2 :在平面直角坐标系中,点P(m2 2, 4 )一定在象限;练习3 P a 1, a29)在 x 轴的负半轴上,则P点坐标为;:已知点(练习 4 :已知 x 轴上一点A(3,0),y轴上一点B(0,b ),且 AB=5 ,则b的值为;练习 5 :点 M (2 ,- 3 )关于 x 轴的对称点 N 的坐标为;关于y轴的对称点 P 的坐标为;关于原点的对称点Q 的坐标为。
有关平面直角坐标系的知识点及考点归纳

数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
直线与方程知识点归纳

直线与方程知识点归纳直线与方程是高中数学中的一个重要内容,既是代数学又是几何学的一部分。
直线是平面几何的基本概念,而方程是数学中的基本工具。
在直线与方程的学习中,我们需要掌握直线的性质、方程的基本概念及解法,以及直线与方程之间的相互关系。
下面将详细介绍这些知识点。
一、直线的性质1.直线的定义:直线是由一点和一个方向确定的无限延伸的图形。
2.直线的特点:直线上的任意两点都可以确定这条直线;直线上的任意两点可以确定直线上的向量,该向量表示了直线的方向。
3.直线与坐标系:平面直角坐标系中,直线可以用方程来表示,方程形式多样,包括一般式、点斜式、斜截式和截距式等。
4.直线的倾斜性:斜率是刻画直线倾斜程度的重要指标,表示直线上一点到另一点的纵向距离与横向距离之比,不同的斜率代表不同的倾斜情况。
5.直线的截距:截距是直线与坐标轴的交点距离原点的距离,直线与x轴相交的点称为x截距,与y轴相交的点称为y截距。
二、方程的基本概念及解法1.方程的定义:方程是已知数与未知数之间相等关系的陈述,它包含了等号、数和运算符号。
2.方程的分类:方程可分为代数方程和几何方程。
代数方程是指包含有变量的代数式,并且通过变量能满足等号关系;几何方程是指与几何概念有关的方程。
3. 一元一次方程的解法:对于形如ax+b=0的方程,可以利用加法、减法、乘法、除法等基本运算,将未知数从方程中分离出来,从而求得方程的解。
4. 二次方程的解法:对于形如ax^2+bx+c=0的方程,可以利用求根公式和配方法等解法,求得方程的解。
5.系数与根的关系:通过分析方程的系数与方程根之间的关系,可以确定方程的特征,包括判别式和根与系数之间的关系等。
6.方程的实根与虚根:根据判别式的值,可以判断方程的根是实数还是虚数,并进一步获取方程的解集。
7.方程的应用:方程是数学在现实问题中的重要应用工具,在物理、经济、工程等领域中都有广泛的应用。
三、直线与方程的相互关系2.直线方程的求法:通过已知直线上的两个点可以得到直线的斜率,从而得到直线的方程。
平面直角坐标系的13个知识点

平面直角坐标系的13个核心知识点哎,说起平面直角坐标系,那可是数学里头相当重要的一个板块儿。
咱们今天就来摆一摆它的13个核心知识点。
首先呢,平面直角坐标系就是由两条互相垂直的数轴组成,水平方向的叫x轴,垂直方向的叫y轴,它们交在一块儿的那个点叫原点。
然后啊,平面上的每个点都可以用一对有序实数来表示,比如(x,y),x就是横坐标,y就是纵坐标。
再说说象限,根据点的坐标的正负,平面被分成了四个部分,叫象限。
第一象限的点坐标都是正数,第二象限的x坐标为负,y坐标为正,第三象限的点坐标都是负数,第四象限的x坐标为正,y坐标为负。
还有啊,关于x轴、y轴、原点对称的点的坐标,都是有规律的。
比如关于x轴对称的点,横坐标不变,纵坐标变相反数。
另外,平面直角坐标系里头还可以搞平移、缩放这些变换。
平移的时候,点的坐标会跟着变,比如向右平移,横坐标就变大,向左平移,横坐标就变小。
缩放的时候,比如横坐标变为原来的k倍,那图形就跟着放大或缩小了。
再来说说直线、圆这些图形,它们都可以用方程来表示。
比如直线y=2x+3,圆的方程是(x-h)^2+(y-k)^2=r^2。
最后啊,还有中点公式、斜率公式、距离公式这些工具,它们可以用来求线段的中点、直线的斜率和两点间的距离。
总之啊,平面直角坐标系的知识点虽然多,但只要掌握了规律,学起来也就不那么难了。
直线与圆知识点总结

