ansys2022模态分析后处理

合集下载

ANSYS-分析结果处理

ANSYS-分析结果处理

Training Manual
自动选择的位移比例
真实比例
8-4
Results Postprocessing
图例控制
• 在图形区的图例上点击鼠标右键,可以调整图例控制。
Training Manual
值编辑 输出、输入或保存图例设置 增加或减少等高线带 水平或垂直放置图例 显示日期和时间 选择对数比例 在图例中显示最大最小图标
有效数字位数
切换到科学计数法
• 然后……
8-5
Results Postprocessing
… 图例控制
利用图例边界可以更清楚地显示出等高线图的 结果分布。
Training Manual
没有改变最大最 小值
点击并拖放等高线分配器(或键盘输 入一个值)来指定等高线范围。 也可以使用非均匀分布的等高线。
8-21
Results Postprocessing
… 指定面或部件上的结果
• 指定面或部件上的结果示例:
Training Manual
所选面上的应力结果 指定单个部件上的结果
单个部件上的主应力矢量
8-22
Results Postprocessing
… 指定边和点上的结果
• 可以指定单个边(或点)上的结果: – 为指定结果选择一条独立边.
显示方法
云图设置
纲要显示
• 另外,Timeline也有一个动画工具栏,它允许用户设置动画控制
矢量显示控制
分布
输出
播放
暂停
图标
帧速率控制
8-3
Results Postprocessing
… 位移比例
• 对于结构分析 (静态、模态、屈曲分析),可以改变变形形状:

ANSYS分析结果的后处理知识PPT学习教案

ANSYS分析结果的后处理知识PPT学习教案

K2
EXPAND为Yes,则K1至K2之间的所有节点都将被
约束,即相当于固定了这条边;KEPAND=No则
只固定了第K9页1、/共K427页上的两个节点被约束。
4.2.1.2 在线(或面)上加载位移约束
命令:
DL, LINE, AREA ,Lab , Value ,Value2
DA, AREA, Lab , Value ,Value2
子步(Sub step):将一个载荷步分成几个子步施加载荷。 3)时间的作用
在所有静态和瞬态分析中,ANSYS使用时间作为跟踪参数,而不论分 析是否依赖于时间。在指定载荷历程时,在每个载荷步的结束点赋予时间
值。时间也可作为一个识别载荷步和 载荷子 步的计 算器。 这样计 算得到 的结果 也将是 与时间 有关的 函数, 只不过 在静力 分析中 ,时间 取为常 量0;在 瞬态分 析中, 时间作 为表示 真实时 间历程 的变量 在变化 ;在其 它分析 中,时 间仅作 为一个 计算器 识别求 解时所 采用的 不同载 荷步。
第11页/共47页
对称约束与反对称约束的示意图如下:
这两种约束条件应用在不同的对称模型的场合,通过设定对称约束边界条件 达到简化建模的效果。施加对称约束和反对称约束的采用的命令仍然是DL、DA ,其参数Lab设为SYMM(对称)或ASYM(反对称)。 GUI: …Solution>Define Symmetry B.C. (或Antisymm B.C.)
4.2.3 施加分布载荷
第14页/共47页
若分布载荷为均布载荷,只需在对 话框的 第一个 输入栏 中输入 相应的 分布载 荷值; 若同时 输入第 二个值 ,则表 示在这 条线上 ,从线 的起始 点到线 的终点 ,沿线 的方向 ,承受 从第一 个值到 第二个 值线性 过渡的 分布载 荷。 注意: (1)AN SYS中 的线是 有方向 的,相 当于从 起始关 键点到 终止关 键点的 一条矢 量线, 这在很 多分析 中非常 重要。 观察方 向从实 用菜单 PlotCtrls>Sy mbol中设置Line dirrction on (2)对 于非线 性的函 数分布 载荷, 可以通 过分段 近似线 性加载 的方法 ,或者 通过不 同节点 处加载 不同集 中力的 方法进 行模拟 (使用 数组载 荷定义 )

ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解模态分析是ANSYS中的一项重要功能,它用于分析结构的模态特性,如固有频率、模态形态、振型等。

