解三角形综合大题10道
解三角形大题和答案解析-精品.pdf

( Ⅱ) 当
时,
所以
问题转化为方程
设 则 因为
, 所以
,
在
内是否有解
,
,
在
内单调递增
又
,
且函数
的图象连续不断 , 故可知函数
在
内存在唯一零点 ,
即存在唯一的
( Ⅲ) 依题意 ,
当
,即
满足题意
,令
时,
, 从而
所以方程
等价于关于 的方程
,
现研究
时方程解的情况
令
,
则问题转化为研究直线
与曲线
在
,令
,得
或
当 变化时 ,
WORD版)) 已知函数
f ( x) 4cos x sin x
( 0) 的最小正周期为 .
4
专业知识编辑整理
WORD 完美格式
( Ⅰ) 求 的值 ; ( Ⅱ) 讨论 f ( x) 在区间 0,2 上的单调性 .
【
答
案
】
解
:
( Ⅰ)
2 2 cos x(sin x cos x) 2 (sin 2 x cos2 x 1) 2sin(2 x ) 2 4
WORD版)) 已知函数
的周期为 , 图像的一个对称中心为
, 将函数
图像上的所有点的横坐标伸长为原来的
2 倍 ( 纵坐标不变 ), 在将所得图像向右平移
个单位长度后得到函数
的图像 .
(1) 求函数
与
的解析式 ;
(2) 是否存在
, 使得
按照某种顺序成等差数列 ?若存
在, 请确定 的个数 ; 若不存在 , 说明理由
37
37
BC
解三角形大题专练(2020更新)

解三角形大题专练1.(2018·北京)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ; (2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437. 由正弦定理得sin A =a sin Bb =32. 由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314, 所以AC 边上的高为a sin C =7×3314=332.2.在△ABC 中,∠A =60°,c =37a .①求sin C 的值;②若a =7,求△ABC 的面积.[解析](2)(文)①在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. ②因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.①求cos B ;②若a +c =6,△ABC 的面积为2,求b . (理)①解法一:∵sin(A +C )=8sin 2B2,∴sin B =8sin 2B 2,即2sin B 2·cos B2=8sin 2B2,∵sin B 2>0,∴cos B 2=4sin B2,∴cos 2B 2=1-sin 2B 2=16sin 2B 2,∴sin 2B 2=117 ∴cos B =1-2sin 2B 2=1517.解法二:由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.②由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-17×3217=4,∴b =2.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知. (1)求tanC 的值;(2)若△ABC 的面积为3,求b 的值。
高考文科解三角形大题(40道)-精品.pdf

高考文科解三角形大题(40道)1.在ABC 中,内角C B A ,,的对边分别为c b a ,,,已知b ac BCA 2cos cos 2cos .(1)求AC sin sin 的值;(2)若2,41cos b B,求ABC 的面积S .2.在ABC 中,角C B A ,,的对边分别是c b a ,,,已知2sin1cos sin C C C .(1)求C sin 的值;(2)若8)(422b a ba,求边c 的值.3.在ABC 中,角C B A ,,的对边分别是c b a ,,.(1)若A A cos 2)6sin(,求A 的值;(2)若c bA3,31cos ,求C sin 的值.4.ABC 中,D 为边BC 上的一点,53cos ,135sin ,33ADCBBD ,求AD .5.在ABC 中,角C B A ,,的对边分别是c b a ,,,已知41cos ,2,1Cba .(1)求ABC 的周长;(2)求)cos(C A的值.6.在ABC 中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p CA ,且241b ac.(1)当1,45bp时,求c a,的值;(2)若角B 为锐角,求p 的取值范围.7.在ABC 中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2.(1)求A 的值;(2)求C B sin sin 的最大值.8.在ABC 中,角C B A ,,的对边分别是c b a ,,,已知412cos C .(1)求C sin 的值;(2)当C Aasin sin 2,2时,求c b,的长.ABC bc Ca 21cos 9.在ABC 中,角C B A ,,的对边分别是c b a ,,,且满足3,5522cosAC AB A .(1)求ABC 的面积;(2)若6c b ,求a 的值.10.在ABC 中,角C B A ,,的对边分别是c b a ,,,22)4cos()4cos(CC.