专题10 二次根式(专题测试-基础)(解析版)

合集下载

数学二次根式复习题附解析

数学二次根式复习题附解析

数学二次根式复习题附解析一、选择题1.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.52.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=3.下列计算正确的是( ) A .336+=B .3323+=C .336⨯=D .3333+=4.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .275.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣16.下列各式中,运算正确的是( )A .32222=8383-=-.233=D ()222-=-7.下列计算正确的是( ) A 2510=B 623=C 12315=D .241=8.已知:x 3,y 31,求x 2﹣y 2的值( ) A .1B .2C 3D .39.下列各式中,正确的是( ) A .23B .a 3 • a 2=a 6 C .(b+2a) (2a -b) =b 2 -4a 2 D .5m + 2m = 7m 210.()23-A .﹣3B .3C .﹣9D .911.如果实数x ,y 23x y xy y =-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上12.3x -在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x >3C .x ≥3D .x ≤3二、填空题13.比较实数的大小:(1)______ ;(2)14_______1214.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 15.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).16.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________.17.÷=________________ .18.化简:19.计算:20082009⋅-=_________.20.x 的取值范围是_____三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=256;n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.25.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1. 【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a b a b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积. 【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积. 试题解析:剩余部分的面积为:(2﹣() =()﹣(﹣) =(cm 2). 考点:二次根式的应用28.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:50 50 bb-≥⎧⎨-≥⎩,解得5b=由此可化简原式得,30a+=30a∴+=,20c-=3a∴=-,2c=22((534b a∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】可以根据最简二次根式的定义进行判断. 【详解】A ,原根式不是最简二次根式;BC 2=,原根式不是最简二次根式;D 、=42=⨯= 故选B . 【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.B解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B. 【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键.4.C解析:C 【分析】化简得到结果,即可做出判断. 【详解】解:AB ,不是最简二次根式;C 是最简二次根式;D 故选:C . 【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.5.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小6.A解析:A 【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案. 【详解】解:A 、-=A 正确;B =B 错误;C 、2不能合并,故C 错误;D 2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.7.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.8.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.9.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误;D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.10.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.11.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x 、y 异号,且y>0,∴x<0,或者x 、y 中有一个为0或均为0.∴那么点(),x y 在第二象限或坐标轴上.故选:D .【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a 、b 的取值范围,从而确定点的坐标位置.12.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 15.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 16.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.17.【解析】=,故答案为.解析:【解析】÷====-,故答案为18.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析:【解析】根据二次根式的性质,化简为:故答案为 ; 19.【解析】原式==20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

最新初中数学二次根式基础测试题及答案

最新初中数学二次根式基础测试题及答案

2.下列各式计算正确的是( )
A.2+b=2b
B. 5 2 3 C.(2a2)3=8a5
【答案】D
【解析】
解:A.2 与 b 不是同类项,不能合并,故错误;
B. 5 与 2 不是同类二次根式,不能合并,故错误;
C.(2a2)3=8a6,故错误; D.正确. 故选 D.
D.a6÷ a4=a2
3.式子 x 1 在实数范围内有意义,则 x 的取值范围是(
A. a 1 2
【答案】C 【解析】 【分析】
B. a 1 2
C. a 1 2
D.无解
根据二次根式的性质得 (2a 1)2 |2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到 2a-
1≤0,然后解不等式即可. 【详解】
解:∵ (2a 1)2 |2a-1|,
∴|2a-1|=1-2a, ∴2a-1≤0,
C.3k﹣11
D.11﹣3k
【答案】D
【解析】
【分析】
求出 k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出 6-k-(2k-5),求出 即可.
【详解】
∵一个三角形的三边长分别为 1 、k、 7 ,
2
2
∴ 7 - 1 <k< 1 + 7 ,
22
22
∴3<k<4,
k2 12k 36 -|2k-5|,
∴a 1 . 2
故选:C. 【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.
5.若 x、y 都是实数,且 2x 1 1 2x y 4 ,则 xy 的值为 ( )
A.0
B. 1 2
【答案】C
【解析】
由题意得,2x−1⩾0 且 1−2x⩾0,

八年级数学上册单元题型精练(北师大版): 实数与二次根式(基础)(解析版)

八年级数学上册单元题型精练(北师大版): 实数与二次根式(基础)(解析版)

