粉末注射成型-粘结剂分类及优缺点

合集下载

粉末 成形 粘结剂 铝

粉末 成形 粘结剂 铝

粉末成形粘结剂铝
粉末成形是一种制造工艺,主要用于生产形状复杂、高精度的金属零件。

在这个过程中,金属粉末与粘结剂混合,通过压制和烧结等步骤,最终得到所需的零件。

粘结剂在粉末成形中起到了至关重要的作用,它不仅能使粉末粘结在一起,还能控制零件的收缩率,从而保证零件的尺寸精度。

铝作为一种轻质、高强度的金属,在许多领域都有广泛的应用。

然而,铝的粉末成形并不容易,因为铝的熔点较低,容易氧化,且铝粉的活性较高,容易发生爆炸。

因此,在粉末成形中,通常会使用粘结剂来改善铝粉的性能,提高其成形性。

粘结剂的选择对于铝粉末成形至关重要。

常用的粘结剂包括聚合物、树脂、无机物等。

这些粘结剂能够在粉末中起到润滑作用,减少摩擦力,使粉末更容易压制。

同时,粘结剂还能控制烧结过程中的收缩率,防止零件变形。

合适的粘结剂可以显著提高铝粉末的成形性和零件的尺寸精度。

此外,粘结剂的用量也需要精确控制。

过量的粘结剂会导致零件的孔隙率增加,影响其性能;而粘结剂不足则会使粉末松散,无法形成致密的零件。

因此,在粉末成形过程中,需要通过实验确定最佳的粘结剂用量,以达到最佳的成形效果。

总之,粘结剂在粉末成形过程中起着非常重要的作用。

对于铝粉末成形来说,选择合适的粘结剂和精确控制其用量是关键。

随着科技的不断进步,相信未来会有更多优秀的粘结剂被开发出来,为铝粉末成形带来更大的便利和可能性。

粉末注射成型-粘结剂分类及优缺点

粉末注射成型-粘结剂分类及优缺点

粉末注射成型-粘结剂分类及优缺点1. 蜡基粘结剂石蜡是固态高级烷烃的混合物,主要成分的分子式为CnH2n+2,其中n=17?35。

主要组分为直链烷烃,还有少量带个别支链的烷烃和带长侧链的单环环烷烃;直链烷烃中主要是正二十二烷(C 22H 46)和正二十八烷(C 28H 58 )。

石蜡又称晶形蜡,通常是白色、无味的蜡状固体,在47°G64°C 熔化,密度约0.9g/cm 3, 溶于汽油、二硫化碳、二甲苯、乙醚、苯、氯仿、四氯化碳、石脑油等一类非极性溶剂,不溶于水和甲醇等极性溶剂。

石蜡也是很好的储热材料,其比热容为2.14 - 2.9J -??K 1,熔化热为 200 - 220J ―。

石蜡的主要性能指标是熔点、含油量和安定性。

熔点:石蜡是烃类的混合物,因此它并不像纯化合物那样具有严格的熔点。

所谓石蜡的熔点、是指在规定的条件下,冷却熔化了的石蜡试样,当冷却曲线上第一次出现停滞期的温度。

各种蜡制品都对石蜡要求有良好的耐温性能,即在特定温度r.不熔化或软化变形。

按照使用条件、使用的地区和季节以及使用环境的差异,要求商品石蜡具有一系列不同的熔点。

影响石蜡熔点的主要因素是所选用原料馏分的轻重,从较重馏分脱出的石蜡的熔点较高。

此外,含油量对石蜡的熔点也有很大的影响,石蜡中含油越多,则其熔点就越低。

含油量:是指石蜡中所含低熔点烃类的量。

含油量过高会影响石蜡的色度和储存的安定性,还会使它的硬度降低。

所以从减压馏分中脱出的含油蜡膏,脱油,以降低其含油量。

但大部分石蜡制品中需要含有少量的油,模性能是有利的。

安定性:石蜡制品在造型或涂敷过程中,长期处于热熔状态,性不好,就容易氧化变质、颜色变深,甚至发出臭味。

此外,使用时处于光照条件下石蜡也会变黄。

因此,要求石蜡具有良好的热安定性、氧化安定性和光安定性。

影响石蜡安定性的上要因素是其所含有的微量的非烃化合物和稠环芳烃。

为提高石蜡的安定性,就需要对石蜡进行深度精制,以脱除这些杂质。

211172531_金属粉末注射成形技术发展探究

211172531_金属粉末注射成形技术发展探究

金属粉末注射成形技术发展探究顾海峰摘要:金属粉末注射成形(Metal powder injection molding,MIM)技术,是一种新型的近净成形技术,主要用来生产形状小、结构复杂的零部件。