(1)求角C 的大小;(2)若32c,B A sin 2sin ,求b a,.11.在ABC 中,角C B A ,,的对边分别是c b a ,,,且. (1)求角A 的大小;(2)若1a ,求ABC 的周长l 的取值范围.12.在ABC 中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(Ca A cb .(1)求角A 的大小;(2)若3a,433ABCS,试判断的形状,并说明理由.13.在ABC 中,角C B A ,,的对边分别是c b a ,,,且.3)(2222ab c ba(1)求2sin 2BA ;(2)若2c ,求ABC 面积的最大值.14.在ABC 中,角C B A ,,的对边分别是c b a ,,,且满足2222cos 2cos 4c baB ac Ba .(1)求角B 的大小;(2)设)1,3(),2cos ,2(sin nC A m,求n m 的取值范围.15.已知)0)(cos ,(cos ),cos ,(sin x x n x x m,若函数21)(nm x f 的最小正周期为4.(1)求函数)(x f y 取最值时x 的取值集合;(2)在ABC 中,角C B A ,,的对边分别是c b a ,,,且满足C b Bc a cos cos )2(,求)(A f 的取值范围.16.如图,ABC 中,2,332sinABABC ,点D 在线段AC 上,且334,2BDDC AD.(1)求BC 的长;(2)求DBC 的面积.ABDC17.已知向量552),sin ,(cos ),sin ,(cos ba b a .(1)求)cos(的值;(2)若02,20,135sin,求sin.18.在ABC 中,角C B A ,,的对边分别是c b a ,,,已知12cos sin 2sin 2sin 2C C C C,且5ba ,7c.(1)求角C 的大小;(2)求ABC 的面积.19.在ABC 中,角C B A ,,的对边分别是c b a ,,,且满足21)cos sin 3(cos A A A .(1)求角A 的大小;(2)若32,22ABCSa,求c b,的长.20.已知函数)(,cos 21sin 23)(R x x xx f ,当]1,1[x 时,其图象与x 轴交于N M ,两点,最高点为P .(1)求PN PM ,夹角的余弦值;(2)将函数)(x f 的图象向右平移1个单位,再将所得图像上每点的横坐标扩大为原来的2倍,而得到函数)(x g y的图象,试画出函数)(x g y在]38,32[上的图象.3,53sin ,3b AB21.已知函数a xx xa x f cos sin 2sin 2)(2(a 为常数)在83x处取得最大值.(1)求a 的值;(2)求)(x f 在],0[上的增区间.22.在ABC 中,角C B A ,,的对边分别是c b a ,,,且bc acb222.(1)求角A 的大小;(2)若函数2cos2cos2sin)(2x x x x f ,当212)(B f 时,若3a,求b 的值.23.在ABC 中,角C B A ,,的对边分别是c b a ,,,已知. (1)求C sin 的值;(2)求ABC 的面积.24.在ABC 中,角C B A ,,的对边分别是c b a ,,,且B c a Cb cos )3(cos .(1)求B sin 的值;(2)若2b ,且c a,求ABC 的面积.25.已知函数212cos2cos2sin3)(2x x x x f .(1)求)(x f 的单调区间;(2)在锐角三角形ABC 中,角C B A ,,的对边分别是c b a ,,,且满足A c C a b cos cos )2(,求)(A f 的取值范围.26.在ABC 中,角C B A ,,的对边分别是c b a ,,,a Ab B A a 2cos sin sin 2.(1)求ab ;(2)若2223a bc ,求角B .27.港口A 北偏东30方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站为31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离为21海里,问此时轮船离港口A 还有多远?28.某巡逻艇在A 处发现在北偏东45距A 处8海里的B 处有一走私船,正沿东偏南15的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以312海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.29.在海岛A 上有一座海拔1km 的山峰,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东15、俯角为30的B 处,到11:10时,又测得该船在岛北偏西45、俯角为60的C 处.(1)求船航行速度;(2)求船从B 到C 行驶过程中与观察站P 的最短距离.30.如图所示,甲船由A 岛出发向北偏东45的方向做匀速直线航行,速度为215海里/小时,在甲船从A 到出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东(21tan)的方向做匀速直线航行,速度为m 海里/小时.(1)求4小时后甲船到B 岛的距离为多少海里;(2)若两船能相遇,求m.。
解三角形 习题含答案

第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。
高考解三角形大题(30道).