专题2.2实数与二次根式目录实数的基本概念 (1)实数的混合运算 (3)求实数的整数或小数部分 (3)判断二次根式 (7)二次根式有意义的条件 (8)二次根式的非负性 (9)判断最简二次根式 (11)二次根式化简 (12)二次根式的乘除运算 (14)同类二次根式 (16)同类二次根式求参数 (17)二次根式的加减运算 (18)二次根式比较大小 (20)简单分母有理化 (22)二次根式的加减乘除混合运算 (25)实数的基本概念【例1】下列说法正确的是()A.0.08的立方根是0.2B2C.0的倒数是0D.1 是1的绝对值【解答】解:A 选项,30.20.008 ,故该选项不符合题意;B 4 ,4的平方根是2 ,故该选项符合题意;C 选项,0没有倒数,故该选项不符合题意;D 选项,1是1 的绝对值,绝对值具有非负性,故该选项不符合题意;故选:B .【变式训练1】下列说法正确的是()A .0没有平方根B .1的立方根是1CD .的相反数是【解答】解:A 、因为0的平方根是0,所以原说法错误,故本选项不符合题意;B 、因为1的立方根是1,所以原说法错误,故本选项不符合题意;C 的倒数是2,所以原说法错误,故本选项不符合题意;D 、 的相反数是 ,所以原说法正确,故本选项符合题意.故选:D .【变式训练2】下列结论正确的是()A .2 的倒数是2B .64的平方根是8C .16的立方根为4D .算术平方根是本身的数为0和1【解答】解:A .2 的倒数是12,故此选项不合题意;B .64的平方根是8 ,故此选项不合题意;C .16的立方根为,故此选项不合题意;D .算术平方根是本身的数为0和1,故此选项正确.故选:D .【变式训练3】下列说法中,正确的是()A .24 的算术平方根是4B .64 的立方根是4C .任意一个有理数都有两个平方根D 【解答】解:A 、2416 ∵,负数没有算术平方根,故不符合题意;B 、64 的立方根是4 ,故符合题意;C 、0只有一个平方根,负数没有平方根,故不符合题意;D故选:B .实数的混合运算【例20221(2)(2)(2n .0221(2)(2)(2n .9144 8 .【变式训练1】计算:20(2)|(3 .【解答】解:原式451 .【变式训练2】计算:2022211(|2|3 .【解答】解:原式192 10 .【变式训练3】计算:21|4|(3【解答】解:原式49211 .求实数的整数或小数部分【例31的整数部分是m ,小数部分是n n 的值是()A .2B .1C .2D .1【解答】解:479 ∵,23 ,112 ,1m ,112n ,n2)22 .故选:C .【变式训练1的整数部分为a ,小数部分为b ,则2(a b )A1B 1C 2D 2【解答】解:因为 23 ,的整数部分是2,小数部分是2) ,即2a ,2b ,所以2422a b 故选:C .【变式训练2】设的整数部分是a b ,(a b )A 4B .7C .6D .3【解答】解:91016 ∵,161725 ,34 ,45 ,3a ,4b ,a b 34 7 .故选:B.()【变式训练3】实数2A.4B.5C.6D.7【解答】解:161725∵,45,,6272的整数部分是6,故选:C.【例4,于是可以用1的12小数部分.请解答下列问题:(15,小数部分是;(2)如果3 的小数部分为a,5b,求a【解答】解:(1) ,,56,的整数部分为5,小数部分为5故答案为:55;(2)23∵,,5363a ,的小数部分352∵,12,21,3545 3b ,231a .【变式训练1】已知a 的立方根是2,b 的整数部分,c 是9的平方根,求a b c 的算术平方根.【解答】解:a ∵的立方根是2,8a ,91316 ∵,34 ,3b ,c ∵是9的平方根,3c ,当3c 时,83314a b c ;当3c 时,8338a b c ,算术平方根为答:a b c .【变式训练2】已知21a 的平方根为3 ,31a b 的立方根为2,(1)求6a b 的算术平方根;(2)若c 的整数部分,求23a b c 的平方根.【解答】解:(1)21a ∵的平方根为3 ,31a b 的立方根为2,219a ,318a b ,解得5a ,6b ,636a b ,36∵6 ,6a b 的算术平方根是6;(2)34 ∵,的整数部分为3,即3c ,由(1)得5a ,6b ,231018325a b c ,而25的平方根为5 ,23a b c 的平方根5 .【变式训练3】已知21a 的平方根是3 ,31a b 的算术平方根是4,c 的整数部分,求2a b c 的平方根.【解答】解:21a ∵的平方根是3 ,219a ,解得:5a ,31a b ∵的算术平方根是4,3116a b ,即15116b ,解得:2b ,c ∵的整数部分,34 ,3c ,252235436a b c ,2a b c 的平方根是.