(整理)位移法习题.

合集下载

位移法习题解答

位移法习题解答

8-2、清华8-2c 试用位移法计算图示结构,并作内力图。

题8-2c (a )方法一:列位移法典型方程解:(1)D 处定向支座与AD 段不平行,视为固定端。

AB 段剪力、弯矩是静定的,弯矩图、剪力图直接可以画出来,DA 杆D 端支座与杆轴线不平行,视为固定端。

结构只有一个转角位移法基本未知量。

基本结构如图(b)。

(2)建立典型方程:11110P k z R ⋅+=(3)画基本结构的P M 、1M 的弯矩图:如图(c) 、(d) 所示。

(4)利用结点的力矩平的平衡求系数:1110;k i =1P R P l =-⋅(5)将系数,自由项代入典型方程得z 1。

110P lz i⋅=(6)利用叠加法求各杆端的最后弯矩,如图(f ):11P M M M z =+⋅30.3()1040.4()20.2()101030.3()10AC AD DA AEP lM i Pl i P l P lM i Pl M i Pl i iP l M i Pl i⋅=+⋅=⋅⋅=+⋅==+⋅=⋅=+⋅=左拉上拉下拉右拉 方法二:转角位移法(c)ACMAB(d)(b)(e)Q ABF Q解:(1)确定结构的基本未知量。

有一个角位移z1,如图所示(b)。

(2)列杆端的转角位移方程:AB段剪力和弯矩静定,DA杆D端支座与杆轴线不平行,视为固定端。

C1111,,3,3,4,2 FAB AB A AE AD DAM Pl M Pl M i z M i z M i z M i z =-=-=⋅=⋅=⋅=⋅(3)根据刚结点的力矩平衡,列位移方程,求未知量z1:111100343010AB AC AD AEPl M M M M M Pl i z i z i z zi =→+++=→-+⋅+⋅+⋅=→=∑(4)将所求位移代回转角位移方程求各杆端力,并作结构的弯矩图,如图(c)所示。

C1111,,330.3,330.3,1010440.4,220.21010FAB ABA AEAD DAM Pl M PlPl PlM i z i Pl M i z i Pli iPl PlM i z i Pl M i z i Pli i=-=-=⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯=讨论;本题将D处的滑动支座改为与杆轴线平行。

07-08(2)校内位移法练习题

07-08(2)校内位移法练习题

判断题1. 图a为对称结构,用位移法求解时可取半边结构如图b所示。

(×)2. 图示结构,用位移法求解,有三个结点角位移和二个结点线位移未知数(×)。

ϕ=所施加的弯矩相同。

(×)3. 以下两个单跨梁左端产生15. 用位移法计算图示结构时,独立的基本未知数数目是4 。

(×)6. 图示结构用位移法计算时,其基本未知量的数目为3个(√)。

7. 在位移法典型方程的系数和自由项中,数值范围可为正、负实数的有:(D)A 主系数;B 主系数和副系数;C 主系数和自由项D 负系数和自由项。

8. 用位移法计算超静定结构时考虑了到的条件是:(A)A物理条件、几何条件、和平衡条件;B平衡条件C平衡条件与物理条件D平衡条件与几何条件9. 规定位移法的杆端弯矩正负时,对杆端而言,以顺时针为正,对结点则以逆时针为正,这一规定也适合于杆端剪力的符号规定。

(×)10. 图a对称结构可简化为图(b)来计算。

(×)11. 图示结构用位移法求解时,基本未知量个数是相同的(√)12. 图示结构用位移法求解时,只有一个未知数(√)13. 图示结构横梁无弯曲变形,故其上无弯矩。

(×)14. 图a对称结构可简化为图b来计算,EI均为常数。

(×)15. 图示结构用位移法求解的基本未知量数目最少为3。

(√)16. 图示结构EI=常数,用位移法求解时有一个基本未知量。

(√)。

17. 位移法中固端弯矩是当其基本未知量为零时由外界因数所产生的杆端弯矩(√)18. 位移法的典型方程与力法的典型方程一样,都是变形协调方程。

(×)19. 用位移法可以计算超静定结构,也可以计算静定结构(√)20. 位移法中角位移未知量的数目恒等于刚结点数。

(×)21. 超静定结构中杆端弯矩只取决于杆端位移。

(×)pl EI。

(×)22. 图示结构B点的竖向位移为3/(5)23. 图示结构在荷载作用下结点B处的转角为0。

(整理)《结构力学2》习题集同济版.

(整理)《结构力学2》习题集同济版.