4. ABC 中, D 为边 BC 上的一点, BD 33, sin B
5 , cos ADC
3 ,求 AD .
13
5
1 5.在 ABC 中,角 A, B,C 的对边分别是 a, b, c ,已知 a 1,b 2,cosC .
4 ( 1)求 ABC 的周长;
( 2)求 cos( A C ) 的值 .
A a, b, c ,且满足 cos
25 , AB AC
3.
25
( 1)求 ABC 的面积; ( 2)若 b c 6 ,求 a 的值 .
2
10.在 ABC 中,角 A, B, C 的对边分别是 a,b, c , cos(C ) cos(C )
.
4
42
( 1) 求角 C 的大小;
( 2)若 c 2 3 , sin A 2 sin B ,求 a,b .
2
(1)求 BC 的长; (2)求 DBC 的面积 .
3 , AB
2 ,点 D 在线段 AC 上,且 AD
2DC , BD
43
.
3
3
A
D
B
C
14. 在
ABC 中,角 A, B, C 的对边分别是
2
a,b, c ,且满足 4a cos B
2ac cos B
2
a
2
b
2
c.
( 1)求角 B 的大小;
( 2)设 m (sin 2 A, cos2C), n ( 3,1) ,求 m n 的取值范围 .
15.已知 m (sin x,cos x), n (cos x, cos x)( 4.
专题精选习题 ---- 解三角形
1.在
ABC 中,内角 A, B,C 的对边分别为
专题解三角形大题(含答案)

解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
高考数学大题专练—解三角形(周长问题)

cos (2)cos a B c b A=-解三角形(周长问题)1、ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC △的周长.2、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,(1)求角A 的大小;(2)求△ABC 周长的最大值.3、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知cA bB aC =+)cos cos (cos 2(1)求C(2)若7=c ,ABC ∆的面积为233,求ABC ∆的周长4、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC ∆的周长最大时,求它的面积.5、在ABC ∆中,已知3a =,2b c =.(1)若23A π=,求ABC S ∆.(2)若2sin sin 1BC -=,求ABC C ∆.6、已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,满足51sin()sin(664A A ππ-+=-.(1)求角A 的大小;(2)若ABC ∆为锐角三角形,1a =,求ABC ∆周长的取值范围.7、在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,S 为ABC ∆的面积,且20S AC +⋅=.(1)求A 的大小;(2)若a =1b =,D 为直线BC 上一点,且AD AB ⊥,求ABD ∆的周长.(3sin )sin (1cos cos )b c A C c A C -=-8、已知函数2()sin(sin()2cos 662x f x x x ππ=++--,x R ∈.(1)求函数()f x 的值域;(2)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,若2a =且f (A )0=,ABC ∆3ABC ∆的周长.9、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知(Ⅰ)求B 的值;(Ⅱ)在①934ABC S ∆=,②4A π=,③2a c =这三个条件中任选一个,补充在下列问题中,并解决问题.若3b =,_______,求ABC ∆的周长.10、如图,在四边形ABCD 中,33CD =,7BC =7cos 14CBD ∠=-.(1)求BDC ∠;(2)若3A π∠=,求ABD ∆周长的最大值.参考答案1、(1)∵ABC △面积23sin a S A=.