【例5】下列的式子中是二次根式的是()A B C D 【解答】解:A .被开方数是负数,不是二次根式,故本选项不符合题意;B .被开方数是负数,不是二次根式,故本选项不符合题意;C .根指数是3不是2,不是二次根式,故本选项不符合题意;D.是二次根式,故本选项符合题意;故选:D.()【变式训练1】下列式子中,一定是二次根式的是A B C Da 时,它无意义,故本选项不符合题意;【解答】解:A、当0B、当1a 时,它无意义,故本选项不符合题意;a 时,它无意义,故本选项不符合题意.C、当1D、是二次根式,故本选项符合题意.故选:D.()【变式训练2】下列各式中,一定是二次根式的是A.B C D【解答】解:A、B是三次根式,故本选项不符合题意;C、当0D、由于30,则它无意义,故本选项不符合题意.故选:A.()【变式训练3】下列各式是二次根式的是A B C D无意义,故此选项不符合题意;【解答】解:A中被开方数20B、20是二次根式,故此选项符合题意;a∵,211aa 时,C、当0D故选:B.二次根式有意义的条件【例6x的取值范围是()A .4xB .4xC .4xD .4x【解答】解:∵40x ,解得:4x .故选:C .【变式训练1有意义,则x 的取值范围是1x .【解答】解:由题意得:10x ,解得,1x ,故答案是:1x .【变式训练2a 的取值范围是()A .1a B .1a C .1a D .1a 【解答】解:由题意得:10a ,1a ,故选:B .【变式训练3,则a 的取值范围是()A .3a B .3a C .3a D .3a 【解答】解:由题意可知:30a ,3a .故选:D .二次根式的非负性【例7】若x ,y 30y ,则x y 的值为()A .7B .1C .7D .1【解答】解:40x ∵,40x ,4x ,3y ,431x y .故选:D .【变式训练1】已知x 、y 为实数,且3y ,则x y 的值是()A .2022B .2025C .2027D .2030【解答】解:20220x ∵,20220x ,20220x ,2022x ,3y ,202232025x y ,故选:B .【变式训练2】若实数x ,y 满足1y ,则x y 的值是()A .1B .6C .4D .6【解答】解:50x ∵,50x ,5x ,5x ,5x ,1y ,5(1)516x y ,故选:D .【变式训练3】已知|2020|a a ,则244040a 的值为()A .8084B .6063C .4042D .2021【解答】解:由题意得,20210a ,解得,2021a ,原式变形为:2020a a ,2020 ,220212020a ,24420208084a ,222440404040808440408084a ,故选:A.判断最简二次根式一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.【例8】下列二次根式是最简二次根式的是()C DA B【解答】解:2,故此选项不合题意;B ,故此选项不合题意;3C是最简二次根式,故此选项符合题意.故选:D.()【变式训练1】下列根式中,为最简二次根式的是B C DA【解答】解:A选项,原式 ,故该选项不符合题意;BC选项,原式 ,故该选项不符合题意;D选项,原式故选:B.()【变式训练2】下列各式是最简二次根式的是C DA B【解答】解:A是最简二次根式,故该选项符合题意;B选项,原式 ,故该选项不符合题意;C选项,原式|1|,故该选项不符合题意;aD选项,原式故选:A.()【变式训练3】下列根式中属于最简二次根式的是A BC D【解答】解:A是最简二次根式,故该选项符合题意;B选项,原式2,故该选项不符合题意;2C选项,原式 ,故该选项不符合题意;D选项,原式故选:A.二次根式化简【例9】把下列二次根式化简最简二次根式:(1(2(3;(4.【解答】解:(1) ;(2;(32(4 .【变式训练1】把下列二次根式化成最简二次根式(1(2(3【解答】解:(1) ;(2(3【变式训练2】把下列各式化为最简二次根式.(1)(2【解答】解:(1)6;(2【变式训练3】把下列二次根式化为最简二次根式:(1;(2;;(3)3(4;(5)a,b,c均大于0).;【解答】解:(1)原式;(2)原式(3)原式3;(4)原式(5)原式4二次根式的乘除运算【例10 的结果是()A B C.1D.1221 .故选:C.()【变式训练1】下列计算错误的是A B2 C2D【解答】解:A A不符合题意;B2,故B不符合题意;C2 ,故C符合题意;D,故D不符合题意;3故选:C.()【变式训练2A B.2C.3D.42 ,故选:B.