文章针对MIM技术的发展应用进行探究,综述了MIM工艺流程和技术特点、气雾化粉末与水雾化粉末的对比、MIM技术的应用现状、MIM工艺中的常见问题及解决对策,以期促进MIM技术进一步发展。

关键词:MIM技术;工艺流程;应用现状;问题;解决对策MIM技术起源于20世纪70年代,由美国学者首次开发成功。

到了80年代,关于MIM技术的理论和应用研究活动广泛开展,这一时期脱脂工艺用时明显缩短,产品尺寸精度得以提高。

进入21世纪,随着新材料、新工艺的出现,MIM向着产业化发展,解决了难熔金属基复合材料的加工问题。

在金属材料加工领域,人类追求金属零件一体成形的梦想从未停止,MIM技术是当今金属零件制造的顶尖技术,被誉为“金属加工技术的未来”。

以下结合现有研究成果,对MIM技术的发展与应用进行探讨。

1 MIM工艺流程和技术特点1.1 MIM工艺流程MIM工艺流程为:金属粉末+粘结剂→混炼制粒→注射成形→脱脂→烧结→后处理→成品。

主要材料和关键工艺介绍如下。

1.1.1 金属粉末理论上,满足粉末冶金要求的金属,均能用在MIM工艺中。

目前常用的金属粉末有:①低合金钢,如Fe-2Ni、Fe-8Ni;②不锈钢,如304L、440C、17-4PH;③硬质合金,如WC-6Co;④重合金,如W-Ni-Fe、W-Cu;⑤钛合金,如TiAl、Ti-6Al-4V、TiMo;⑥新型合金,如Fe-Al-Si、无Ni奥氏体不锈钢。

制备金属粉末,主要方法有雾化法、羰基法、电解法、还原法、研磨法等。

实践证实,粉末粒度大小、粉末之间的摩擦力,均会影响混料的均匀度。

粉末粒度越小、摩擦力越小,混料均匀度越高,有助于提高工艺质量。

1.1.2 粘结剂MIM工艺中,对粘结剂的要求为:粘度与熔点低,固化性、流动性、湿润性好,各组分不会分离,不会与金属粉末发生反应,分解温度高于混料温度、成形温度,且产物无毒无害、可循环使用。

金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。

在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。

其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。

模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。

注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。

注射后,模具中的混合物开始固化,形成绿色零件。

最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。

相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。

其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。

此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。

最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。

然而,金属粉末注射成型也存在应用范围的限制。

首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。

其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。

此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。

尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。

随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。

MIM(金属材料粉末注塑成型)技术介绍

MIM(金属材料粉末注塑成型)技术介绍

精心整理
MIM(金属粉末注塑成型)技术介绍
?????MIM 是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。

MIM 的工艺步骤是:首先选取符合MIM MIM ????1????2~1.6μm ????3度高,工序简单,可实现连续大批量生产;?
????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。

产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;?
国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。

?
MIM技术优势
MIM与传统粉末冶金相对比?
?MIM可以制造复杂形状的产品,避免更多的二次机加工。

?
?MIM产品密度高、耐蚀性好、强度高、延展性好。

?
?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。

?
MIM与机械加工相对比?
??MIM设计可以节省材料、降低重量。

???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。

金属粉末的注射成型

金属粉末的注射成型
纳米金属粉末
具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题

粉末注射

粉末注射

粉末注射技术各领域技术是可以相互借鉴的,塑料制品加工技术和金属制品加工技术就是这种相互借鉴的典范。

众所周知,塑料中的聚四氟乙烯因为熔体黏度过大,无法通过液态进行成型加工,从而借用了金属的粉末冶金烧结技术。

这种冷压烧结技术只限于制造形状比较简单的制品。

塑料的注射成型工艺具有一次性成型形状复杂制品的能力,而且产品尺寸精度很高,几乎不需要后加工,所以塑料制品代替金属的机械零部件成为近几十年来的一个重要发展,而且这种发展远还没有结束。