南华大学《结构力学II》习题集(适合于大土木工程各专业方向)组编:刘华良班级:姓名:学号:建筑工程与资源环境学院道路桥梁工程教研室衡阳2005年前言本习题集取材于第九章位移法9-l 确定下列各结构的位移法未知数目,并绘出基本结构。

9-2~9-3 用位移法计算下列结构内力.并绘出其弯矩图、剪力图和轴力图。

题9-2图题9-3图9-4~9-11 用位移法绘制下列结构弯矩图。

题9-4图题9-5图题9-6图题9-7图题9-8图题9-9图题9-10图题9-11图9-12~9-15 用位移法绘制下列具有斜杆的刚架的弯矩图。

题9-12图题9-13图题9-14图题9-15图9-16~9-17 列出下列结构的位移法典型方程式,并求出所有系数和自由项。

题9-16图题9-17图9-18~9-23 用位移法绘制下列具有无限刚性杆结构的M图。

题9-18图题9-19图题9-20图题9-21图题9-22图题9-23图9-24~9-26 用位移法绘制下列刚架M图。

题9-24图题9-25图题9-26图9-27 用位移法绘制图9-27所示结构弯矩图,并求桁架杆的轴向力。

题9-27图9-28 用位移法求图9-28所示桁架各杆轴向力。

题9-28图9-29 图9-29所示为一个三角形刚架,考虑杆件的轴向变形,试写出位移法的典型方程,并求出所有系数和自由项。

题9-29图9-30~9-31 用位移法计算图示有剪力静定杆组成的刚架的M图。

题9-30图题9-31图9-32~9-41 利用对称性,用位移法求作下列结构的M图。

题9-32图题9-33图题9-34图题9-35图题9-36图题9-37图题9-38图题9-39图题9-40图题9-41图9-42~9-48 试直接按平衡条件建立位移法方程计算题9-2、9-5、9-8、9-11、9-12、9-24、9-35,并绘出M图。

题9-42图题9-43图题9-44图题9-46图题9-47图题9-48图9-49~9-52 试用位移法求作下列结构由于支座位移产生的M图。

结构力学(5.1.2)--位移法习题及参考答案

结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。

6-2~6-6作图示刚架的M 图。

(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。

6-7 试用位移法计算图示结构,并作内力图。

6-8 试用位移法计算图示结构,并作内力图。

EI 为常数。

6-9试用位移法计算图示结构,并作弯矩图。

EI 为常数。

6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。

习题6-9图习题6-7图6-11作图示刚架的体系内力图。

6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。

6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。

6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。

10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。

6-16 试用弯矩分配法计算图示连续梁,并作M 图。

6-176-18 用力矩分配法计算图示结构,并作M 图。

6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。

6-20 求图示结构的力矩分配系数和固端弯矩。

已知q=20kN/m,各杆EI 相同。

习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。

EI=常数。

6-23~6-25用力矩分配法计算图示刚架,作M 图。

EI=常数。

参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。

位移法习题答案

位移法习题答案

位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。

2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。

3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。

4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。

5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。

例题:考虑一个简支梁,长度为L,受集中力P作用于中点。

使用位移法求解梁的弯矩和剪力分布。

解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。

接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。

对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。

最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。

结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。

通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。

请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。

在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。

第八章位移法计算习题

第八章位移法计算习题

位移法计算试题一、如图1-1所示,确定位移法基本未知量数目。

EI 1=∞,EI =常数。

二、是非判断1.如果只有两端固定单跨梁的形常数和载常数,则铰支端的铰位移及定向支座处的杆 端横向位移也必须作为位移法基本未知量。

( )2.位移法典型方程的物理意义是反映原结构的位移条件。

( )3.如图2-3所示结构,结点无线位移的刚架只承受结点集中荷载(不包括力偶)时,其各杆无弯矩和剪力。

( )4.如图2-4所示结构,当n 值增大时,柱上端弯矩值会变小。

( ) 5.如图2-5所示结构,EA 、EI 均为常数,各杆长为l 。

当温度升高t ℃时不产生内力。

( )6.如图2-6所示结构,EI 1=∞、EI =常数,则两柱的弯矩和剪力均为零。

( ) 三、填空1.如图3-1所示结构中,EI 1=∞、EI =常数,则M AB = 。

2.如图3-2所示连续梁EI =常数,各跨跨度l ,支座C 下沉△,则M AB = , 侧受拉。

3.如图3-3所示结构,EI =常数,B 点线位移为EIql244,则M BC = 。

(a)(b)(c)图题2-3图题2-5图题2-6qCBA△q图题3-2图题3-4图题3-5图题3-64.如图3-4所示结构中, EI =常数,各跨跨度l ,在荷载作用下支座B 下沉△,则M AB = , 侧受拉。