()【变式训练3】下列各式计算正确的是A8 B3 C.210D.2(3【解答】解:A、原式 ,故A不符合题意.B、原式3,故B符合题意.C、原式5 ,故C不符合题意.D、原式3 ,故D不符合题意.故选:B.【例11】计算:|2|.【解答】解:|2(2222.【变式训练1【解答】解:原式1 352 152 .【变式训练2】计算:.【解答】解:原式 5210.【变式训练3【解答】解:原式45 352同类二次根式【例12是同类二次根式的是()ABCDA不符合题意;不是同类二次根式,所以选项B不符合题意;C符合题意;D不符合题意;故选:C.【变式训练1合并的是()ABCD【解答】解:AB合并,故此选项符合题意;CD故选:B.【变式训练2,中与是同类二次根式的有( )A.1个B.2个C.3个D.4个,10是同类二次根式,共2个,故选:B.同类二次根式求参数【例13可以合并,则x可能是()A.4B.5C.6D.8x ,此时不可以合并,故此【解答】解:A、当4选项不符合题意;B、当5x 时,不可以合并,故此选项不符合题意;x 4C、当6,此时D、当8x 时, 可以合并,故此选项符合题意.故选:D.【变式训练1能合并,则x的值为()A.0.5B.1C.2D.2.5【解答】解:∵能合并,.2143x xx .解得2故选:C.【变式训练2是同类二次根式,则(m ) A.2021B.2023C.2D.1【解答】解:根据题意得20232m ,2021m .故选:A .【变式训练3是同类二次根式,则a 的值为()A .2B .4C .1D .1【解答】解:由题意,得:123a ,解得1a ,故选:D .二次根式的加减运算二次根式的加减法则:二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.被开方数相同的最简二次根式,称为“同类二次根式”【例14 的值为()A B .0C D .0 ,故选:B .【变式训练1 的结果是()A B .C .D .故选:B .【变式训练2 ,则(a b c )A .1B .5C .2D .5,所以3a ,3b ,1c ,因此1a b c ,故选:A .【变式训练3】计算 ()A.B.C .9D.【解答】解:原式 ,故选:B .【例15】计算:(1)1) ;(2)|2| .【解答】解:(1)1)22 ;(2)|2|224 【变式训练1】计算:.【解答】解:.【变式训练2.33.【变式训练3】计算:(1 ;(2)(31);(4【解答】解:(1)原式32242(2)原式35(3)原式42422 ;(4)原式1154.二次根式比较大小【例16】比较大小:.【解答】解:2254100 ,216580 ,10080 ∵,故答案为: .【变式训练1】比较大小: (填“ ”、“ ”或“ ”号).【解答】解:161825 ∵,45 ,45 ,54 ,2 ∵,故答案为: .【变式训练2】比较大小: 1.41;121(填“ ”或“ ”)【解答】解: 1.412 1.9881 ∵,1.41 ;23 ∵,112 ,1 .故答案为: , .【变式训练3】比较大小:321 (选填“ ”、“ ”、“ ”).【解答】解:3(1)2312 52,162425 ∵,45 ,50 ,502 ,312,故答案为: .简单分母有理化(1)定义:化去分母中根号的变形叫做分母有理化;(2)方法:将分子和分母都乘分母的有理化因式.二次根式的化简技巧:(1)当被开方数是整数时,应先将它分解因数;(2)当被开方数是小数或带分数时,应先将小数化成分数或带分数化成假分数的形式;(3)当被开方数是整数或分数的和差时,应先将这个和差的结果求出.【例17()A .5B C D .15,故选:A .【变式训练1】把分母有理化后得()A .4bB .CD2bb .故选:D .【例18的结果是13.【解答】解:原式13 .故答案为:1 3.【变式训练17【解答】解:原式22(2432(2437故答案为:7【变式训练2【解答】解:原式.故答案为【变式训练3】分母有理化12.【解答】解:原式12.故答案为:12.【例19】在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化,比如:(1(21)12试试看,将下列各式进行化简:(1;(2;(3.【解答】解:(1;(21;(3)原式1 (1)31 2 .【变式训练1这样的式子,其实我们还可以将其进一步化简:;3;1.像这样,把代数式中分母化为有理数过程叫做分母有理化.化简:(1;(2n 为正整数);(3)求【解答】解:(1)原式;(2)原式;(3)原式1 1 .二次根式的加减乘除混合运算先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。