且1sin 2S bc A =∴21sin 3sin 2a bc A A =∴223sin 2a bc A =∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,3sin 2A =,1cos 2A =由余弦定理得2229a b c bc =+-=①由正弦定理得sin sin a bB A =⋅,sin sin a cC A=⋅∴22sin sin 8sin a bc B C A=⋅=②由①②得b c +=∴3a b c ++=+ABC △周长为32、解:(Ⅰ)∵cos (2)cos a B c b A =-,由正弦定理2sin sin sin a b c R A B C===,得sin cos (2sin sin )cos A B c B A =-,sin cos sin cos 2sin cos A B B A C A +=,即sin()2sin cos A B C A +=,又∵A B C π+=-,sin 2sin cos C C A∴=∵(0,)C π∈,∴1cos ,23A A π==.(Ⅱ)由(Ⅰ)可知3A π=432sin 3a R A ==,22sin 2sin 2(sin sin )32(sin()sin )33a b cR A R BB C C C ππ++=++=++=+--+24sin()6C π=++250,3666C C ππππ<<∴<+< ∴当,623C C πππ+==时,ABC ∆周长最大最大值为2+4=6,即ABC ∆周长最大值是63、(1)由正弦定理得:∵,∴∴,∵∴(2)由余弦定理得:∴∴∴周长为4、解:(1)因为222sin sin sin sin sin B A C A C --=,所以222b a c ac --=,可得222a c b ac +-=-,由余弦定理可得2221cos 222a cb ac B ac ac +--===-,因为(0,)B π∈,所以23B π=.(2)因为23B π=,3b =,所以由余弦定理知,2222222392cos ()()()()24a c b a c ac B a c ac a c a c +==+-=+-+-=+,当且仅当3a c ==所以23a c +ABC ∆的周长最大值为323+3ac =,所以ABC ∆的面积11333sin 322S ac B ==⨯⨯5、解:(1)由余弦定理得22222159cos 224b c a c A bc c +--=-==,解得297c =,21393sin 22414ABC S bc A c ∆∴===;(2)2b c = ,∴由正弦定理得sin 2sin B C =,又2sin sin 1B C -= ,1sin 3C ∴=,2sin 3B =,sin sinC B ∴<,C B ∴<,C ∴为锐角,2122cos 1()33C ∴=-=.由余弦定理得:2222cos c a b ab C =+-,又3a = ,2b c =,229482c c c ∴=+-,得:23290c c -+=,解得:425c ±=当4253c +=时,82253b +=325ABC C ∆∴=+当4253c =时,82253b -=,3ABC C ∆∴=+.6、解:(1)因为51sin()sin()664A A ππ-+=-,所以111(cos )()22224A A A A --+=-,即22311cos sin cos 444A A A A --=-,3112(1cos 2)cos 2)884A A A ---+=-112cos 244A A +=,所以可得1sin(2)62A π+=,因为(0,)A π∈,可得2(66A ππ+∈,13)6π,所以5266A ππ+=,可得3A π=.(2)由正弦定理sin sin sin a b c A B C ==,且1a =,3A π=,所以b B =,c C =;所以232321sin )1[sin sin(?)]12sin()3336a b c B C B B B ππ++=++=++=++.因为ABC ∆为锐角三角形,所以得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<.所以12sin((16B π++∈+,3];即ABC ∆周长的取值范围是(1+3].7、解:(1)20S AC ⋅= ,∴12sin cos 02b c A c A ⨯⋅⋅+⋅⋅=,又0b c ⋅>,∴sin 0A A +=,即tan A =,又(0,)A π∈,∴23A π=;(2)在ABC ∆中,由余弦定理得:2222cos a b c bc A =+-⋅,又a =、1b =,23A π=,260c c ∴+-=,又0c >,2c ∴=,在ABC ∆中,由正弦定理得21sin 14B =,又a b >,B ∴为锐角,∴cos 14B =,在Rt ABD ∆中,cos AB B BD =,∴BD 21sin 14AD BD B =⋅==ABD ∴∆的周长为235710234725145+++=.8、解:(1)23131()sin cos 2cos 22222x f x x x x x =++--cos 12sin(16x x x π=--=--,∴当2sin()16x π-=-时,()f x 取得最小值3-,当2sin()16x π-=时,()f x 取得最大值1,即函数()f x 的值域是[3-,1].