下面将详细介绍ANSYS中模态分析的步骤与实例。

1.准备工作:在进行模态分析前,首先需要完成模型的几何建模、模型的网格划分、边界条件的设定和材料属性的定义等准备工作。

2.设置分析类型:在ANSYS中,可以使用分析类型工具条或命令行指令设置分析类型。

对于模态分析,可以选择"Modal"。

选中“Modal”选项后,会弹出新窗口,用于设置分析的参数。

可以设置计算的模态数目、输出结果的范围、频率的单位等。

3.定义约束条件:在模态分析中,需要定义结构的约束条件,以模拟实际情况。

常见的约束条件有固定支撑、自由边界、对称几何等。

可以使用ANSYS中的约束条件工具条或命令行指令进行定义。

4.定义激励条件:在模态分析中,可以定义激励条件,以模拟结构在特定频率下的振动情况。

常见的激励条件有振动源、压力载荷、重力载荷等。

可以使用ANSYS中的激励条件工具条或命令行指令进行定义。

5.执行分析:完成上述设置后,点击分析工具条中的“运行”按钮,开始执行模态分析。

ANSYS会根据所设定的参数进行计算,并输出相应的结果。

6.结果展示与分析:模态分析完成后,可以查看分析结果并进行进一步的分析。

ANSYS会输出各模态下的固有频率、模态振型、模态质量、模态参与度等信息。

接下来,我们以一个简单的悬臂梁的模态分析为例进行详解。

1.准备工作:在ANSYS中绘制悬臂梁的几何模型,并进行网格划分。

设定材料属性、加载条件和边界条件。

2.设置分析类型:在ANSYS主界面上选择“Workbench”,然后点击“Ana lysis Systems”工具条中的“Modal”选项。

3.定义约束条件:设置悬臂端点的约束条件为固定支撑。

可以使用ANSYS中的“Fixed Support”工具进行设置。

4.定义激励条件:在此示例中,我们只进行自由振动分析,不设置激励条件。

ANSYS后处理解析PPT教学课件

ANSYS后处理解析PPT教学课件

• 此方法仅对包含2-D 或3-D 实体单元或壳单元的模型有效.
后处理
...路径操作
• 产生路径图的三个步骤: • 定义一个路径 • 将数据影射到路径上 • 绘图输出数据
1. 定义一个路径 • 需要以下信息:
• 定义路径的点 (2 到 1000个). 您可以使用工作平面内的结点或特定位置. • 由激活的坐标系(CSYS)确定的路径曲率. • 路径名.
后处理
...误差估计
能量范数的百分率误差(SEPC)
• SEPC 是整个选择单元序列上应力 (或位移, 温度, 或热流) 误差的一个粗略估计.
• 可用于比较类似荷载作用下相似结构的相似模型.
• SEPC 是在变形图的图例中显示的. 您可以使用PRERR 或采用 General Postproc > List Results > Percent Error进行人工列表.
数据库中工况 (计算机内存)
结果文件中 工况
数据库中组合的工况 覆盖以前的内容
后处理
...荷载工况组合
典型步骤: 1. 建立荷载工况 2. 将某一 荷载工况读入数据库 3. 执行期望的操作
后处理
...荷载工况组合
建立荷载工况
• 一个荷载工况可简单地充当一个结果系列的指示器. 它需要如 下两条信息:
后处理
...误差估计
应力范围 (SMXB 和 SMNB)
• 应力范围能够帮助您确定网格离散化误差在最大应力上的潜在影响.
• 它们在应力等值线图的图例中以 SMXB (上限) 和 SMNB (下限) 显示.
• 限度 并非 实际最大和最小应力的估计, 但它们定义了一个 “信度带”. 没有其它的支持认证, 您就没有理 由相信真实的最大应力小于 SMXB.

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解

结构动态特性的改善方法
增加结构阻尼
通过增加结构阻尼,可以有效地吸收和消耗振动能量,减小结构 的振动幅值和响应时间。
优化结构布局
通过合理地布置结构的质量、刚度和阻尼分布,可以改善结构的动 态特性,提高结构的稳定性和安全性。
加强关键部位
对于关键部位,应加强其刚度和稳定性,以减小其对整体结构的振 动影响。
ansys模态分析教程及实例讲解
目 录
• 引言 • ANSYS模态分析基础 • ANSYS模态分析实例 • 模态分析结果解读 • 模态分析的优化设计 • 总结与展望
01 引言
ห้องสมุดไป่ตู้
目的和背景
01
了解模态分析在工程领域的应用 价值,如预测结构的振动特性、 优化设计等。
02
掌握ANSYS软件进行模态分析的 基本原理和方法。
挑战
未来模态分析面临的挑战主要包括处理大规模复杂结构 、模拟真实环境下的动力学行为以及提高分析的实时性 。随着结构尺寸和复杂性的增加,如何高效地处理大规 模有限元模型和计算海量数据成为亟待解决的问题。同 时,为了更准确地模拟实际工况下的结构动力学行为, 需要发展更加逼真的边界条件和载荷条件设置方法。此 外,提高模态分析的实时性对于一些实时监测和反馈控 制的应用场景也具有重要的意义。
模态分析基于振动理论,将复杂结构系统分解为若干个独立的模态,每个模态具有 特定的固有频率和振型。
模态分析可以帮助工程师了解结构的动态行为,预测结构的振动响应,优化结构设 计。
模态分析的步骤
建立模型
施加约束
求解
结果分析
根据实际结构建立有限 元模型,包括几何形状、 材料属性、连接方式等。
根据实际工况,对模型 施加约束条件,如固定