但是,金属毕竟具有其自身的优点,有一些金属零件(例如强度要求特别高的零件)并不能轻易被塑料所取代。

当这些零件形状复杂时,传统金属加工工艺面临很大的困难。

塑料注射成型技术的优势给金属制品的制造带来了灵感,将塑料注射成型技术应用于金属粉末制品的成型,诞生了金属注射成型。

实际上,几乎所有的粉末(金属的、陶瓷的)经过适当的配料和工艺设计,都可以用注射技术进行成型,因而,把这一类制品的成型归类为粉末注射成型,当注射成型技术应用于陶瓷时,称为陶瓷注射成型。

粉末注射成型结合了粉末冶金和塑料注射成型的优点,开拓了一个新的研究领域。

虽然该工艺技术的研究起始于20世纪60年代,但直到20世纪80年代中后期才被市场接受。

美国、日本和西欧等发达国家和地区率先形成产业规模。

现在,这一技术的研究和应用方兴未艾,市场前景也非常广阔,每年以20%的速度高速增长。

本文主要从塑料加工成型的角度简要介绍粉末注射成型的工艺特点和主要工艺。

一、粉末注射成型的工艺过程粉末注射成型工艺过程实际上包括坯料的注射成型和坯料的烧结2个部分。

完整的工艺过程如图l 所示。

首先,将粉末与起黏结作用的聚合物和石蜡或矿物油进行捏合,混合均匀成为颗粒料,这种颗粒材料具有与塑料一样的可加工性,可以用塑料的注射成型进行加工。

注射成型得到的坯料在较低温度下用催化工艺脱除黏结剂,然后在惰性气体保护下进行烧结。

最后经过很少的后加工(或不需要后加工)就可以得到成品。

金属粉末注射成形用石蜡-油-聚乙烯粘结剂

金属粉末注射成形用石蜡-油-聚乙烯粘结剂

金属粉末注射成形用石蜡-油-聚乙烯粘结剂金属粉末注射成形(MetalInjectionMolding,简称MIM)是粉末冶金与塑料注射成形相结合而产生的一门新技术,其优点在于粉末中加入了大量粘结剂(体积分数为30 %~50 % ) ,从而增强了粉末的流动性,可以近净成形各种形状复杂的零部件 .选用粘结剂是MIM技术的核心 .石蜡基粘结剂是广泛应用的粉末注射成形用粘结剂<1~5> ,已开发出多种石蜡/聚烯烃粘结剂 .石蜡基粘结剂流变性好,注射工艺范围宽 .但石蜡在注射成形冷却过程中,相变收缩大( 11%~ 2 0 % ) ,注射后产生较大的热应力,易出现缩孔,不宜注射厚的试样<6> .油/聚烯烃粘结剂<7~9> 利用了油在常温下呈液态,并在注射冷却过程中没有收缩的特性,且可以用溶剂溶解而没有相变;但液态油本身没有强度,油加入量多时势必会降低生坯强度 .因此,将石蜡基粘结剂和油基粘结剂混合使用,开发石蜡油聚烯烃粘结剂体系具有广阔的应用前景 .在此,作者对该粘结剂组分中石蜡、聚乙烯进行选择,并着重研究油的加入对粘结剂性能的影响 .1实验方法 1 1实验原料实验中采用羰基铁粉和羰基镍粉作为原料,其性能如表1所示.粘结剂原料有巴西棕榈蜡、微晶石蜡以及2种相对分子质量不同的聚乙烯等.1 2实验过程实验过程为:粘结剂混合→粘结剂与粉末混炼→注射成形→脱脂.粘结剂混合在自制的装置中进行.采用DSC法测定喂料比热容,采用X衍射仪测定粘结剂组分相容性,采用标准抗弯试样和三点抗弯法测定生坯强度 .