选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。

而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。

2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。

3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。

4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。

5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。

6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。

二次根式(31题)(解析版)

二次根式(31题)(解析版)

二次根式一、单选题【答案】D【分析】根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:由题意得,x -1≥0,解得x≥1.故选:D .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握要使二次根式有意义,其被开方数应为非负数. . . .. 【答案】C【分析】根据被开方数大于等于0x 的取值范围,然后在数轴上表示即可得解.【详解】解:根据题意得,10x −≥,解得1x ≤,在数轴上表示如下:故选:C .【点睛】本题考查了二次根式有意义的条件,不等式的解法,以及在数轴上表示不等式的解集,理解二次根式有意义的条件是解题关键.【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A. )1=,故该选项不正确,不符合题意;B. =C.=D.)26=−故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.【答案】D【分析】根据二次根式有意义的条件和分式有意义的条件得到不等式组,解不等式组即可得到答案.【详解】解:∵代数式有意义, ∴020x x ≥⎧⎨−≠⎩,解得0x ≥且2x ≠,故选:D.【点睛】此题考查了二次根式有意义的条件和分式有意义的条件,熟练掌握相关知识是解题的关键.【答案】B【分析】根据二次根式的混合运算进行计算,进而估算无理数的大小即可求解.【详解】解:k ⋅)53−=∵22.5=6.25,23=9∴532<<,∴与k 最接近的整数为3,故选:B .【点睛】本题考查了二次根式的混合运算,无理数的估算,熟练掌握二次根式的运算法则是解题的关键.【答案】A【分析】把a b ==【详解】解:∵a b ==∴2=,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.【答案】B【分析】先根据特殊角的三角函数值进行化简,再进行二次根式的加法运算即可.【详解】解:sin 45︒== 故选:B .【点睛】本题考查了特殊角的三角函数值和二次根式的加法运算,熟练掌握特殊角的三角函数值是解题的关键.【答案】B【分析】根据二次根式的加减运算进行计算,然后估算即可求解. 【详解】解:m ===−∵<∴54−<−<−,即54m −<<−,故选:B .【点睛】本题考查了二次根式的加减运算,无理数的估算,正确的计算是解题的关键.【答案】D【分析】根据二次根式有意义的条件得出不等式组,再解不等式组即可得出结果. 【详解】解:根据二次根式有意义的条件,得000a b ab ≥⎧⎪≥⎨⎪≥⎩,0,0a b ∴≥≥, 故选:D .【点睛】二次根式有意义的条件,及解不等式组,掌握二次根式有意义的条件是被开方数为非负数是本题的关键.【答案】C【分析】根据同类二次根式的定义,逐个进行判断即可.【详解】解:A2BCD =不是同类二次根式,不符合题意;故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.【答案】D【分析】根据二次根式有意义的条件即可求解.【详解】解:∴40a −≥,解得:4a ≥,则a 的值可以是6 故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题【答案】4x ≥【详解】根据题意得:40x −≥,解得:4x ≥,故答案为:4x ≥.【点睛】本题考查二次根式有意义的条件,熟练掌握二次根式有意义需被开方数大于等于0是解题的关键.【答案】5x ≥−且0x ≠/0x ≠且5x ≥−【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子有意义, ∴50x +≥且0x ≠,∴5x ≥−且0x ≠,故答案为:5x ≥−且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x −>−≠,即可求解.【详解】解:依题意,10,20x x −>−≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.【答案】3x ≥−【详解】解:由题意得,30x +≥,解得3x ≥−.故答案为:3x ≥−.【答案】6【分析】利用二次根式的乘法法则进行求解即可.6==.故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.【答案】3【分析】先利用二次根式的性质化简,再计算括号内的减法,然后计算二次根式的除法即可.【详解】解:3⎛=⎝⎭(==3=.故答案为:3.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和运算法则是解题的关键.【答案】3x>【分析】根据分式有意义的条件,二次根式有意义的条件计算即可.【详解】∴3030x x−−≠≥,且,解得x3>,故答案为:x3>.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.【答案】88m要是完全平方数,据此求解即可【详解】解:∴8m要是完全平方数,∴正整数m的值可以为8,即864m=8==,故答案为:8(答案不唯一).【点睛】本题主要考查了二次根式的化简,正确理解题意得到8m要是完全平方数是解题的关键.【答案】故答案为:【答案】1=− 【分析】此题用平方差公式计算即可.【详解】22=−23=−1=− 故答案为:1=−.【答案】1 【分析】根据平方差公式,二次根式的性质及运算法则处理.【详解】解:22761=−=−=故答案为:1. 【点睛】本题考查平方差公式、二次根式性质及运算,熟练掌握平方差公式是解题的关键.【答案】1(答案不唯一)【分析】根据二次根式有意义的条件,可得当30x −<【详解】解:当30x −<3x <,x 为正整数,x ∴可取1,2,故答案为:1.【点睛】本题考查了二次根式有意义的条件,熟知根号下的式子小于零时,二次根式无意义,是解题的关键.【答案】1x ≥−【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】解:根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1. 故答案为x≥﹣1.【点睛】本题考查了二次根式有意义的条件,比较简单.【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x −≥,即14x ≥2,等式两边分别平方,144x −=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.【答案】9x ≥【分析】根据二次根式有意义的条件得出90x −≥,即可求解.【详解】解:∵∴90x −≥,解得:9x ≥,故答案为:9x ≥.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.【分析】根据二次根式的性质即可求解.【详解】解:2=5 故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.三、解答题【答案】4【分析】先化简二次根式,绝对值,计算零次幂,再合并即可.【详解】解:()10220231+−−2113=++211+ 4=.【点睛】本题考查的是二次根式的加减运算,化简绝对值,零次幂的含义,掌握运算法则是解本题的关键.【答案】4 【分析】根据有理数乘方、特殊角三角函数值、负整数指数幂、零指数幂结合二次根式的混合运算法则进行计算即可.【详解】解:2202301(1)3tan 30(3)2|2π−⎛⎫−++−−+ ⎪︒⎝⎭ 14312=−+++1412=−++4=.【点睛】本题考查了有理数乘方、特殊角三角函数值、负整数指数幂、零指数幂以及二次根式的混合运算,熟练掌握相关运算法则是解本题的关键.【答案】6−【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=−6=−.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.【答案】【分析】利用二次根式的混合运算法则计算即可.===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.。

二次根式基础练习(含答案)