直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。
如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ);(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。
如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则xy 的最大值、最小值分别为______(答:2,13-) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
(2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
平面直角坐标系知识点总结

平面直角坐标系二、知识重点梳理知识点一:有序数对比方教室中座位的地点,常用“几排几列”来表示,而排数和列数的先后序次影响座位的地点,所以用有序次的两个数 a 与b 构成有序数时,记作(a , b) ,表示一个物体的地点。
我们把这类有序次的两个数 a 与b 构成的数对叫做有序数对,记作: (a,b) .重点讲解:对“有序”要正确理解,即两个数的地点不可以随意交换,(a ,b) 与 (b ,a) 序次不一样,含义就不一样,表示不一样地点。
知识点二:平面直角坐标系以及坐标的看法1. 平面直角坐标系x 在平面内画两条相互垂直、原点重合的数轴就构成平面直角坐标系。
水平的数轴称为轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图 1) 。
注:我们在画直角坐标系时,要注意两坐标轴是相互垂直的,且有公共原点,平时取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条相互垂直且有公共原点的数轴构成的。
2.点的坐标点的坐标是在平面直角坐标系中确立点的地点的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的详尽地点,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点 A 分别向 x 轴和 y 轴作垂线,垂足 M在 x 轴上的坐标是 a,垂足N在 y 轴上的坐标是 b,我们说点 A 的横坐标是 a,纵坐标是 b,那么有序数对( a,b )叫做点 A 的坐标 . 记作 :A(a,b). 用(a , b) 来表示,需要注意的是一定把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后边。
横、纵坐标的地点不可以颠倒。
②由点的坐标的意义可知:点P(a ,b) 中, |a| 表示点到y 轴的距离; |b| 表示点到x轴的距离。
知识点三:点坐标的特色l.四个象限内点坐标的特色:两条坐标轴将平面分成4个地域称为象限,按逆时针序次分别叫做第一、二、三、四象限,如图 2.这四个象限的点的坐标符号分别是(+,+),( - , +),( - ,- ),( +,- ).2.数轴上点坐标的特色:x 轴上的点的纵坐标为0,可表示为(a,0 );y 轴上的点的横坐标为0,可表示为(0,b) .注意: x 轴, y 轴上的点不在任何一个象限内,关于坐标平面内随意一个点,不在这四个象限内,就在座标轴上。
(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。
例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。
夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。
例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。
y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。
(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。
1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标平面上的直线知识点归纳
一、直线的倾斜角和斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着
交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么
α就叫做直线的倾斜角。
注意:规定当直线和x 轴平行或重合时,其倾斜角为o
0,所以直线的倾斜角α的范
o
o
(2)直线的斜率:倾斜角不是o
90的直线,它的倾斜角的正切叫做这条直线的斜率,
①斜率是用来表示倾斜角不等于o
90的直线对于x 轴的倾斜程度的。
②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
③斜率计算公式:
`
设经过),(11y x A 和),(22y x B 两点的直线的斜率为k ,
则当21x x ≠时,2
121tan x x y y k --=
=α;当21x x =o
二、直线方程的几种形式:
(1)点斜式:过已知点),(00y x ,且斜率为k 的直线方程:)(00x x k y y -=-;
注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;
②
k x x y y =--0
表示:)(00x x k y y -=-直线上除去),(00y x 的图形 。
(2)斜截式:若已知直线在y 轴上的截距为b ,斜率为k ,则直线方程:b kx y +=; #
注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
(3)两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠),则直线的
方程:
1
21
121x x x x y y y y --=--;
注意:①不能表示与x 轴和y 轴垂直的直线;
②当两点式方程写成如下形式0))(())((=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
(4)截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:
1=+b