表1羰基铁粉和镍粉的性能粉末费氏粒径/μm摇实密度/(g·cm- 3)松装密度/(g·cm- 3)形貌纯度/% w杂质/%CONS羰基铁粉 3 .97 2 .97 1.6 4球形>96 0≤1.5≤1.5 <0 .3 羰基镍粉2 .6 0 1.95 0 .75球形>99.5≤0 .15≤0 .2 5 ≤0 .0 0 52实验结果与讨论2 1石蜡组分的选择在油聚乙烯中加入不同种类的石蜡,观察粘结剂的性质,其结果见表 2 .可见:从组分相容性看,微晶石蜡和石蜡A较好;从溶解性看,石蜡A可溶于CH2 Cl2 或CHCl3 等通用溶剂.因为只有溶解质量分数超过30 %~4 0 %的粘结剂,溶剂才能在后续热脱脂时有利于快速升温.所以,石蜡组分也只有溶于溶剂,才能使总的可溶成分的比例足够大,脱脂速率增加.这样,从溶解性看,石蜡A较好.可见,虽然巴西棕榈蜡、微晶石蜡能增加粘结剂与粉末的亲和力,但这2种石蜡不宜作此粘结剂中的石蜡组分 .石蜡A综合性能较好,适宜作粘结剂的组分.表2不同石蜡对石蜡油聚乙烯粘结剂性能的影响性能组份相容性生坯强度蜡是否溶于CH2 Cl2 或CHCl3巴西棕榈蜡两相分离较高不溶微晶石蜡工艺相容高不溶石蜡A工艺相容较高可溶2 2油加入量对混炼扭矩和最大粉末装载量的影响如图1所示,随着油加入量的增加,混炼扭矩减小 .因为油可在粘结剂和粉末间流动,在喂料和混炼的转子间起润滑剂的作用,从而减小喂料对混炼设备的磨损,较小的扭矩还可减少喂料对注射成形机螺杆的磨损.1,3—w油φmax曲线;2—w油P曲线图1油加入量对扭矩p和最大粉末装载量φmax的影响油的加入使石蜡聚乙烯混炼的最大粉末装载量比未加入油时减小了约1% (体积分数,下同) ,这可能是石蜡和油流变性轻微不同所致 .不过,当油的加入量超过10 %时,粉末装载量不再减小 .实验中采用了2种相对分子质量不同的聚乙烯 .当聚乙烯相对分子质量降低时,粉末装载量可从57%提高到60 % .2 .3油加入量对注射坯冷却过程的影响油加入量对粘结剂平均比热容的影响见图 2 .可见,随着粘结剂中油含量增加,粘结剂比热容有所降低,这可能是由于石蜡比热容大于油的比热容,而石蜡的比热容在相变前、后变化大,油加入后使喂料在冷却过程中吸热减小 .更重要的是,油在喂料冷却过程中没有相变,从而在注射过程中缩孔、开裂的可能性减少 .图2油加入量对粘结剂比热容c的影响 2 .4油加入量对生坯强度的影响粘结剂中油含量对生坯强度的影响见图 3.可见:随着油的加入,生坯强度降低较多.因为油本身无强度,油加入量增加,一方面使石蜡含量降低,另一方面部分油溶于聚乙烯链中或分散在石蜡和聚乙烯间,降低了粘结剂分子间作用力,故生坯强度下降 .当油含量为30 % (质量分数,下同)时,生坯强度为 5.5MPa;而油含量 4 0 %时,生坯强度只有 4 .2MPa.故要保证注射生坯强度大于5MPa,则油含量不能超过30 % .图3油加入量对生坯强度σ的影响2 .5粘结剂组分相容性图4所示为石蜡(wax)、石蜡油(wax/oil)、聚乙烯(PE)及wax/oil/PE的X射线衍射射图 .可见,wax/oil/PE粘结剂的衍射峰位与wax,wax/oil,PE的完全相同,没有新的衍射峰出现,说明3个组分间无化学反应存在,粘结剂是各组分的机械混合物 .EdirisingheMJ用DSC对石蜡聚丙烯进行了研究,发现峰位一致<10 > ,说明该粘结剂组分无相互作用,是不相容的 .1—waxoilPE;2—waxoil;3—PE;4—wax图4石蜡油聚乙烯粘结剂与组分的X射线衍射图2 .6油加入量对溶剂脱脂速率的影响以m(wax)∶m(oil)∶m(PE) =( 70 -x)∶x∶30的粘结剂与φ(Fe2Ni) =58%粉末装载量混炼的喂料,注射成标准抗弯样(厚度约 6.37mm) ,研究它们在CH2 Cl2 溶剂中的脱脂速率,x分别取10 ,2 0 ,30 ,4 0 ,测得的结果见图 5.