Ansys经典资料——关于后处理及高级分析技术

Ansys经典资料——关于后处理及高级分析技术

应力偏差:
所关心位置上的应力偏差值~450 psi
s s s n i n an i
(30,000 psi 应力的1.5%)
节点n的应力矢量:
N
n e
s
i n
s
a n
i1
N
n e
察看应力偏差:Plot Results > Element Solu > Error Estimation
> Stress deviation (SDSG)
savg = 1100
s = 1000 Elem 1
s = 1100
s = 1200 Elem 2
s = 1300
savg = 1200
(节点的 ss 是积分点 的外插)
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
如果只有一个载荷施加在结构上,检验结果比较容易. 如果有多个载荷,可单独施加一个或几个载荷分别 检验,然后施加所有载荷检验分析结果.
2.计算出的几何项:
在输出窗口中输出的质量特性,可能会揭示在几何 模型、材料属性(密度)或实常数方面存在的错误.
3.检验求解的自由度及应力:
• 确认施加在模型上的载荷环境是合理的. • 确认模型的运动行为与预期的相符 - 无刚体平动、
smj nbmins(ajmsn) smj xbmaxs(ajmsn)
例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi
(difference ~ 450 psi ~ 1.5 %)

ansys使用技巧(后处理)

ansys使用技巧(后处理)

2009—04—28 14:26ANSYS中查看截面结果的方法一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。

有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。

另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧.下面对常用的查看截面结果的方法做一个介绍:1。

通过工作平面切片查看截面云图工作平面实现。

这是比较常用的一种方法.首先确保已经求解了问题,并得到了求解结果。

调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。

调整时注意保证工作平面与需要观察的截面平行.在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。

也可以通过等效的/type以及/cplane命令设置。

在通用后处理器中显示云图,得到需要查看的云图。

更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了:/CPLANE,1 !指定截面为WP/TYPE,1,5 ! 结果显示方式选项2. 通过定义截面查看截面云图这种方法也需要用到工作平面与切片,步骤如下:首先确保已经得到了求解结果.调整工作平面到需要观察的截面。

在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。

通过sucr命令定义截面,选择(cplane)。

通过sumap命令定义需要查看的物理量。

通过supl命令显示结果.3。

通过定义路径查看云图与保存数据首先确保已经得到了求解结果.通过path与ppath命令定义截面路径。

通过pdef命令映射路径.通过plpath、prpath与plpagm命令显示及输出结果。

总结:第一种方法是较简单、较常用的方式。

通过这种操作方式,我们也可以更直观地理解工作平面的含义。

以前看书上介绍工作平面总是无法理解到底什么是工作平面,工作平面有什么用途.第二中方法实质上和第一种方法是一样的,只不过截面是我们自定义的一个平面,不是通过移动、旋转工作平面来实现“切片”的。

ANSYS模态分析详细解释

ANSYS模态分析详细解释

Ansys模态分析详细论述1、有限元概述将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。

1.1分析前准备(1)研读相关理论基础;(2)参考别人的分析方法和思路;(3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。

1.2 Von Mises 应力Von Mises 应力是非负值,应力表达式可表示为:1.3结果的分析(1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比;(2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。

(3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。

2、模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。

模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。

2.1主要模态一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。

将特征值从小到大排列就是阶次。

实际的分析对象是无限维的,所以其模态具有无穷阶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys2022模态分析后处理.
第1步:载入模型Plot>Volumes,输入/units,SI(即统一单位M/Kg/S)。

若为组件,则进行布尔运算:
Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>Volumes
第2步:指定分析标题/工作名/工作路径,并设置分析范畴
1设置标题Utility Menu>File>Change Title/Change Jobname/Change Directory
2设置分析范畴Main Menu>Preference,单击Structure,OK
第3步:定义单元类型
Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能
Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。

第5步:划分网格
Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick
All,完成网格划分。

当内存不足时,取消SmartSize
第6步:进入求解器并指定分析类型和选项
Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。

Main Menu>Solution>Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace模态提取法,在No.of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。

第7步:施加边界条件
MainMenu>Solution>Define
loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。

第8步:指定要扩展的模态数
Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No.of modes to expand处输入第6步相应的数字,单击OK即可。

注意:在第6步NMODE No.of modes to expand输入扩展模态数后,第8步可省略。

第9步:进行求解计算
Main Menu>Solution>Solve>Current LS。

浏览在/STAT命令对话框中出现的信息,然后使用File>Close
关闭该对话框,单击OK。

在出现警告(不一定有)“A check of your model data produced 1 Warning。

Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。

第10步:列出固有频率
Main Menu>General Postproc>Results Summary。

第11步:动画显示模态形状
查看某阶模态的变形,先读入求解结果。

执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择
“Def+undefeedge”或执行2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。

如果需要看其他阶模态,执行Main
Menu>GeneralPostproc>Read results>Next Set,重复执行上述步骤即可。

第12步:结束分析SAVE_DB;Main Menu>Finish。

相关文档
最新文档