工业机器人设计

合集下载

工业机器人的设计及控制系统研究

工业机器人的设计及控制系统研究

工业机器人的设计及控制系统研究工业机器人,是一种能够代替人类完成繁重、危险、无聊的工作的机器人。

随着科技的不断进步,工业机器人在自动化生产中扮演着越来越重要的角色。

本文主要探讨工业机器人的设计及其控制系统的研究。

一、工业机器人的设计1、机器人结构设计工业机器人的结构设计包括机器人的机械结构、传动结构、控制系统等。

机器人的机械结构的设计需要考虑机器人的工作范围、精度、刚度和负载能力等因素。

传动机构的设计特别重要,它往往会影响机器人的定位速度和精度。

传动机构的设计主要包括电机、减速器、传动链轮等。

2、机器人的导轨设计机器人导轨的设计主要影响机器人的定位精度和重载性。

常见的导轨结构有滑块导轨、滚动导轨、直线导轨等,其中滚动导轨和直线导轨具有定位精度高、负载能力强等优点。

3、机器人的末端执行器设计机器人的末端执行器设计特别重要,因为它直接影响机器人的工作效率和工作范围。

末端执行器根据其使用环境不同,包括夹具、吸盘、钳子、电磁铁等。

末端执行器的设计需要考虑摩擦力、负载能力和定位精度等因素。

二、机器人控制系统研究1、机器人的控制方式机器人的控制方式主要有三种:手动控制、自动控制和远程控制。

其中,手动控制主要用于机器人的调试和维修等工作,自动控制主要用于生产制造线的半自动和全自动生产,而远程控制主要用于危险环境下的操作。

2、机器人的编程方式机器人的编程方式主要包括在线编程和脱机编程。

在线编程的特点是实时控制,优点是易于调试,缺点是不能对程序进行编辑和存储。

脱机编程的特点是可以对程序进行编辑和存储,但缺点是调试的难度较大。

3、机器人的控制算法机器人的控制算法主要包括手动校准、高精度运动控制算法和机器人自适应控制算法等。

手动校准主要用于机器人定位的初步校准,高精度控制算法可以保证机器人的定位精度,而自适应控制算法可以使机器人根据环境变化自动调整控制参数。

4、机器人的控制器机器人的控制器需要具备高效的工作能力、快速响应和连接稳定性等功能。

机器人工业设计

机器人工业设计

机器人工业设计1.引言机器人工业设计是机械设计与智能技术相结合的一项关键领域。

随着技术的不断进步和应用的扩大,机器人在工业生产中扮演着越来越重要的角色。

机器人工业设计旨在提高生产效率、降低成本、减少人工错误,并为生产厂商带来更高的竞争力和利润。

2.发展历程机器人在工业生产中的应用可以追溯到20世纪50年代,那时的机器人主要是在汽车制造业中使用的。

随着科技的进步,机器人的应用范围不断扩大。

如今机器人已广泛应用于汽车制造、电子制造、食品加工、药品生产等多个行业。

3.设计原则机器人工业设计的关键原则是使机器人具备高度的灵活性和自动化能力。

在设计机器人时,需要考虑以下几个方面:3.1任务需求:机器人的设计应根据实际的任务需求来确定,包括任务的复杂性、生产线的布局、人机交互等。

3.2结构设计:机器人的结构设计应考虑到其工作环境、工作负载、速度和定位准确性等因素。

同时,为了提高机器人的灵活性,需要采用模块化设计和多关节设计。

3.3控制系统:机器人的控制系统是实现其自动化能力的关键。

控制系统应具备高精度的传感器、快速的数据处理能力和可靠的执行机构。

4.设计优势机器人工业设计的优势主要体现在以下几个方面:4.1提高生产效率:机器人可以进行高速、高精度的操作,相比人工操作更快、更准确,从而提高生产效率。