(2)由f (A )2sin()106A π=--=得1sin()62A π-=,0A π<< ,5666A πππ∴-<-<,则66A ππ-=,得3A π=,ABC ∆ ,2a =,∴1sin 23bc π==4bc =,又22222cos()23a b c bc b c bc bc π=+-=+--,即24()12b c =+-,得2()16b c +=,即4b c +=,则周长426a b c ++=+=.9、解:(Ⅰ)因为sin )sin (1cos cos )c A C c A C -=-,sin cos()0C c A C c ++-=,即sin cos )sin C B B C -=,因为(0,)C π∈,sin 0C ≠,cos 2sin()16B B B π-=-=,即1sin(62B π-=,因为0B π<<,5666B πππ-<-<,所以66B ππ-=,可得3B π=.(Ⅱ)若选择条件①,因为1sin 23ABC S ac π∆=,所以9ac =,由余弦定理可得2291cos 322a c ac π+-==,所以2218a c +=,可得2()36a c +=,又0a c +>,解得6a c +=,因此ABC ∆的周长为9a b c ++=.若选择条件②4A π=,在ABC ∆中,由正弦定理可得3sin sin sin sin 3a b c A B C π====所以4a π==,sin()34c ππ=+=所以ABC ∆的周长为32632366322a b c ++=+=.若选择条件③2a c =,由余弦定理可得2291cos 322a c ac π+-==,所以222492c c c +-=,即23c =,解得c =,a =,因此ABC ∆的周长为3a b c ++=+.10、解:(1)在BCD ∆中,cos CBD ∠=,所以321sin 14CBD ∠===,利用正弦定理得sin sin CD BC CBD BDC=∠∠,所以321sin 114sin 2BC CBD BDC CD ⋅∠∠==,又因为CBD ∠为钝角,所以BDC ∠为锐角,故6BDC π∠=;(2)在BCD ∆中,由余弦定理得2222cos214BC BD CD CBD BC BD +-∠===-⋅,解得4BD =或5BD =-(舍去),在ABD ∆中,3A π∠=,设AB x =,AD y =,由余弦定理得22222161cos 222AB AD BD x y A AB AD xy +-+-===⋅,即2216x y xy +-=,整理得2()163x y xy +-=,又0x >,0y >,利用基本不等式得223()()1634x y x y xy ++-=,即2()64x y +,当且仅当4x y ==时,等号成立,所以x y +的最大值为8,所以AB AD BD ++的最大值为8412+=,所以ABD ∆周长的最大值为12.。
高中解三角形练习题及答案

高中解三角形练习题及答案一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为. A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是. A.a∶b=∠A∶∠B C.a∶b=sin B∶sin AB.a∶b=sin A∶sin B D.asin A=bsin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为. A.1∶2∶ C.1∶4∶9B.1∶3∶D.1∶2∶34.在△ABC中,a=5,b=,∠A=30°,则c等于. A.25 B.5C.2或D.或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小.A.有一种情形 C.不可求出B.有两种情形 D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是. A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=. A. B.23C.或2D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为 A.1?323,那么b=.C.2?32B.1+D.2+9.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了km,结果他离出发点恰好km,那么x的值是.A. B.2C.或 D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为.A.603米二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b =. 12.在△ABC中,∠A=105°,∠B=45°,c=2,则b=. 13.