可见,未加入油时,曲线1的脱脂速率最低,随着油含量增加,脱脂速率增加较快,这是因为油比石蜡更易溶于CH2 Cl2 ;曲线6与曲线4相比,两者的含量相同,但脱脂温度不同,脱脂速率随温度升高大幅度提高 .从图5可以看到:曲线6与曲线5相比,两者油含量不同,脱脂温度也不同;在曲线6中,当脱脂5h后脱脂量达到粘结剂的52 % ,而曲线5仅为34 % .考虑到粘结剂中30 %的油都较易通过溶解和扩散脱除,因此,曲线5和6所示的脱脂量的差别显然不能仅仅用脱脂温度升高而导致溶剂或溶解产物在坯中扩散加快来解释.从石蜡在CH2 Cl2 中溶解度随温度的变化关系可以推断,脱脂温度升高时,石蜡在CH2 Cl2 中溶解度及溶解速率增加是另一个重要因素.因为在 2 0℃时,石蜡在CH2 Cl2 中溶解度非常小;而在35℃时,石蜡的溶解度激增,约为 2 0g/L .所以,温度升高,石蜡被溶解的量大大增加,使曲线6脱脂量远远大于曲线5的脱脂量 .这一结果间接地反映了该粘结剂的脱脂原因可能是由粘结剂的溶解和扩散造成的.1— 2 0℃,w油=0 ;2—2 0℃,w油=10 % ;3—2 0℃,w油=2 0 % ;4—2 0℃,w油=30 % ;5—2 0℃,w油=40 % ;6—35℃,w油=30 %图5油的含量和温度对脱脂速率的影响3结论a石蜡A能溶于二氯甲烷,采用低相对分子质量的聚乙烯能得到较高的粉末装载量,适宜于作粘结剂的组分.bX射线衍射结果表明,石蜡油聚乙烯粘结剂组分是不相容的.c油的加入降低了混炼扭矩、最大粉末装载量和生坯强度,但同时也减少了注射缺陷,并使溶剂脱脂速率增加 .采用该粘结剂,可使Fe2Ni粉末装载量(体积分数)达60 % ,生坯强度达 5.5MPa,溶剂脱脂速率大于2mm/h .金属粉末注射成形用石蜡-油-聚乙烯粘结剂@李益民$中南大学粉末冶金国家重点实验室!湖南长沙410083@李松林$中南大学粉末冶金国家重点实验室!湖南长沙410083@曲选辉$中南大学粉末冶金国家重点实验室!湖南长沙410083@黄伯云$中南大学粉末冶金国家重点实验室!湖南长沙410083金属粉末;;注射成形;;粘结剂研制了用于Fe 2Ni粉末注射成形的石蜡油聚乙烯粘结剂,选择了石蜡和聚乙烯组分,考察了油的加入对组分相容性、生坯强度、粉末装载量、喂料比热容、溶剂脱脂速率的影响 .实验结果表明:石蜡油聚乙烯粘结剂是热力学不相容的体系;油的加入降低了混炼扭矩、最大粉末装载量和生坯强度,但同时也减少了注射缺陷,并使溶剂脱脂速率增大;加入该粘结剂,可使Fe 2Ni粉末装载量(体积分数)达 6 0 % ,生坯强度达 5 .5MPa ,溶剂脱脂速率大于2mm/h .<1>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.蜡基粘结剂石蜡是固态高级烷烃的混合物,主要成分的分子式为CnH2n+2,其中n=17~35。