4.2降低成本:机器人可以在没有人类操作员的情况下连续工作,不需要休息和福利待遇,从而降低了劳动力成本。

4.3减少人工错误:机器人的操作精准、不会疲劳和分心,减少了因人为错误而导致的产品损坏和生产线故障。

4.4改善工作条件:机器人可以执行一些危险、脏乱的任务,从而改善了工人的工作条件和劳动环境。

5.挑战与展望机器人工业设计面临着一些挑战。

首先是成本问题,机器人的制造成本较高,部分中小企业难以承担。

其次是技术问题,机器人的智能化水平还有待提高,在某些特殊环境下还不能完全替代人工操作。

然而,随着技术的不断进步和应用的扩展,机器人工业设计有着广阔的发展前景。

8章_工业机器人的总体设计

8章_工业机器人的总体设计

8章_工业机器人的总体设计工业机器人是一种能够自主完成各种生产任务的机械设备。

在工业生产中,机器人可以代替人工完成繁重、危险或重复性高的工作,提高生产效率和产品质量。

工业机器人的总体设计需要考虑多个方面,包括机械结构、动力系统、控制系统等。

首先要考虑的是机械结构。

机械结构是机器人的骨架,决定了机器人的形态和运动能力。

通常,工业机器人采用的是多关节臂结构,可以模拟人类手臂的灵活性。

机械结构的设计需要考虑关节的数量和排列方式,以及关节的运动范围和自由度。

同时,机械结构还需要考虑机器人的承载能力和刚度,以确保机器人能够稳定地完成各种任务。

其次是动力系统的设计。

动力系统是机器人运动的驱动力,通常采用电机作为动力源。

一般情况下,工业机器人采用的是直流电机或交流伺服电机。

动力系统的设计需要考虑机器人的负载和速度要求,并且需要提供足够的扭矩和力量以满足机器人的动作需求。

此外,还需要考虑动力系统的能耗和噪音问题,以便达到环保和安全的标准。

最后是控制系统的设计。

控制系统是机器人智能化运行的核心,可以通过编程和传感器来实现机器人的控制和感知。

控制系统的设计需要考虑机器人的自动化程度和任务要求,并且需要提供合适的编程接口和通信协议以便与其他设备进行连接和协同工作。

此外,还需要考虑控制系统的可靠性和稳定性,以确保机器人能够稳定地运行和执行任务。

除了以上几个方面,工业机器人的总体设计还需要考虑工作环境和安全性。

工业机器人通常在工厂生产线上运行,需要适应不同的工作环境和工作条件。

设计时需要考虑机器人的尺寸和灵活性,以便适应不同尺寸的工作空间和不同类型的产品。

此外,还需要为机器人设计防护罩和安全传感器以保护操作人员的安全。

综上所述,工业机器人的总体设计需要考虑机械结构、动力系统、控制系统、工作环境和安全性等多个方面。

设计时需要综合考虑不同因素,以满足生产需求并提高生产效率。

随着科技的不断进步,工业机器人的设计也在不断发展和改进,以适应未来工业生产的需求。

工业机器人硬件设计与开发

工业机器人硬件设计与开发

工业机器人硬件设计与开发一、引言工业机器人从问世至今已经成为了现代工业中必不可少的一种自动化设备,广泛应用于物流、汽车、电子等工业领域。

而其中,工业机器人的硬件设计与开发是工业机器人制造和应用过程中的关键技术之一。

二、工业机器人的硬件设计与开发1. 机身结构设计机身结构设计是工业机器人硬件设计中的核心部分,应使机器人具备稳定性和精度。

机身结构的设计应考虑到材料的强度和刚度,使机器人能承受工业环境中的恶劣工况。

2. 电机驱动系统设计电机驱动系统是工业机器人的核心,通过电机控制机器人的运动。

在电机驱动系统的设计中,应根据工作负载、速度和加速度的需求选择合适的电机类型和规格,同时应考虑到电机的寿命和工作效率等因素。