5.如图3-5所示结构各杆EI =常数,利用对称性可求得M AB = , 侧受拉。

6.如图3-6所示结构各杆EI =常数,在荷载作用下支座B 顺时针转动φ,则M AB = , 侧受拉。

7.如图3-7所示连续梁EI =常数,各跨跨度l ,当支座B 下沉△时,梁截面B 的转角φB = 。

8.如图3-8所示连续梁EI =常数,各跨跨度l ,支座A 顺时针转动单位转角时,M AB = , 侧受拉。

9.如图3-9所示结构各杆EI =常数,各杆长为l ,利用对称性可求得M AB = , 侧受拉。

10.如图3-10所示结构各杆EI =常数,各杆长为l ,在结点A 施加力偶矩M = 时,结点A 将产生单位转角。

位移法解题步骤例题1(精)

位移法解题步骤例题1(精)

位移法解题步骤例题1用位移法作例题1图(a)所示刚架的弯矩图。

解:⑴确定基本未知量数目,作出位移法基本体系图。

此结构只有一个刚结点C ,因此只有一个角位移1Z ;C 、D 结点有一个独立线位移2Z 。

基本体系如例题1图(b)所示。

⑵列位移法基本方程。

⎭⎬⎫=++=++0022221211212111P P R Z r Z r R Z r Z r⑶求系数和自由项。

根据载常数和形常数作1M 、2M 、P M 图,如例题1图(c)、(d)、(f)所示。

由1M 图及公式可得i i i r 104611=+=由2M 图及公式可得i r r 5.12112-==查形常数表可得12=Z 时各杆的移动端剪力为431612122i i l i F QCA ===16332ili F QDB == 取CD 杆为隔离体图如例题1图(e )所示。

由公式可得 16151634322ii i F F r QDB QCA =+=+= 查载常数表可得基本结构单独在荷载作用时各杆的剪切移动端剪力为0=FQCA F )(154108383kN ql F F QDB-=⨯⨯-=-= 取CD 杆为隔离体如例题1图(g)所示。

由公式可得)(15)15(02kN F F R FQDB F QCA P -=-+=+=由P M 图可知 01=P R例题1图⑷解算方程组。

将系数和自由项代入位移法基本方程中,得⎪⎭⎪⎬⎫=-+-=+-01516155.1005.1102121iZ iZ iZ iZ 解方程,得i Z 15.31=iZ 212= ⑸根据叠加法作弯矩图。

计算杆端弯矩。

)(2.25215.115.32m kN i i i i M AC ⋅-=⨯-⨯= )(9.18215.115.34m kN ii i i M CA ⋅-=⨯-⨯=)(9.1815.36m kN ii M CD ⋅=⨯= )(8.35202175.0m kN ii M BD ⋅-=-⨯-= 作M 图如例题1图(h)所示。

位移法习题答案

位移法习题答案

位移法习题答案位移法是力学中的一种重要方法,用于求解刚体或弹性体的位移和变形。

它通过建立坐标系和运用力平衡条件,将问题转化为求解位移的数学问题。

本文将通过几个典型的位移法习题,来展示位移法的应用和解题思路。

第一个习题是关于简支梁的弯曲变形。

考虑一个长度为L的简支梁,在梁的中点施加一个集中力F。

我们的目标是求解梁的弯曲变形。

首先,我们需要建立坐标系。

假设梁的左端为原点O,梁的水平方向为x轴正方向,竖直向上为y轴正方向。

选择一个合适的参考点A,将其坐标设为(x, y)。

接下来,我们需要运用力平衡条件。

考虑梁上的一个微小段dx,其长度为dl。

由于梁是简支的,我们可以得到以下平衡方程:∑F_x = 0: -N(x+dx) + N(x) + F = 0∑F_y = 0: T(x+dx) - T(x) - dl*w = 0其中,N(x)和T(x)分别表示梁上某一点处的法向力和切向力,w表示单位长度的梁的重力。

将上述方程进行展开,并忽略高阶微小量,我们可以得到:-dN/dx*dx + F = 0dT/dx*dx - dl*w = 0由于dx是一个无穷小量,我们可以将上述方程进行积分,得到:-N(x) + F*x + C_1 = 0T(x) - dl*w*x + C_2 = 0其中,C_1和C_2是积分常数。

接下来,我们需要确定积分常数C_1和C_2。

考虑梁的边界条件,即在梁的两端点处,梁的位移为零。

根据这个条件,我们可以得到:N(0) = 0: C_1 = 0N(L) = 0: -F*L + C_1 = 0解上述方程组,我们可以得到C_1 = 0和C_2 = dl*w*L。