主要组分为直链烷烃,还有少量带个别支链的烷烃和带长侧链的单环环烷烃;直链烷烃中主要是正二十二烷(C22H46)和正二十八烷(C28H58)。

石蜡又称晶形蜡,通常是白色、无味的蜡状固体,在47°C-64°C熔化,密度约0.9g/cm3,溶于汽油、二硫化碳、二甲苯、乙醚、苯、氯仿、四氯化碳、石脑油等一类非极性溶剂,不溶于水和甲醇等极性溶剂。

石蜡也是很好的储热材料,其比热容为2.14–2.9J·g–1·K–1,熔化热为200–220J·g–1。

石蜡的主要性能指标是熔点、含油量和安定性。

熔点:石蜡是烃类的混合物,因此它并不像纯化合物那样具有严格的熔点。

所谓石蜡的熔点、是指在规定的条件下,冷却熔化了的石蜡试样,当冷却曲线上第一次出现停滞期的温度。

各种蜡制品都对石蜡要求有良好的耐温性能,即在特定温度r.不熔化或软化变形。

按照使用条件、使用的地区和季节以及使用环境的差异,要求商品石蜡具有一系列不同的熔点。

影响石蜡熔点的主要因素是所选用原料馏分的轻重,从较重馏分脱出的石蜡的熔点较高。

此外,含油量对石蜡的熔点也有很大的影响,石蜡中含油越多,则其熔点就越低。

含油量:是指石蜡中所含低熔点烃类的量。

含油量过高会影响石蜡的色度和储存的安定性,还会使它的硬度降低。

所以从减压馏分中脱出的含油蜡膏,还需用发汗法或溶剂法进行脱油,以降低其含油量。

但大部分石蜡制品中需要含有少量的油,这对改善制品的光泽和脱模性能是有利的。

安定性:石蜡制品在造型或涂敷过程中,长期处于热熔状态,并与空气接触,假如安定性不好,就容易氧化变质、颜色变深,甚至发出臭味。

此外,使用时处于光照条件下石蜡也会变黄。

因此,要求石蜡具有良好的热安定性、氧化安定性和光安定性。

影响石蜡安定性的上要因素是其所含有的微量的非烃化合物和稠环芳烃。

为提高石蜡的安定性,就需要对石蜡进行深度精制,以脱除这些杂质。

根据加工精制程度不同,可分为全精炼石蜡、半精炼石蜡和粗石蜡3种。

每类蜡又按熔点,一般每隔2℃,分成不同的品种,如52,54,56,58等牌号。

粗石蜡含油量较高,主要用于制造火柴、纤维板、篷帆布等。

全精炼石蜡是指以含油蜡为原料,经发汗或溶剂脱油,再经白土或加氢精制所得到的产品。

全精炼石蜡和半精炼石蜡的主要区别是含油量的多少,全精炼石蜡含油量小于0.8%,半精炼石蜡含油量小于2.0%。

1.1普通石蜡固体石蜡又称晶形蜡,是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶,是碳原子数约为18~30的烃类混合物,主要组分为直链烷烃。

可用于制造橡胶制品蜡纸蜡笔食品和药物组分等。

液体石蜡性状为无色透明油状液体,在日光下观察不显荧光。

室温下无嗅无味,加热后略有石油臭。

密度比重0.86-0.905(25℃)不溶于水、甘油、冷乙醇。

溶于苯、乙醚、氯仿、二硫化碳、热乙醇。

与除蓖麻油外大多数脂肪油能任意混合、樟脑、薄荷脑及大多数天然或人造麝香均能被溶解。

在塑料工业中用做润滑剂增塑剂,纺织工业中用做纤维油剂,也用作仪器机床的润滑,防腐,也是化妆品和食品工业的添加剂。

1.2蜂蜡1.3巴西棕榈蜡主要由酸和羟基酸的酯组成的复杂混合物,大部分是脂肪酸酯、羟基脂肪酸酯、p-甲氧基肉桂酸酯、p-羟基肉桂酸二酯,其脂肪链长度不一,以C26和C32醇最为常见。