3. 传感器配置与控制系统设计传感器在工业机器人中发挥着重要的作用,能够准确感知工件位置和力矩,从而实现机器人的精准操作。

在传感器配置与控制系统的设计中,应选择合适的传感器类型和数量,同时应根据机器人需要实现相应的控制算法。

4. 通讯接口设计工业机器人往往需要与其他工业自动化设备进行通讯,因此通讯接口设计也是硬件设计中的一个重要部分。

通讯接口应满足工业标准,并能够实现高速数据传输和稳定的通讯连接。

三、工业机器人硬件设计过程中需要注意的事项1. 安全性设计工业机器人在工作过程中可能会对操作人员带来安全风险,因此在硬件设计中应注意安全性设计。

例如需要设计紧急停机装置,以便在紧急情况下能够迅速停止机器人。

2. 可维护性设计工业机器人在长期使用中会出现故障或需要更换部件,因此在硬件设计中应注意可维护性设计,例如易于拆卸和更换的零部件。

3. 可扩展性设计随着工业自动化技术的不断发展,工业机器人的应用范围也在不断扩展。

因此,在硬件设计中应对工业机器人进行可扩展性设计,例如支持不同的连接协议和通讯接口等。

四、硬件设计应用实例——机械臂机械臂作为工业机器人的一种典型形式,具有广泛的应用前景。

机械臂的硬件设计过程中需要考虑到材料的强度和稳定性,同时应满足机器人重量和荷载要求。

工业机器人设计方案

工业机器人设计方案

工业机器人设计方案工业机器人是指用于替代人工操作进行生产制造的机器,广泛应用于汽车制造、电子产品制造、医药制造等行业。

在设计工业机器人方案时,需要考虑以下几个方面:首先,需要根据生产任务和作业环境选择适合的机器人类型。

常见的工业机器人包括悬臂式机器人、轨道式机器人、协作式机器人等,各种机器人具有不同的结构和功能特点,适用于不同的生产场景。

例如,对于需要在狭小空间操作的任务,可以选择悬臂式机器人;对于需要进行柔性加工的任务,可以选择协作式机器人。

其次,需要设计适用的控制系统。

机器人的控制系统包括硬件和软件两个方面,其中硬件部分包括传感器、执行机构、控制器等,软件部分包括运动控制算法、路径规划算法等。

控制系统的设计需要考虑到机器人的运动轨迹、机器人与环境的交互方式等因素,以实现机器人的高效准确运行。

接下来,需要考虑机器人的可编程性。

工业机器人需要能够根据不同的生产需求进行编程,以完成不同的任务。

因此,在设计机器人时需要考虑到其编程接口的友好程度、编程方式的灵活性等因素,以提高机器人的可编程性和适应性。

此外,机器人的安全性也是设计方案中需要考虑的重要因素。

工业机器人在生产过程中可能会与人类操作员产生交互,因此需要设计相应的安全保护装置,以防止发生意外伤害。

安全保护装置可以包括安全光幕、急停开关、碰撞感应器等,以保障机器人和操作员的安全。

最后,设计方案还需要考虑机器人的维护和故障排除。

机器人在长时间运行过程中,可能会出现各种故障,因此需要设计方便维护和故障排除的机械结构和控制系统。

例如,机器人可以设计为模块化的结构,方便更换维修;控制系统可以设计为具有自诊断功能,提供故障自动排查和修复的能力。

综上所述,工业机器人设计方案需要考虑机器人类型选择、控制系统设计、编程性、安全性和维护性等多个方面。

只有综合考虑这些因素,才能设计出具有高效性、安全性和可靠性的工业机器人。

工业机器人设计与实例详解

工业机器人设计与实例详解

工业机器人设计与实例详解工业机器人是一种具有高度自动化和智能化的机器设备。

它广泛应用于各种制造领域,如汽车制造、电子制造、医疗器械制造等。

本文将详细介绍工业机器人的设计与实例。

