人教A版数学必修3第三章3.3.1 几何概型 说课课件(共29张PPT)教学课件
人教A版高中数学必修三3-3-1《几何概型》课件

[解析] 记事件A={剪得两段绳子都不小于1 m}.如图, 把绳子三等分,于是,当剪断位置处在中间一段时,事件A发 生,由于中间一段的长度为3×13=1(m),
所以事件A发生的概率为P(A)=13.
规纳总结:求解几何概型的概率关键是将所有基本事件 及事件A包含的基本事件转化为相应测度,进而求解.
有一杯2升的水,其中含有1个细菌,用一个小杯 从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.
[分析] 细菌在这2升水中的分布可以看作是随机的,所 以基本事件的个数是无限且等可能的,故该问题为几何概型 问题.又取得0.1升水可作为事件的区域,所以该问题是与体 积有关的几何概型问题.
[解析] 记“小杯水中含有这个细菌”为事件A,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.
3.几何概型与古典概型的异同
概率 类型
不同点
相同点
几何 试验中所有可能出现的结 每个基本事件出
概型 果(基本事件)有无限多个 现的可能性一
古典 试验中的所有可能出现的 样,即满足等可
概型 结果只有有限个
能性
下列概率模型中,是几何概型的有( ) ①从区间[-10,10]内任取出一个数,求取到1的概率; ②从区间[-10,10]内任取出一个数,求取到绝对值不大 于1的数的概率; ③从区间[-10,10]内任取出一个数,求取到大于1而小于 2的数的概率;
μΩ=S正方形=162=256(cm2) μA=S大圆=π×62=36π(cm2) μB=S中圆-S小圆=π×42-π×22=12π(cm2) μC=S正方形-S大圆=256-36π(cm2). 由几何概率公式得:
(1)P(A)=μμΩA=3265π6=694π, (2)P(B)=μμΩB=1225π6=634π, (3)P(C)=μμΩC=2562-5636π=1-96π4.
人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)

求正面朝上的概率. A.1个 B.2个 C. 3个 D.4个
题组一:
2. 下列概率模型中,几何概型的是(1),(3) . (1)在1万平方千米的海域中有80平方千米 的大陆架贮藏着石油.假设在海域中的任意一 点钻探,求钻到油层面的概率;
(2)从区间 [10,10] 内任意取出一个整数, 求取到绝对值不大于1的数的概率; (3)向一个边长为4cm的正方形ABCD内 投一个点P,求点P离中心不超过1cm 的概率
分别是扇形区域ADE和扇形区域CBF(该 矩形区域内无其他信号来源,基站工作正
常).若在该矩形区域内随机地选一地点,
则该地点无信号的概率是( A )
A.1-
4
B.
-1
2
C.2- 2
D.
4
题组五:
2.如图,矩形 ABCD 中,点 A 在 x轴上,
点 B的坐标为 (1,0).点 C 与点 D在 C
x 1, x 0
函数
f
(x)
1 2
x
1,
x
0
的图像上.
若在矩形内随机取一点,则该点取自阴影 y
部分的概率等于( B)
D
C
1 1 31
A.6 B.4 C.8 D.2
A
F OB
x
五、课堂总结:
如果每个事件发生的概率只与构成
该事件区域的长度(面积或体积)成比例,
则称这样的概率模型为几何概型.
几何概型的特点: (1)试验中所有可能出现的基本事件有无限多个. (2)每个基本事件出现的可能性相等.
内随机取一点 P ,则点 P 到点O 的距离
小于1的概率为 .
高中数学(人教版A版必修三)配套课件:3.3.1几何概型

反思与感悟 解析答案
跟踪训练1 判断下列试验是否为几何概型,并说明理由: (1)某月某日,某个市区降雨的概率; 解 不是几何概型,因为它不具有等可能性;
解析答案
返回
达标检测
1.下列关于几何概型的说法错误的是( A ) A.几何概型也是古典概型中的一种 B.几何概型中事件发生的概率与位置、形状无关 C.几何概型中每一个结果的发生具有等可能性 D.几何概型在一次试验中出现的结果有无限个 解析 几何概型与古典概型是两种不同的概型.
1 2345
解析答案
1 2345
解析答案
1 2345
4.在区间[-1,1]上随机取一个数 x,则 sin π4x值介于-12与 22之间的概率
为( D )
1
1
1
5
A.3
B.2
C.4
D.6
答案
1 2345
5.在装有 5 升纯净水的容器中放入一个病毒,现从中随机取出 1 升水,那么
这 1 升水中含有病毒的概率是( D )
1
1
1
A.0
答案
几何概型的特点: (1)试验中所有可能出现的结果(基本事件)有 无限多个 . (2)每个基本事件出现的可能性 相等 .
答案
知识点二 几何概型的概率公式 思考 既然几何概型的基本事件有无限多个,难以像古典概型那样计算 概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?
答案
返回
题型探究
重点难点 个个击破
类型一 几何概型的概念
人教A版高中数学必修三课件高一:3.3.1几何概型.pptx

题型二
题型三
题型四
面积型的几何概型 【例2】取一个边长为4a的正方形及其内切圆,如图,随机向正方形 内丢一粒豆子,求豆子落入圆内的概率.
分析:由于是随机丢一粒豆子,因此可认为豆子落入正方形内的 任一点都是等可能的,故豆子落入圆内的概率应等于圆的面积与正 方形的面积之比. 解:记“豆子落入圆内”为事件A,
则 P(A)=
圆的面积 正方形的面积
=
π (2������ )2 (4������ )2 π 4
= .
4
π
故豆子落入圆内的概率为 .
目标导航
Z重难聚焦
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型一
题型二
题型三
题型四
反思若试验的结果所构成的区域的几何度量能转化为平面图形 的面积,则这种概率称为面积型的几何概型,可按下列公式来计算 其概率:
目标导航
Z重难聚焦
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型一
题型二
题型三
题型四
长度型的几何概型 【例1】一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某 时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率 为 . 解析:如图,在△ABC中,AB=3,AC=4,BC=5,
B.
3 2π
C.
3 π
D.
2 3 3π
解析:由题意可得正方体的体积为 V1=1. 又球的直径是正方体的对角线,故球的半径 R= 球的体积 V2= π������3 =
3 4 3 2 3 2
.
π. 这是一个几何概型,
������1 ������2
则此点落在正方体内的概率为 P=
人教A版数学必修3第三章3.3.1 几何概型 说课稿