二次根式(1)1.当a ______时,23-a 有意义;当x ______时,31-x 有意义. 2.当x ______时,x 1有意义;当x ______时,x1的值为1. 3.直接写出下列各式的结果: (1)49=______;(2)2)7(=______;(3)2)7(-=______;(4)2)7(-=______; (5)2)7.0(=______;(6)22])7([-=______.4.下列各式中正确的是( ). (A )416±=(B)2)2(2-=-(C)24-=- (D)3327= 5.下列各式中,一定是二次根式的是( ). (A )23- (B )2)3.0(- (C)2- (D)x 6.已知32+x 是二次根式,则x 应满足的条件是( ). (A)x >0 (B)x ≤0 (C )x ≥-3 (D )x >-3 7.当x 为何值时,下列式子有意义? (1)x -1; (2)2x -;(3)12+x ; (4).7x +8.计算下列各式:(1)2)23( (2)2)32(⨯ (3)2)53(⨯- (4)2)323(9.若y x xy ⋅=24成立,则x ,y 必须满足条件______.10. (1)12172⨯______; (2))84)(213(--=______; (3)62434⨯________.(4)3649⨯=______;(5)25.081.0⨯=______;(6)31824a a ⋅=______. 11.下列计算正确的是( ).(A )532=⋅ (B )632=⋅(C)48=(D)3)3(2-=-12.化简2)2(5-⨯,结果是( ).(A)52 (B )52- (C)-10 (D)10 13.如果)3(3-=-⋅x x x x ,那么( ). (A )x ≥0 (B )x ≥3 (C)0≤x ≤3 (D )x 为任意实数 14.当x =-3时,2x 的值是( ).(A )±3 (B )3 (C )-3 (D )915.计算:(1)26⨯(2)123⨯(3)8223⨯ (4)x x 62⋅ (5)aab 131⋅(6)ab a 3162⋅ (7)49)7(2⨯-(8)22513- (9)7272y x16.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.17.把下列各式化成最简二次根式:(1)12=______; (2)18=______; (3)45=______; (4)x 48=______;(5)32=______; (6)214=______; (7)35b a =______; (8)3121+=______. (5)1525= (6)632=(7)211311÷ (8)125.02121÷23.把下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有_________;与3的被开方数相同的有______;与5的被开方数相同的有______. 24. (1)31312+=______;(2)485127-=______. 25.化简后,与2的被开方数相同的二次根式是( ). (A )12 (B)18 (C)41 (D )61 26.下列说法正确的是( ).(A)被开方数相同的二次根式可以合并 (B)8与80可以合并(C)只有根指数为2的根式才能合并(D )2与50不能合并27.可以与a 12合并的二次根式是( ).(A)a 2 (B)a 54 (C )a271 (D )a 328、.48512739-+ 29..61224-+30..503238318-++31.).5.04313()81412(---32..12183127--33.)272(43)32(21--+34.当a =______时,最简二次根式12-a 与73--a 可以合并.35.若a =7+2,b =7-2,则a +b =______,ab =______.36.合并二次根式:(1))18(50-+=______;(2)ax xax45+-=______. 37.下列各式中是最简二次根式的是( ). (A)a 8 (B)32-b (C)2y x - (D )y x 23 38.下列计算正确的是( ).(A)3232=+ (B)b a ab 555+= (C)268=- (D)x x x =-45 39.)32)(23(+-等于( ).(A )7 (B)223366-+-(C )1 (D)22336-+ 40.⋅⋅-121)2218( 41.).23)(322(--42.).3223)(3223(-+ 43.).3218)(8321(-+44..6)1242764810(÷+- 45..)18212(2-46..1502963546244-+-47.).32)(23(-- 48..)12()12(87-+49.).94(323ab ab a b a a b a b +-+参考答案1..3,32>≥x a . 2.x >0,x =1.3.(1)7;(2)7;(3)7;(4)7;(5)0。