一、工业机器人的设计1.结构设计工业机器人的结构设计包括机械结构、传动系统、控制系统和电气系统等。

机械结构应具有足够的刚度和精度,使机器人能够承受重载和高速度。

传动系统应具有高精度和高效率,以确保机器人的高速度和精度。

控制系统应具有高性能和高稳定性,以确保机器人的高精度和高速度。

电气系统应具有高可靠性和高效率,以确保机器人的稳定性和运行效率。

2.运动学设计工业机器人的运动学设计是机器人设计中非常重要的一个方面。

它涉及机器人的轨迹规划、运动学正逆问题、末端执行器设计和动力学分析等。

运动学设计应满足机器人的高速度和高精度要求。

3.控制算法设计工业机器人的控制算法设计关键是机器人的路径规划和控制系统的设计。

路径规划应采用高效的算法,以实现机器人的高速度和高精度。

控制系统的设计应具有高性能和高稳定性,以确保机器人的高速度和高精度。

二、工业机器人的实例1.汽车制造在汽车制造中,工业机器人被广泛应用于车身焊接、喷漆、车体检测和零件加工等领域。

通过使用工业机器人,可以实现车身的高精度和高效率生产,提高汽车制造的质量和效率。

2.电子制造在电子制造中,工业机器人被广泛应用于半导体生产和电子零件组装等领域。

通过使用工业机器人,可以实现电子产品的高精度和高效率生产,提高电子制造的质量和效率。

3.医疗器械制造在医疗器械制造中,工业机器人被广泛应用于手术器械生产和医疗器械组装等领域。

通过使用工业机器人,可以实现医疗器械的高精度和高效率生产,提高医疗器械制造的质量和效率。

综上所述,工业机器人的设计与实例是机器人技术中的重要方面。

要设计出高精度、高效率、高性能和高稳定性的工业机器人,需要考虑机器人的结构设计、运动学设计和控制算法设计等方面。

同时,工业机器人在汽车制造、电子制造和医疗器械制造等领域中的广泛应用,为制造业的高质量和高效率生产提供了有力的保障。

工业机器人毕业设计

工业机器人毕业设计

工业机器人关键技术参数
精度:机 器人执行 任务的准 确程度
速度:机 器人执行 任务的速 度
负载:机 器人能够 承受的最 大重量
工作范围: 机器人能 够到达的 最大距离 和角度
控制系统: 机器人控 制运动的 方式
安全性: 机器人在 运行过程 中的安全 保障措施
工业机器人选型依据与步骤
确定需求:明确 机器人的用途、 工作环境、负载 能力等
02
工业机器人设计与选型
工业机器人设计原则
安全性:确保机器人在运行过程中不会对人员和设备造成伤害 可靠性:保证机器人在长时间运行中能够稳定工作,减少故障率 灵活性:机器人应具备足够的灵活性,能够适应不同的工作环境和任务需求 易维护性:机器人设计应便于维护和维修,降低维护成本和停机时间
成本效益:在满足设计要求的前提下,尽量降低机器人的制造和运行成本,提高经济效益
比较性能:比较 不同机器人的性 能参数,如精度、 速度、稳定性等
考虑成本:考虑 机器人的购买成 本、维护成本、 能耗成本等
确定选型:根据 需求、性能和成 本,选择合适的 机器人型号和配 置
03
工业机器人控制系统设计
控制系统硬件架构设计
控制器:负责控制机器人 的运动和操作
传感器:用于检测机器人 和环境的状态
应用系统集成流程与规范
需求分析: 明确客户需 求,确定系 统集成的目
标和范围
系统设计: 根据需求分 析结果,进 行系统架构 设计、功能 模块设计等
硬件选型: 选择合适的 工业机器人、 传感器、控 制器等硬件
设备
软件开发: 编写控制程 序、人机界 面程序等软 件,实现系
统功能
集成调试: 将硬件设备 和软件程序 集成在一起, 进行调试和