最后,我们可以得到梁上任意一点的位移表达式:y(x) = ∫(0 to x) [T(x')/dl*w*x' - dl*w*x'] dx'将T(x)和C_2的表达式代入,我们可以得到:y(x) = ∫(0 to x) [(dl*w*x' - dl*w*L)/dl*w*x' - dl*w*x'] dx'= ∫(0 to x) (1 - L/x') dx'对上述积分进行计算,我们可以得到:y(x) = x - L * ln(x)通过上述推导,我们成功地求解了简支梁的弯曲变形问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位移法
一、判断题
1.位移法与力法的主要区别是,位移法以结点位移为基本未知量,而
力法则以多余未知为基本未知量。

()
2. 位移法的基本未知量包括结点转角和独立结点线位移,其中结点转角数等于结构中所有刚结点的数目。

()
3.位移法中杆端弯矩正负号的规定与作弯矩图时的规定相同。

()
4.利用结点或横梁的平衡条件建立的平衡方程式称作位移法的基本方程。

()
5.独立结点线位移的数目,对于多层刚架(无侧向约束)等于刚架的
层数,对于复杂刚架等于为使铰化结点后体系成为几何不变体系所需增加的链杆数目。

()
6.位移法的基本未知量是结构的多余约束力。

()
7.杆端弯矩与结点转角、在垂直杆轴线方向的相对线位移及固端弯矩
之间的关系式,称为转角位移方程。

()
8.位移法的基本未知量是结构的多余约束力()。

9.用位移法计算图1所示结构时,其基本未知量有3个()。

图 1
10.位移法只能用来解超静定结构。

()
二、选择题
1.试确定下面结构的位移法基本未知量的个数:()
A.θ=1,Δ=1
B.θ=2,Δ=2
C.θ=2,Δ=1
D.θ=1,Δ=2
三、填空题
1.力法和位移法是解超静定结构的两种基本方法。

它们的主要区别在于力法是以____________为基本未知量,而位移法则以____________作为基本未知量。

2.位移法基本未知量包括____________和____________。

结点转角未知量的数目等于该结构的____________。

独立结点线位移的数目,对于多层刚架等于刚架的____________ ,对于复杂刚架等于为使铰化结点后体系成为几何不变体所需增加的____________。

3.杆端弯矩与____________及 ____________间的关系式称为转角位移方程。

4.结构的刚结点被固定后,各杆在荷载作用下的杆端弯矩和杆端剪力称为____________和____________。

5.图2所示刚架用力法计算时的基本未知量为____________,用位移法计算时的基本未知量为____________,为了使计算简化应选用____________。

图 2
6.图3所示各结构,用位移法计算时的基本未知量数目分别是(a)为____________;(b)图为____________;(c)图为____________;(d)图为____________。

图 3
7.结点的____________和立柱的____________是位移法的基本方程。

位移法的基本未知量就是由此方程求出的。

8.位移法解题的关键是____________ 。

9.写出图4所示结构由荷载产生的固端弯矩和由基本未知量产生的杆端弯矩。

各杆EI=常数。

图4
解:固端弯矩按的顺序排列,其值分别为____________ 。

由基本未知量产生的杆端弯矩按的顺序,其值分别为____________ 。

四、计算题
1.确定图5所示结构用位移法计算时的基本未知量。

(a)(b)
(c)(d)
图5
2.用位移法作联系梁的内力图,并求出支座反力。

各杆EI=常数。

图 6
3.位移法求解图7所示各结构,做内力图。

图 7
4.用位移法计算图8所示各结构,做M图。

设EI=常数。

图 8
6.写出图9所示结构由荷载产生的固端弯矩和由基本未知量产生的杆端弯矩。

7.作图10所示连续梁的内力图,并求支座反力。

图 9 图10
8.作出图11所示刚架的弯矩图。

9.作图12所示刚架的弯矩图。

EI=常数。

图11 图12
10.作图13所示刚架的弯矩图。

11、利用对称性作图14所示刚架的弯矩图。

各杆EI=常数。

图 13 图14
12.利用对称性取图示连续梁的半结构,并建立其位移法的基本方程。

(不画弯矩图)
图15
13.简化图示对称结构,并建立其半结构的位移法基本方程。

EI=常数。

图 16
14.如图17所示,用位移法作M图,已知q=3kg/m 。

图 17
15.用位移法求图18所示结构的基本未知量,并作出内力图。

16.用位移法求图19所示结构。

①确定基本未知量。

②建立各单元杆的转角位移方程。

图 18 图19
17.试用位移法求图20所示结构。

①确定基本未知量。

②建立各单元杆的转角位移方程。

③建立基本方程。

18.用位移法列图21所示结构各杆端弯矩的计算式。

图 20 图21
19.用位移法列各杆端弯矩的计算式和杆端Q BA剪力计算式。

图 22。

相关文档
最新文档