在△ABC中,∠A=60°,a=3,则B.60米C.60米或60米 D.30米a?b?c=.sinA?sinB?sinC,则∠C=.14.在△ABC中,若a2+b2<c2,且sin C=15.平行四边形ABCD中,AB=46,AC=43,∠BAC=45°,那么AD= 16.在△ABC中,若sin A∶sin B∶sin C =2∶3∶4,则最大角的余弦值=三、解答题17.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.18.在△ABC中,已知b=,c=1,∠B=60°,求a 和∠A,∠C.19.根据所给条件,判断△ABC的形状. acos A=bcos B;20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b =4,a+c=8,求a,c的长.cab==. cosAcosBcosC第一章解三角形参考答案一、选择题 1.B解析:设三边分别为5k,7k,8k,中间角为 ?,5k2+64k2-49k21由cos ?==,得 ?=60°,25k8k2∴最大角和最小角之和为180°-60°=120°..B.B.C.C.C.C.Ba+c=2ba+c=2b?31解析:依题可得:?acsin30?= ??ac=622??22b=-2ac3ac222b=a+c-2accos30?代入后消去a,c,得b2=4+2,∴b=3+1,故选B..C10.A 二、填空题 11.56. 12.2. 13.2.解析:设 bca+b+ca3a===k,则=k===sinAsinAsin60?sin A+sin B +sin CsinBsinC2.14.2?.15.4. 16.-1.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C=∵csin A=6³266sin5°=²=.2222=3,a=2,c=,<2<6,∴本题有二解,即∠C=60°或∠C=120°,∠B=180°-60°-45°=75°或∠B=180°-120°-45°=15°.故b=asin B,所以b=3+1或b=-1, sinA∴b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.解法2:由余弦定理得b2+2-2bco s5°=4,∴b2-2b+2=0,解得b=±1.又2=b2+22-2³2bcos C,得cos C=±所以∠B=75°或∠B=15°.∴b=+1,∠C=60°,∠B=75°或b=3-1,∠C =120°,∠B=15°. 18.解析:已知两边及其中一边的对角,可利用正弦定理求解.1,∠C=60°或∠C=120°,bc=, sinBsinCc?sinB1?sin60?1∴sin C===.2b解:∵∵b>c,∠B=60°,∴∠C<∠B,∠C=30°,∴∠A =90°.由勾股定理a=b2+c2=2,即a=2,∠A=90°,∠C=30°.解三角形广州市第四中学刘运科一、选择题.本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.△ABC的内角A,B,C的对边分别为a,b,c,若c?b?B?120等于 AB.2CD,则a2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A? A. 1B.2C13,a?b?1,则c?D3. 已知△ABC中,a?A.135b?B?60?,那么角A等于B.90C.45D.304. 在三角形ABC中,AB?5,AC?3,BC?7,则?BAC的大小为2?5?3??B. C. D.6435.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c?2a,则cosB?A.13A.4B.4C.D.36. △ABC中,已知tanA?A.13511,tanB?,则角C等于2B.120C.45D.07. 在?ABC中,AB=3,AC=2,BC=,则AB?AC?2332B.? C. D.32238. 若△ABC的内角A、B、C的对边分别为a、b、c,且acosA?bcosB,则 A.△ABC为等腰三角形 B.△ABC为直角三角形 C.△ABC为等腰直角三角形 D.△ABC为等腰三角形或直角三角形. 若tanAtanB>1,则△ABCA.?A. 一定是锐角三角形 C. 一定是等腰三角形22B. 可能是钝角三角形 D. 可能是直角三角形10. △ABC的面积为S?a?,则tanA.1B.1A=1C.4D.1二、填空题:本大题共4小题.11. 在△ABC中,三个角A,B,C的对边边长分别为a?3,b?4,c?6,则bccosA?cacosB?abcosC的值为1?12.在△ABC中,若tanA?,C?150,BC?1,则AB? . 313. 在△ABC中,角A、B、C所对的边分别为a、b、c ,若3b?ccosA?acosC,则cosA?_________________。