工业机器人机器人本体设计分析

工业机器人机器人本体设计分析

工业机器人机器人本体设计分析声明:本文内容信息来源于公开渠道,对文中内容的准确性、完整性、及时性或可靠性不作任何保证。

本文内容仅供参考与学习交流使用,不构成相关领域的建议和依据。

一、机器人结构设计机器人的结构设计是指针对特定任务和工作环境,对机器人的外形、连接方式、关节结构等进行设计和优化的过程。

合理的机器人结构设计能够提高机器人的功能性、灵活性和稳定性,从而更好地完成各种任务。

下面将从机器人的外形设计、连接方式设计以及关节结构设计三个方面详细论述机器人结构设计相关内容。

(一)外形设计1、外形尺寸设计:机器人的外形尺寸设计需要考虑到工作空间的限制以及任务的需求。

合理的外形尺寸设计可以使机器人在狭小的空间内自由移动,并且能够达到所需的工作范围。

2、外形材料选择:机器人的外形材料选择应考虑到机器人的使用环境和任务特点。

例如,在潮湿的环境中工作的机器人可以选择防水材料,而在高温环境中工作的机器人则需要选择耐高温材料。

3、外形形状设计:机器人的外形形状设计既要满足机器人的运动需求,又要符合人类对机器人的认知和接受。

因此,外形形状设计需要考虑到机器人的动态特性和人机交互的需求。

(二)连接方式设计1、运动连接方式设计:机器人的运动连接方式包括传动装置、连接结构等。

传动装置的设计应满足机器人的工作要求,如速度、精度、承载能力等。

连接结构的设计应具有稳定性和刚度,以确保机器人在高速和大力矩下不发生松动或变形。

2、电气连接方式设计:机器人的电气连接方式包括电缆布线、接插件等。

电缆布线的设计应考虑到机器人的自由度和运动范围,并保证电缆的可靠性和耐久性。

接插件的选择和布局应方便维护和更换。

3、通讯连接方式设计:机器人的通讯连接方式包括传感器和控制系统之间的通讯方式。

合理的通讯连接方式可以提高机器人的响应速度和数据传输效率,从而提高机器人的工作效率和稳定性。

(三)关节结构设计1、关节类型选择:关节是机器人身体各部分连接起来并实现运动的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业机器人设计2007年02月10日星期六晚这是一篇被广泛转载的论文,个人觉得写的还是挺好的。

讲得比较系统,对工业机器人的机械设计从总体上指明了方向。

但是有些地方也不能全信。

比如说操作空间和杆长的参数就不能完全照扒现有的产品,应该用优化算法去算,再对比现有的去调整;再比如减速器选择,现在日本的工业机器人都不用谐波减速器,用RV减速器了。

所以实际做的时候要多方查资料,没有现成正好的给我们用,要自己去甄别、总结。

操作机整机设计原则和设计方法1. 操作机整机设计原则(1)最小运动惯量原则由于操作机运动部件多,运动状态经常改变,必然产生冲击和振动,采用最小运动惯量原则,可增加操作机运动平稳性,提高操作机动力学特性。

为此,在设计时应注意在满足强度和刚度的前提下,尽量减小运动部件的质量,并注意运动部件对转轴的质心配置。

(2)尺度规划优化原则当设计要求满足一定工作空间要求时,通过尺度优化以选定最小的臂杆尺寸,这将有利于操作机刚度的提高,使运动惯量进一步降低。

(3)高强度材料选用原则由于操作机从手腕、小臂、大臂到机座是依次作为负载起作用的,选用高强度材料以减轻零部件的质量是十分必要的。

(4)刚度设计的原则操作机设计中,刚度是比强度更重要的问题,要使刚度最大,必须恰当地选择杆件剖面形状和尺寸,提高支承刚度和接触刚度,合理地安排作用在臂杆上的力和力矩,尽量减少杆件的弯曲变形。

(5)可靠性原则机器人操作机因机构复杂、环节较多,可靠性问题显得尤为重要。

一般来说,元器件的可靠性应高于部件的可靠性,而部件的可靠性应高于整机的可靠性。

可以通过概率设计方法设计出可靠度满足要求的零件或结构,也可以通过系统可靠性综合方法评定操作机系统的可靠性。

(6)工艺性原则机器人操作机是一种高精度、高集成度的自动机械系统,良好的加工和装配工艺性是设计时要体现的重要原则之一。

仅有合理的结构设计而无良好的工艺性,必然导致操作机性能的降低和成本的提高。

2.操作机的设计方法和步骤(1)确定工作对象和工作任务开始设计操作机之前,首先要确定工作对象、工作任务。

1)焊接任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是对其进行弧焊或点焊,则要求机器人的制造精度很高,弧焊任务对机器人的轨迹精度和位姿精度及速度稳定性有很高的要求,点焊任务对机器人的位姿精度有很高的要求,两种任务都要求机器人具备摆弧的功能,同时要能在狭小的空间内自由地运动,具备防碰撞功能,故机器人的自由度至少为六个。

2)喷漆任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是喷涂汽车的内部和车门或是复杂曲面物体的表面,则要求机器人手腕要灵活,能够在狭小的空间内自由地运动,具备防碰撞功能;要求机器人能够在长时间内连续稳定可靠地工作;同时要求机器人具备光滑的流线型外表面,漆、气管线最好能从其横臂和手腕内部通过,使机器人外表不易积漆积灰,不会污染已喷好的工作对象,且漆、气管线也不易损坏;因喷漆机器人是在易燃易爆的工作环境中工作,故要具备防爆的功能。