此外还含有酸、氧化多元醇、烃类、树脂样物质和水,是一种质地非常坚硬的无毒无害的纯天然蜡。

溶解度:几乎不溶于水;微溶于沸腾的乙醇(95%);溶于温热的氯仿和甲苯。

巴西棕榈蜡质地非常坚硬,具有极高的光泽,极易乳化,有着良好的保油性,它最大的优点是具有其它蜡所没有的极高的光泽度和超乎寻常的硬度。

巴西棕榈蜡1号片(T-1 Flake):食品配料:口香糖的抛光剂和上光剂、软硬豆状胶质糖果及巧克力的上光剂。

牙科用料:因其具有一定的硬度而被广泛应用。

巴西棕榈蜡1号喷雾干燥粉食品级(T-1 Spray dried powder):可用于制作糖衣丸、咖啡豆上光剂、口香糖和巧克力的包衣。

巴西棕榈蜡3号片(T-3 Flake):地板蜡:使其具有意想不到的抛光和光亮效果。

鞋油:适用于油底或水底鞋油的抛光巴西棕榈蜡是一种质地非常坚硬的无毒无害的纯天然蜡。

牌号:1颗树,3颗树1.4微晶蜡微晶石蜡主要是出文链烃、环烷烃和一些直链烃组成,分子量范围大约是500-1000。

这是一种比较细小的晶体,溶于非极性溶剂,不溶于极性溶剂。

微晶蜡以天然原油的减压渣油为原料,经丙烷脱沥青、糠醛精制、酮苯脱油、白土补充精制及加氢补充精制冷却后成型而制得该系列产品。

微晶蜡曾称提纯地蜡,一种精制的石油蜡胶,白色至浅黄色。

之所以称为“微晶蜡”,是因为在显微镜下可以明显地看出它的结晶比石蜡的结晶要小的多。

石蜡的结晶态一般是尺寸较大的薄片,而微晶蜡一般是由较细的针状或粒状结晶构成。

石蜡是脆性的,受力后很容易端丽甚至粉碎,而微晶蜡的硬度小,柔韧性很好,受力后容易变形,不易脆裂。

石蜡中主要是具有较长的、没有支链的烷烃,而微晶蜡的主要成分是分子量较大的、带有较长碳链的环烷烃和芳香烃。

产品按颜色、含油量和稠环芳烃分级,分为合格品、级品和食品级。

微晶蜡为白色或浅黄色固体,其结晶微细,有较好的渗透性、附着性及韧性,且防潮、绝缘性好。

石蜡熔点在38-68之间,微晶蜡在60-95℃之间按滴熔点级品分为70号、75号、80号、85号、90号共五个牌号。

1.5聚乙二醇蜡(1)聚乙二醇系列产品可用于药剂。

相对分子量较低的聚乙二醇可用作溶剂、助溶剂、o/w型乳化剂和稳定剂,用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的,PEG4000、PEG6000是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。

(2)PEG4000、PEG6000在医药工业中作为赋形剂,用作栓剂、膏剂的制备;造纸工业中用作涂饰剂,增加纸张的光泽和平滑性;在橡胶工业中作为添加剂,增加橡胶制品的润滑性和塑性,减少加工过程中的动力消耗,延长橡胶制品的使用寿命。

(3)聚乙二醇系列产品可作为酯型表面活性剂的原料。

(4)PEG-200可作为有机合成的介质及有较高要求的热载体,在日用化学工业中用作保湿剂、无机盐增溶剂、粘度调节剂;在纺织工业中用作柔软剂、抗静电剂;在造纸与农药工业中用作润湿剂。

(5)PEG-400、PEG-600、PEG-800用作医药及化妆品的基质,橡胶工业与纺织工业的润滑剂和润湿剂。

PEG-600在金属工业中加于电解液可增强研磨效果,增强金属表面的光泽。

(6)PEG-1000、PEG-1500在医药、纺织、化妆品工业中用作基质或润滑剂、柔软剂;在涂料工业中用作分散剂;改进树脂的水分散性、柔韧性,用量为20~30%;油墨中可提高染料的溶解能力,降低其挥发性,在蜡纸和印台油墨中尤其适用,也可在圆珠笔油墨中作调节油墨粘稠度用;在橡胶工业中作分散剂,促进硫化作用,用作炭黑充填料的分散剂。