y
a x ; 注意:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表
示过原点的直线,要谨慎使用。
(5)参数式:⎩
⎨
⎧+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,),(2222b a b
b a a ++; \
a
b
k =
;2
2
||||b
a t PP o +=;
点21,P P 对应的参数为21,t t ,则2
2
2121||||b
a t t P P +-=
;
⎩
⎨
⎧+=+=αα
sin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率为αtan ;倾斜角为)0(παα<≤。
(6)一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);
反之,任何一个二元一次方程都表示一条直线。
注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都
能化为特殊形式,这要看系数C B A ,,是否为0才能确定。
②指出此时直线的方向向量:),(A B -,),(A B -,),
(
2
2
2
2
B
A A B
A B +-+
(单位向量)
直线的法向量:),(B A ;(与直线垂直的向量)
%
三、两直线的位置关系:
设两直线的方程分别为:
222111:b x k y l +=或0
:22221111=++C y B x A l ;当21k k ≠或
1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222
111C
y B x A C y B x A 解;
|
注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ=
对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=⋅B A B A ②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率为 0 ,则两直线垂直。
③对于02121=+B B A A 来说,无论直线的斜率存在与否,该式都成立。
因此,此公式使用起来更方便.
④斜率相等时,两直线平行(重合);但两直线平行(重合)时,斜率不一定相等,因为斜率有可能不存在。
四、两直线的交角
(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范
围是<≤0;
-
注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;
③绕“定点”是指两直线的交点。
(2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),
它的取值范围是2
0π
θ<
≤;
(3)设两直线方程分别为:
222111::b x k y l b x k y l +=+=或0
:0:22221111=++=++C y B x A l C y B x A l ①若θ为1l 到2l 的角,12121tan k k k k +-=
θ或2
1211
221tan B B A A B A B A +-=θ;
②若θ为1l 和2l 的夹角,则12121tan k k k k +-=
θ或2
1211
221tan B B A A B A B A +-=θ;
③当0121=+k k 或02121=+B B A A o
)
注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂
直;当有一条直线斜率不存在时,用数形结合法处理。
②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2
(π
θθα≤
=或)2
(π
θθπα>
-=;
五、点到直线的距离公式:
设点),(00y x P 和直线0:=++C By Ax l ,点P 到l 的距离为:2
2
00|
|B
A C By Ax d +++=
;
两平行线0:1111=++C y B x A l ,0:2222=++C y B x A l 的距离为:;
六、直线系:
(1)设直线0:1111=++C y B x A l ,0:2222
=++C y B x A l ,经过21,l l 的交点
的直线方程为0)(=+++++C y B x A C y B x A λ(除去2l );
2
2
21||B
A C C d +-=
如:①011=--⇒+=kx y kx y ,即也就是过01=-y 与0=x 的交点)1,0(除去
0=x 的直线方程。
"
注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ;
(2)与0:=++C By Ax l 平行的直线为0'=++C By Ax ;
(3)与0:=++C By Ax l 垂直的直线为0'=+-C Ay Bx ; 七、对称问题: (1)中心对称:
①点关于点的对称:
该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点
)2,2(b d a c --
^
②直线关于点的对称:
Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再
由两点式求出直线方程;
Ⅱ、求出一个对称点,在利用21//l l 由点斜式得出直线方程; Ⅲ、利用点到直线的距离相等。
求出直线方程。
如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。
(2)轴对称:
①点关于直线对称:
Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。
Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。
②直线关于直线对称:(设b a ,关于l 对称)
Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距
离相等。
Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。
Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a
的方程。