同时对机器人的轨迹精度和位姿精度及速度稳定性也有较高的要求。

机器人的自由度至少应为六个。

3)搬运任务:如果工作对象比较笨重,工作任务是定点搬运,定位精度要求高,则对机器人的承载能力和定位精度有高的要求。

如果工作对象比较轻巧,工作任务也是定点搬运,但要求轻拿轻放,且定位精度要求高,则对机器人的速度稳定和定位精度有高的要求。

4)装配任务:对机器人的速度稳定密和位姿精度有很高的要求。

有些机器人能完成多种工作任务,如MOTOMAN-SKI20系列机器人,既可以用于搬运也可以用于点焊,具有快速、精巧、强有力和安全性高的特点;另一种MOTOMAN-SK6/SK16系列机器人,可以完成弧焊、搬运、涂胶、喷釉和装配多种任务,具有高速、精巧和可靠性高的特点。

设计新型机器人时,要充分考虑以上诸多因素,并应多参考国内外同类产品的先进机型,参考其设计参数,经过反复研究和比较,确定出所要机械部分的特点,定出设计方案。

下面以一台六自由度交流伺服通用机器人为例讲一下设计过程,如图所示。

(2)确定设计要求1)负载:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人的负载。

一般喷漆和弧焊机器人的负载为5~6kg。

2)精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人未端的最大复合速度和机器人各单轴的最大角速度。

3)精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人的重复定位精度、如弧焊机器人的重复定位精度为±0.4mm,ABB公司开发的Model 5003型喷漆机器人的重复定位精度为±1mm。

同时要确定构成机器人的零件的精度、臂体的尺寸精度、形位精度和传动链的间隙,如齿轮的精度和传动间隙;还要确定机器人上所用的元器件的精度,如减速器的传动精度、轴承的精度等等。

4)示教方式:根据用户工作对象和工作任务的要求,确定机器人的示教方式。

一般机器人的示教方式有下列几种:①离线示教(离线编程);②示教盒示教;③人工手把手示教。

如果是喷漆机器人,就应该具备人工手把手示教的功能,而对于其他机器人,有前两种功能就可以了。

5)工作空间:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人的工作空间的大小和形状。

6)尺寸规划:根据对工作空间的要求,参考国内外同类产品的先进机型,确定机器人的臂杆长度和臂杆转角,并进行尺寸优化。

(3)机器人运动的耦合分析对大多数非直接驱动的机器人而言,前面关节的运动会引起后面关节的附加运动,产生运动耦合效应。

比如将六个轴的电动机均装在机器人的转塔内,通过链条、连杆或齿轮传动其他关节的设计,再比如同心的齿轮套传动腕部关节的设计,都会产生运动耦合效应。

为了解耦,在编机器人运动学控制软件时,后面的关节要多转一个相应的转数来补偿。

对一台六自由度的机器人来讲,如果从2、3轴之间开始就有运动耦合,且3、4、5、6轴之间都有运动耦合,那么3、4、5、6轴电动机就必须多转相应的转数(有时是正转,有时是反转,依结构而定),来消除运动耦合的影响,3轴要消除2轴的,4轴要消除2轴和3轴的,依此类推,如果都要正转,到了6轴,电动机就必须有相当高的速度来消除那么多轴的影响,有时电动机的转速会不够,且有运动耦合关系的轴太多,机器人的运动学分析和控制就会很麻烦。

故设计六自由度的交流伺服机器人,一般情况下,前4个轴的运动都设计成是相对独立的,而运动耦合只发生在4、5、6轴之间,即5轴的运动受到4轴运动的影响,6轴的运动受到4轴和5轴运动的影响。