(7)PEG-2000、PEG-3000用作金属加工铸模剂,金属拉丝、冲压或成型的润滑剂及切削液,研磨冷却润滑抛光剂、焊接剂等;在造纸工业中用作润滑剂等,也用作热熔黏合剂,以增加快速的再润湿能力。

(8)PEG-4000、PEG-6000在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。

(9)PEG8000在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。

1.6聚烯烃蜡聚乙烯蜡(PE蜡),又称高分子蜡简称聚乙烯蜡。

因其优良的耐寒性、耐热性、耐化学性和耐磨性而得到广泛的应用。

正常生产中,这部分蜡作为一种添加剂可直接加到聚烯烃加工中,它可以增加产品的光泽和加工性能。

作为润滑剂,其化学性质稳定、电性能良好。

聚乙烯蜡与聚乙烯、聚丙烯、聚蜡酸乙烯、乙丙橡胶、丁基橡胶相溶性好。

能改善聚乙烯、聚丙烯、ABS的流动性和聚甲基丙烯酸甲酯、聚碳酸酯的脱模性。

对于PVC和其它的外部润滑剂相比,聚乙烯蜡具有更强的内部润滑作用。

聚乙烯蜡指分子量为1500-25000的低分子量聚乙烯或部分氧化的低分子量聚乙烯。

其呈颗粒状、白色粉末、块状以及乳白色蜡状。

具有优良的流动性、电性能、脱模性。

聚乙烯蜡的作用原理是这样的:聚乙烯蜡在高温中(约100-140℃)溶解于溶剂中,而在冷却至常温时析出,以微晶形式存在于涂料中,因其触变性有利于涂料的贮存,而在涂料施工应用之后,在溶剂挥发过程中能迁移到涂膜表层,最终与涂料其他组分形成一个“蜡化”的表层。

缺点:熔点低,在热脱脂时热变形温度低,保型性差,易坍塌,需支撑材料;黏度低,不能与金属粉末产生很好的混合,易产生两相分离以及在注射成型时易发生喷射和出现焊纹,并且当石蜡冷却时,体积收缩大(11%-20%)。

典型的做法是与PP,PE,乙烯-醋酸乙烯酯(EV A)以及添加剂混合。

2.乙烯基共聚物2.1.EVA其产品的特点:耐水性:密闭泡孔结构、不吸水、防潮、耐水性能良好。

耐腐蚀性:耐海水、油脂、酸、碱等化学品腐蚀,抗菌、无毒、无味、无污染。

加工性:无接头,且易于进行热压、剪裁、涂胶、贴合等加工。

防震动:回弹性和抗张力高,韧性高,具有良好的防震、缓冲性能。

保温性:隔热,保温防寒及低温性能优异,可耐严寒和曝晒。

隔音性:密闭泡孔,隔音效果好。

EV A中的醋酸乙烯的含量低于20%时,这时才可作为塑料使用。

有很好的耐低温性能,分解温度较低,约为230℃左右,随着分子量的增大,EV A的软化点上升,加工性和塑件表面光泽性下降,但强度增加,冲击韧性和耐环境应力开裂性提高,EV A的耐化学药品、耐油性方面较之PE,PVC稍差,并随醋酸乙烯含量的增加,变化更加明显。

EV A树脂是乙烯-醋酸乙烯共聚物,一般醋酸乙烯(V A)含量在5%~40%。

与聚乙烯相比,EV A由于在分子链中引入了醋酸乙烯单体,从而降低了高结晶度,提高了柔韧性、抗冲击性、填料相溶性和热密封性能,被广泛应用于发泡鞋料、功能性棚膜、包装膜、热熔胶、电线电缆及玩具等领域。

一般来说,EV A树脂的性能主要取决于分子链上醋酸乙烯的含量。

相关文档
最新文档