二次根式基础测试题及答案解析

二次根式基础测试题及答案解析一、选择题1.下列二次根式:*、£、J贡、_2后、JTk中,是最简二次根式的有()A. 2个B. 3个C. 4个D. 5个【答案】A【解析】试题解析:巧,是最简二次根式;上=週,不是最简二次根式;V3 3術丽=逅,不是最简二次根式;2-2际胡aM ,不是最简二次根式;yjx2 4- y2,是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列各式中计算正确的是()A.5/24-5/6 = 5/8B. 2 + 5/3 = 2>/3C. V3xV5 = V15D. 卫=22【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:A. 41和A不是同类二次根式,不能合并,故本选项错误;B.2和石不是同类二次根式,不能合并,故本选项错误;C.,计算正确,故本选项正确;D.^i=l,原式计算错误,故本选项错误.2故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3•下列各式计算正确的是( )A. 伽-F =71^—辰=10—8 = 2B.J(-4)x(-9)=2)x(-3) = 6【解析】【分析】 根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断. 【详解】解:A 、原式二屈=6,所以A 选项错误;故选:D. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的 乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根 式的性质,选择恰当的解题途径,往往能事半功倍. 4・己知n 是一个正整数,姮乔是整数,则n 的最小值是()・ A. 3B. 5 C ・ 15 D ・ 25【答案】C 【解析】 【分析】 【详解】解:•爲页=3皿,若^/5药是整数,则屈7也是整数,・・・n 的最小正整数值是15,故选C.D.B 、原式=V4^9D 、所以D 选项正确.5.下列各式计算正确的是()A. 2 + b=2b B・ V5-V2 =>/3 C. (2&2尸=8“D・ a6- a4=a2【答案】D【解析】解:A. 2与b不是同类项,不能合并,故错误;B.循与JT不是同类二次根式,不能合并,故错误;C.(2a2)3=8a6,故错误;D.正确.故选D.6.式子J口在实数范围内有意义,则x的取值范围是()A.x<l B・x>l C・ x< - 1 D・ xV - 1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,解得,x>l.故选:B.【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.7.若x、y都是实数,且二I+jrm+y = 4,则xy的值为()A. 0B. -C. 2D.不能确定2【答案】C【解析】由题意得,2x-l>0且l-2x>0,解得O —且,2 2.1• • X= —921/•xy= —x4=2 ・2故答案为C・&若伤与屎是同类二次根式,则加的值不可以是()A. rn =-B. tn = 4C. tn= 32D. m=——【答案】B【解析】【分析】将J万与個化简,根据同类二次根式的定义进行判断.【详解】解:y/lS=3y/2A.in = 1时,扁=卩=返,是同类二次根式,故此选项不符合题意;8 Vs 4B.m = 4时,而=2,此选项符合题意C.m = 32时,丁万=屈=4>任,是同类二次根式,故此选项不符合题意:27 Y27 3故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.9.如果最简二次根式8与J17-2a能够合并,那么a的值为()A. 2B. 3C. 4D. 5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.bA. -2aB. 2aC. 2bD. -2b10.已知实数a 、b 在数轴上的位置如图所示,化简|a+b 卜—,其结果是()A. —2 【答案】BB. 2C. -4D. 4【答案】A【解析】【分析】根据二次根式的性质可得后= |a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知bVOVa,且|a|<|b|,则a+b<0, b-a<0,•••原式=・(a+b) + (b-a)=-a-b+b-a=-2a,故选A.【点睛】此题主要考查了二次根式的性质和绝对值的性质,关键是掌握后= |a|.11•下列各式中,属于同类二次根式的是()A.与Jxy2B. 2長与近C. 3d乔与£D.五与羽【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、历与碍=)五的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、2J「与亦的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、3皿与&刍的被开方数相同,所以它们是同类二次根式;故本选项正确;D、需是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.化简的结果是13.A.第一象限B.第二彖限C.第三彖限D.第四象限J(-2)~ = |—2| = 2故选:B如果代数式JM+亠有意义,那么直角坐标系中P(m,n)的位置在(yjmn【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的彖限.【详解】依题意的-m>0, mn>0,解得m<0, nVO,故P(m,n)的位置在第三彖限,故选C.【点睛】此题主要考查坐标所在彖限,解题的关键是熟知二次根式与分式的性质.14.若后二成立,那么Q的取值范围是( )A. <0B. a>0C. c/vOD. a>0【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-aR,所以上0,所以答案选择A项.【点睛】本题考查了求解数的取值范閑,等号两边的值相等是解答本题的关键.15.如果^(2fl-l)2 = l-2a,则a的取值范围是()1111a < — a < — a > — a > —A. 2B. 2C. 2D. 2【答案】B【解析】试题分析:根据二次根式的性质1可知:A/(2«-l)2=|2a-l| = l-2a,即2a -仁0故1fl < —答案为B. 2.考点:二次根式的性质.16•卞列计算错误的是() A. 3+2^2 =5^/2 C. ^2x = y/6【答案】A【解析】 【分析】 【详解】 选项A, B. ^8-2=72 D ・ 5/8 —5/2 = yf2选项B, 选项C, 选项D, 不是同类二次根式,不能够合并; 原式=2忑+2 =近; 原式=5/2^7=5/65 原式=2>/2->/2 = 故选A. 17.卜•列计算或化简正确的是( A. 2屁4忑=6书 C. J (-3): = _3 【答案】D 【解析】解:A.不是同类二次根式,不能合并, 進=2忑,故B 错误; J (-3尸=3,故C 错误; V27 - >/3 = >/27?3 = ^9 = 3 ,正确. B. C. D. B ・ Vs =4^2 D ・ V27->/3=3故A 错误; 故选D.218-当意有意义时'的取值范围是() B. a>2 A. a>2 【答案】B 【解析】 解:根据二次根式的意义,被开方数a - 2>0,解得:a>2, 2工0,解得:g2, :.a>2.故选B. C. g2 D ・ g_2 根据分式有意义的条件:o- 19.计算2屁近的结果是( 2C.-3D.- 4【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:2屈\迟十3JI4=(2X£*3)J12X3*22故选:4.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.20.若代数式/E2有意义,则实数X的取值范围是( )XA. x>l B・ x>2 C・ x>l D・ x>2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得. 【详解】由题意得Jx-2>0(“0,解得:x>2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.。

二次根式测试题及答案(基础)

二次根式测试题_____________一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a=•=112;④a a a =-23。

做错的题是( )A .①B .②C .③D .④ 8.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= —1 10.化简)22(28+-得( )A .—2B .22-C .2D . 224- 二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。

12.二次根式31-x 有意义的条件是 。

13.若m<0,则332||m m m ++= 。

14.已知3a =+3a =-22272a ab b ++=_________15.比较大小:。

16.=•y xy 82 ,=•2712 。

17.计算3393aa a a-+= 。

18.23231+-与的关系是 。

19.若35-=x ,则562++x x 的值为 。

(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.小明、小丽的方法正确,小亮的方法不正确
C.小明、小亮、小丽的方法都正确
D.小明、小丽、小亮的方法都不正确
【答案】C
【详解】
m
再将式子 (m>0)化简时,
m
小明的方法是: m = m m = m m = m m m m
m ,正确;
m