这样做,既能保证机械结构的紧凑,又不会使有耦合关系的轴大多。

(4)机器人手臂的平衡平衡机器人操作手臂的重力矩优点如下: ·如果是喷漆机器人,则便于人工手把手示教。

·使驱动器基本上只需克服机器人运动时的惯性力,而忽略重力矩的影响。

故可选用体积较小、功耗较小的驱动器。

·免除了机器人手臂在自重下落下伤人的危险。

·在伺服控制中因减少了负载变化的影响,因而可实现更精确的伺服控制。

一般机器人操作机因1轴转塔旋转,故不要平衡,4、5、6轴的手臂往往因重力很小,也不要平衡,故要平衡的是2、3轴手臂的重力矩。

1)配重平衡机构:此种机构原理如图2a所示。

设手臂质量为m1,配重质量为m2,因关节中心在同一直线上,则不平衡力矩为M1=m1glcosγ配重产生的力矩为M2=m2glcosγ静力平衡条件为M1=M2即 m1l=m2l这种平衡机构简单,平衡效果好,易于调整,工作可靠,但增加了手臂的惯量和关节的负载,适用于不平衡力矩较小的情况。

2)弹簧平衡机构:其原理如图2b所示,臂的不平衡力矩为M1=M11-M12=mglcosγ-Ia式中 M11——静不平衡力矩;M12——惯性力矩;I——手臂对关节轴的转动惯量;a——臂运动平均加速度。

弹簧产生的平衡力矩为式中 k——弹簧刚度;l——弹簧在手臂上安装点到关节轴的距离;e——弹簧另一端安装点到关节轴的距离;R——弹簧自由长度。

静力平衡条件为M2=M11动力平衡条件为M2=M11+M12这种平衡机构结构简单,平衡效果也较好,工作可靠,适用于中小负载,但平衡范围较小。

3)气缸平衡机构:这种平衡机构原理如图2c所示。

手臂不平衡力矩为M1=M11+M12=mglcosγ+Ia 汽缸产生的平衡力矩为式中 F——汽缸活塞推力;其余参数同上。

静力平衡条件为M2=M11动力平衡条件为M2=M11+M12汽缸平衡机构多用在重载搬运和点焊机器人操作机上,液压的体积小,平衡力大;气动的具有很好的阻尼作用,但体积较大。

(5)机器人动力学分析机器人因各轴的重力矩均已基本平衡,故在这些轴运转时,电动机主要需克服的是由各轴转动惯量所带来的动力矩。

1轴:经分析,当机器人末端伸到最远处时,1轴运转起来的转动惯量为最大。

计算可得到此处1轴的转动惯量J1如起动时间取为T1,则动力矩为M1=J1ω1/T12轴:经分析,当小臂相对于大臂的夹角为最大时,2轴运转起来的转动惯量为最大,经计算可得到此处2轴的转动惯量为J2。

如起动时间取为T2,则动力矩为M2=J2ω2/T23轴:机器人小臂相对于大臂上部中心运转起来的转动惯量即是3轴的转动惯量。

同理有M3=J3ω3/T34轴:4轴无重力矩平衡装置,故4轴电动机既要克服起动时的动力矩,也要克服运转时由手腕和负载引起的重力矩。

经计算,得出4轴的转动惯量,继而计算出4轴所需的传动扭矩。

5轴:5轴也无重力矩平衡装置,故5轴电动机也是既要克服起动时的动力矩,也要克服运转时由手腕和负载引起的重力矩。

经计算,得出5轴的转动惯量,继而计算出的5轴所需的传动扭矩。

6轴:6轴也无重力矩平衡装置,故6轴电动机也是既要克服起动时的动力矩,也要克服运转时由手腕和负载引起的重力矩。

经计算,得出6轴的转动惯量,继而计算出的6轴所需的传动扭矩。

(6)电动机的选用选用好交流伺服电动机,是操作机设计的关键。

由于机器人要求结构紧凑、重量轻、运动特性好,故希望在同样功率的情况下,电动机重量要轻、外形尺寸要小。

特别是装在机器人横臂或立臂内部的电动机,重量要尽可能轻,外形尺寸要尽可能小。

根据动力学计算得到的各轴所需的传动扭矩,除以减速器的减速比,再将传动链的效率,如减速机的效率、轴承的效率和齿轮的效率等考虑进去,并考虑各轴所需的转速(运动耦合因素也要考虑在内),就可以选用电动机了。

在选用时要注意,交流伺服电动机的速度是可调节的,且在相当大的转速范围内电动机输出的转矩是恒定的,故选用电动机时只要电动机的额定转速大于各轴所需的最高转速就行。

同时还要注意与交流伺服电动机配置在一起的位置编码器的选用,并注明电动机是否需要带制动器等。

相关文档
最新文档