北师大版七年级数学下册总复习专项测试题 附答案解析(八)

合集下载

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。

(北师大版)北京市七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)

(北师大版)北京市七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)

一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)考试范围:第一.二.三单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设a=355,b=444,c=533,则a、b、c的大小关系是( )A. c<a<bB. a<b<cC. b<c<aD. c<b<a2. 如图,长方形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么长方形ABCD的面积是( )A. 21cm2B. 16cm2C. 24cm2D. 9cm23. 计算(23)2013×1.52012×(−1)2014的结果是( )A. 23B. 32C. −23D. −324. ∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2的度数是( )A. 50°B. 130°C. 50°或130°D. 不能确定5. 下列说法中,正确的是( )A. 一个锐角的补角大于这个角的余角B. 一对互补的角中,一定有一个角是锐角C. 锐角的余角一定是钝角D. 锐角的补角一定是锐角6. 如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF,则∠GEB的度数为( )A. 10°B. 20°C. 30°D. 40°7. 火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个8. 如图是一组有规律的图案,第 ①个图案由4个基础图形组成,第 ②个图案由7个基础图形组成,⋯,设第ⓝ(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是( )A. y=4nB. y=3nC. y=6nD. y=3n+19. 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的图象大致为图中的( )A. B.C. D.10. 若M=a2−a,N=a−1,则M、N的大小关系是( )A. M>NB. M<NC. M≥ND. M≤N11. 如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为( )A. 40°B. 50°C. 60°D. 140°12. 在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是( )A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.14. 如图,直线l1//l2,∠α=∠β,∠1=40∘,则∠2=.15. 一棵树高ℎ(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出ℎ(m)与n(年)之间的关系式:ℎ=.n/年246810⋯ℎ/m 2.6 3.2 3.8 4.4 5.0⋯16. 如图,一轮船从离A港10千米的P地出发向B港匀速行驶,30分钟后离A港26千米(未到达B港).设x小时后,轮船离A港y千米(未到达B港),则y与x之间的关系式为________.三、解答题(本大题共9小题,共72.0分。

北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)

北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)

北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. “明天是晴天”这个事件是( )A. 确定事件B. 不可能事件C. 必然事件D. 随机事件2. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于63. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小4. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于65. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果,下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③6. 口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是( )A. 从口袋中拿一个球恰为红球B. 从口袋中拿出2个球都是白球C. 拿出6个球中至少有一个球是红球D. 从口袋中拿出的球恰为3红2白7. 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A. 0.85B. 0.57C. 0.42D. 0.158. 一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A. 摸到黄球是不可能事件B. 摸到黄球的概率是34C. 摸到红球是随机事件D. 摸到红球是必然事件9. 一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸1个球,摸到红球的概率是( )A. 13B. 23C. 25D. 3510. 不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab11. 一副扑克牌有54张,(黑桃、红桃、方片、草花各13张,大小王各一张)从牌中任意摸出一张牌是红桃的概率是( )A. 1352B. 1354C. 12D. 132712. 如图,小颖有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为( )A. 59B. 16C. 13D. 12第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一副52张的扑克牌(无大王、小王),从中任意取出一张,抽到“K”的可能性的大小是______.14. 下列事件:①太阳从东方升起;②三条线段能组成一个三角形;③a是实数,|a|<0;④购买一张大乐透彩票,中大奖500万.其中确定事件是______ (填写序号).15. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.16. 在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随,则a=.机摸出1个球,摸到红球的概率为23三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总复习专项测试题(八)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、若,则的值为( )
A.
B.
C.
D.
2、下列计算正确的是( ).
A.
B.
C.
D.
3、若要使的展开式中含的项的系数为,则的
值为( ).
A.
B.
C.
D.
4、已知关于的方程和关于方程有相同
的解,求(为正整数)的值。
A.
B.
C.
D.
5、种饮料比种饮料单价少了元,小峰买了瓶种饮料和瓶种饮料,一
共花了元.如果设种饮料单价为元/瓶,那么下面所列方程正确的
是 ( )
A.
B.
C.
D.
6、已知在甲处劳动的有人,在乙处劳动的有人,为了工作的需要,现另调
人去支援,使在甲处劳动的人数为乙处的倍,则应调往甲,乙两处的人数分别
是 ( )
A. 人,人
B. 人,人
C. 人,人
D. 人,人
7、已知有理数、、在数轴上的位置如图所示,则等于( )
A.
B.
C.
D.
8、对于一个自然数,如果能找到正整数、,使得,则称
为“好数”,例如:,则是一个“好数”,在,,,这
四个数中,“好数”的个数为( )
A.
B.
C.
D.
9、一个多项式加上得到多项式,则原来的多项式为
( )
A.
B.
C.
D.
10、是一个由四舍五入得到的近似数,它是( )
A. 精确到百分位
B. 精确到十分位
C. 精确到万位
D. 精确到十万位
11、在如图的2017年11月份的月历表中,任意框出表中竖列上三个相邻的数,
这三个数的和不可能是( )

A.
B.
C.
D.
12、若关于的方程有三个不同的解,则有理数的值为
( )
A. 以上都不正确
B. 或
C.
D.

相关文档
最新文档