2
m
小亮的方法是: =
m
= m ,正确; m
m
小丽的方法是: =
m
m2 = m
m2 = m
m ,正确;
则小明、小亮、小丽的方法都正确,故答案选 C.
4.(2017·山东中考模拟)若 x 2 y 9 与|x﹣y﹣3|互为相反数,则 x+y 的值为( )
A.3 【答案】D 【解析】
B.9
C.12
D.27
依题意得 x 2 y 9 x y 3 0 .
A.7
B.-7
【答案】A
【详解】
解:从实数 a 在数轴上的位置可得,
5<a<10,
所以 a﹣4>0,
a﹣11<0,
则 a 42 a 112 ,
C.2a-15
D.无法确定
=a﹣4+11﹣a, =7. 故选 A.
8.(2019·辽宁中考模拟)下列二次根式中,是最简二次根式的是 ( )
A. 18
专题 10 二次根式(专题测试-基础)
学校:___________姓名:___________班级:___________考号:___________ 一、 选择题(共 12 小题,每小题 4 分,共 48 分) 1.(2018·湖北中考真题)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第 9 行从左至 右第 5 个数是( )
1
23
25 6
7 2 2 3 10


A.2 10
B. 41
C.5 2
D. 51
【答案】B
【详解】由图形可知,第 n 行最后一个数为 1 2 3 n n n 1 ,
2
∴第 8 行最后一个数为 8 9 36 =6, 2
则第 9 行从左至右第 5 个数是 36 5 41 ,
故选 B.
10.(2019·北京中考模拟)如果 a b 2
3
,那么代数式
(a2 b2 2a
b)
a
a b
的值为
A. 3
B. 2 3
C. 3 3
【答案】A 【解析】
详解:原式 a2 b2 2ab a a b2 a a b ,
2a
a b 2a a b 2
【答案】B 【详解】
D. 1 18 3 8 2
3
9
A、 3 10 与 2 5 不是同类二次根式,不能合并,此选项错误;
B、
7 11


11 7
1 11 =
7 11
11 11 = 7
7 11 11 = 11 7
11 ,此选项正确;
C、 75 15 3 =(5 3 - 15 )÷ 3 =5- 5 ,此选项错误;
2x 1 0 { x 1 0
{x x

1
1 2

x


1 2

x

1。故选
A。
ห้องสมุดไป่ตู้
12.(2019·江苏中考模拟)把 8a3 化为最简二次根式,得 ( )
A. 2a 2a 【答案】A 【详解】
B. 4 2a3
C. 2 2a3
D. 2a 4a
解: 8a3 = 8 a3 = 2 2 a a = 2a 2a .
故选 B.
2.(2018·山东中考真题)若式子
m2 (m 1)2
有意义,则实数
m
的取值范围是
(
)
A. m 2 C. m 2
【答案】D
B. m 2 且 m 1 D. m 2 且 m 1
【详解】
m 2 0 由题意可知: m 1 0
∴m≥﹣2 且 m≠1
D. 4 3
∵ab2 3,
∴原式 3 .
故选 A.
11.(2019·浙江中考模拟)式子 2x 1 有意义的 x 的取值范围是( ) x 1
A. x 1 且 x≠1 B.x≠1 2
C. x 1 2
D. x> 1 且 x≠1 2
【答案】A
【解析】
根据二次根式被开方数必须是非负数和分式分母不为 0 的条件,要使 2x 1 在实数范围内有意义,必须 x 1
故选 D.
m
3.(2019·广东华南师大附中中考模拟)在将式子 (m>0)化简时,
m
m
小明的方法是: =
m
m m =m m = m m m
m;
2
小亮的方法是: m
m m;
mm
小丽的方法是: m m2 m2 m . mm m
则下列说法正确的是( )
A.小明、小亮的方法正确,小丽的方法不正确
A. 8
B. x2 1
C. y2
D. 1 2
【答案】B
【详解】
A. 8 =2 2 ,故不是最简二次根式,故 A 选项错误;
B. x2 1 是最简二次根式,故 B 选项正确; C. y3 =y y ,故不是最简二次根式,故本选项错误;
D. 1 = 2 ,故不是最简二次根式,故 D 选项错误; 22


x x

2 y
y 9 0, 3 0,
解得

x y

15, 12.
∴x+y=27.
故选 D.
5.(2019·山东中考模拟)下列计算正确的是( )
A. 3 10 2 5 5
B. 7 ( 11 1 ) 11 11 7 11
C. ( 75 15) 3 2 5
故选 A. 二、 填空题(共 5 小题,每小题 4 分,共 20 分)
B. 13
C. 27
D. 12
【答案】B 【详解】
A、 18 3 2 不是最简二次根式,错误;
B、 13 是最简二次根式,正确;
C、 27 3 3 不是最简二次根式,错误;
D、 12 2 3 不是最简二次根式,错误,
故选 B. 9.(2019·新疆生产建设兵团第五师八十三团二中中考模拟)下列各式属于最简二次根式的是( )
D、 1 3
18 3
8= 9
2 2
2
2 ,此选项错误;
故选:B
6.(2019·浙江中考模拟)若 (5 x)2 =x﹣5,则 x 的取值范围是( )
A.x<5 【答案】C 【详解】
B.x≤5
C.x≥5
D.x>5
∵ 5 x2 =x-5,
∴5-x≤0 ∴x≥5. 故选 C.
7.(2018·山东中考模拟)实数 a 在数轴上的位置如图所示,则 a 42 a 112 化简后的结果是( )
相关文档
最新文档