《几何概型》说课稿《几何概型》今天我说课的题目是几何概型,我将从教材分析,教学过程分析,教法学法分析,评价分析、板书设计五个方面来阐述。
一、教材分析:1、地位和作用:本节课是高中数学必修三第三章第三节几何概型的第一课时,是在学习了随机事件的概率及古典概型之后,引入的另一类基本的概率模型,在概率论中占有相当重要的地位。
学好几何概型可以有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
2、教学的重点和难点:(1)重点:①了解几何概型的概念、特点;②会用几何概型概率公式求解随机事件的概率。
(2)难点:如何判断一个试验是否为几何概型,弄清在一个几何概型中构成事件A的区域和试验的全部结果所构成的区域及度量。
3、教学目标:(1)知识与技能:①了解几何概型的概念②会用公式求解随机事件的概率。
(2)过程与方法:通过试验,将已学过计算概率的方法做对比,提出新问题,师生共同探究,引导学生继续对概率的另一类问题进行思考、分析,进而提出可行性解决问题的建议或想法。
(3)情感、态度与价值观:通过试验,感知生活中的数学,培养学生用随机的观点来理性的理解世界,增强学生数学思维情趣,形成学习数学知识的积极态度。
二、教法分析基于以上对本节课教学过程的分析,体现了本节课的教法是:采用引导发现和归纳概括相结合的教学方法,通过两组试验来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
三、教学过程分析:基于以上分析,本节课的教学过程我将分为五个环节:提出问题,引入新课;思考交流,形成概念;观察类比,推导公式;例题分析,推广应用;总结概括,加深理解。
1、提出问题,引入新课本节课理解起来很困难,特别是如何判断一个试验是否为几何概型,其概率如何计算对学生来说是个难点。
那么如何分散这些难点的呢?由于几何概型与古典概型既有共性(等可能性),又有本质上的区别,因此,我在本节课的开始设计了两组试验,试验的第一题是古典概型,稍加变化之后就是几何概型,它们表面上很相似,但实际上有本质的不同。
高中数学【人教A版必修】3第三章3.3.1几何概型课件

高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
当堂检测:
1.一只蜜蜂在长、宽、高分别为4,3,5的 长方体箱体内飞行,某时刻该蜜蜂距离 长方体的八个顶点的距离均大于1的概率 P(A)为?
D1
C1
A1 D
A
B1 C
B
高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
2.(1)x和y取值都是区间[1,4]中的整数,任 取一个x的值和一个y的值,求 “ x – y ≥1 ”
的概率。
y
作直线 x - y=1
m A m
1 3
2.面积问题:如右下图所示的单位圆,假 设你在每个图形上随机撒一粒黄豆,分 别计算它落到阴影部分的概率.
解:由题意可得 设 “豆子落在第一个图形的阴影部分”为事件A, “豆子落在第二个图形的阴影部分”为事件B。
从而:基p(A本) mm事A件 的12 全体 对应的几何区域为面积为1的单位圆
何概型公式求解。
高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】 高中数学【人教A版必修】3第三章3.3 .1几何 概型课 件【精 品】
无限性
p
A
m A m
基础训练:
1.长度问题:取一根长度为3m的绳子, 拉直后在任意位置剪断,那么剪得两段 的长度都不小于1m的概率有多大?
解:由题意可得
1m
1m
3m
高中数学3.3.1几何概型课件新人教A版必修3

与长度有关的几何概型
[例 1] (1)在区间[-1,2]上随机取一个数 x,则|x|≤1 的概率为 ________.
(2)某汽车站每隔 15 min 有一辆汽车到达,乘客到达车站的时 刻是任意的,求一位乘客到达车站后等车时间超过 10 min 的概率.
[解析] (1)∵区间[-1,2]的长度为 3,由|x|≤1 得 x∈[-1,1], 而区间[-1,1]的长度为 2,x 取每个值为随机的,∴在[-1,2]上取 一个数 x,|x|≤1 的概率 P=23.
数的概率;
③从区间[-10,10]内任取出一个整数,求取到大于1而小于2
的数的概率;
④向一个边长为4 cm的正方形ABCD内投一点P,求点P离中
心不超过1 cm的概率.
A.1
B.2
C.3
D.4
率为
()
A.π4
B.1-π4
π C.8
D.1-π8
2.在平面直角坐标系 xOy 中,设 M 是横坐标与纵坐标的绝对值均 不大于 2 的点构成的区域,E 是到原点的距离不大于 1 的点构成 的区域,向 M 中随机投一点,则所投的点落入 E 中的概率是 ________.
解析:如图,区域 M 表示边长为 4 的正方形 ABCD 的内 部(含边界),区域 E 表示单位圆及其内部, 因此 P=π4××142=1π6.
将集合M和N所表示的区域在直角坐标系中画出,如图,
则区域M的面积S=12×8×8=32, 区域N的面积S′=12×6×2=6, 所以点P落入区域N的概率为P=362=136.
答案:D
[随堂即时演练]
1.下列概率模型中,几何概型的个数为
()
①从区间[-10,10]内任取出一个数,求取到1的概率;